p M . wrame

LISP II Project ‘ 1-177
Information International, Inec.

. Memo 1

THE INTERNAL LANGUAGE

By

Michael Levin

ABSTRACT

This memo describees the internal S-expression language of
LISP II to the extent to which it is now known. Certaln features
such as the Comlt-type rule are deliberately omltted because they
have yet to be determined. The syntax of this memo ie meant to
be fairly complete, and 18 guite trivial. The semantlics are in-
complete and specify only what is directly related to the syntax.
This memo does not specify data types.

1. Jdentifiers

Identifiers are composed of digits, letters, and @. The first
character must be a letter. One 1s not free to incorporate additional
non~ASCII characters into ldentifiers. However, strings may contain
any legal characters of the hardward.

\1.1. Reserved Vords

It 18 important that the user does not have to worry about
reserved identifiers any more than is absolutely necessary. In par-
ticular, the procedures local to the compiler must dbe invieible to
gim ?nlass he wishes to use them by means of tailing symbols (see

24)0

Certain identifilers must be reserved because they are key syn-
taoctic words in the source language (e.g. BEGIN and ELSE). This list
is quite short. The only other reserved words that the user need:
be concerned with are those that name important system functions
- that the user will actually need. Those that he doesn't need will

be overridden by his own declarations., -

The user 1s cautioned to stay away from all identifiers with @.
These are used in the internal language for purposes that are not
explicit in the source language (e.g. xsnnus??

The user's instructions are:

1. Learn the 1ist of reserved words. (About 40 words)
2. Don't use identifiers with 8. '

1.2, Talling Symbols

In the source language, these appear as a sequence of identi-
fiers with § between them, and no spaces, for example, X1$COMPILER.
The internal representation is (TAIL@ X1 COMPILER) which is an
S~-expression. Every identifier except the last must be the neme of
a procedure or function, or the label of a block. The first identi-
fler must have local significance. The rest of the list is then
interpreted at the locality of the first. This process 18 repeated
down the list, until the last item is found.

2. Expressions
2.1. Constants

Ifa constant 18 non-atomic, or if it is an identifier, then
it must be quoted. If it is & string, number, or other type of
atom, then it may or may not be quoted. The guoting is as in
LISP 1.5. ~

2.2. Composition

Constants and variables are'expressions. If fn is a procedure
or a function, and if the e, are expressions, then (fn e; ... e,
where n2 0 is an expression. :

2.3. Conditional Expressions

If the p, and the e, are expressions, then (COND (py €,) ...

‘ (p. e.)) is af expressioﬁ Each p, must properly be Booleah-valued,
Thg bEhavior of non-Boolean values~will not be guaranteed. The value
of the conditional expression is the most general of the values of
the e The most general type is SYMBOL. The compller will opti-
mize %y distributing transfer functions and cancelling where two
composed transfer functions are the inverse of each other.

Example: |
Source Language:

BOOLEAN B,D; INTEGER A,C; REAL E;
Aemnmcmnnmnxmszn,

Internal language.
(SETQ A (COND (B C) (D E) (TRUE F)))
- After inseg&}ogJg{aﬁzggffe:qugggigns. Ren) do SiDet

(SETQ A (”s‘igom (conp (B (13(;8 c)) (D (RSGON@ E)) (TRUE F))))
R cusag A miega Bocomar T aikies o Qeeomis, E aeed /

After distribution and cancellation of tranafer functions: - rﬂ»Aqwhi

(SETQ A (conp (B¢) (D (axcon@ E)) (TRUE (SICONE F))))

‘ 2.4. The Assignment Statément

The assignment statement may be used as an expression. Its
value is the value assigned to its left half. In the source language,
left arrow has lower precedence than the Boolean operators.

2.5. Subscripted variables
Source language: Al1,3)
Internal language: (ARRAY A I J)

3 State@nts
The types of statement are:

l, conditional statement

2. go to statement

2. for statement
assignment statement

5. procedure statement
compound statéement

T7s Dblock
. There 1s no reason why this list cannot be extended at some
time. The Comit-type rule or equivalent will eventually be included

as a statement.

-3..

3.1. Labels

Source language: <1abe1> : <statement)
Internal language: (LABEL {label) <§tatemen€>)
3.2. Compound Statements
Source language: BEGIN §&: eae ;Sn END
or

(85 «c0 381
Internal language: (comr@ 8, ... Sn)
3.3. Blogks
Source language: BEGIN Dy5 «o. 3D 3845 ... 58, END

or

[DI; eve 3DpiSy eee ;sn]
Internal language: { BLOCK@ (Dl Ve Dm) Sy ee- Sn)

If there are no declarations, then there must still be a null
list of declarations.

3.4. Assignment Statements
Source language: {iert part) ¢ {expression)
Internal language: (SETQ {left part) xpression))

The stored quantity must be of a suitable type for the variable
it is being stored into. Conversion functions will be invoked when
necessary. (See example 2.3.) ‘ :

The left part of an assignment statement must be a locative
expression. (An actual parameter to be transmitted by LOC must also
be a2 locative expression,) Simple variables and subscripted variables
are locative expressions. Table operations (as yet undefined) may
contain some locative expressions.

Formal transmission of a parameter used as a left part will
require some dynamics at run time. The notatlion FUNC@ indicating a
function to be applied at run time may be inserted during the next
gtage of compilation.

3.5. Conditional Stateménts

Source language: - IF py THEN 8 ELSE IF ...

Internal language: (conp (p; 8;) «..)

The wnsatisfied conditional statement has no effect. The unsatis-
fied conditional expression causes an error.

I T

3.6, Procedure Statement

Semantically, this 1s an expression which gets evaluated and
its value, if any, 18 ignored. A& procedure which does not have a
value can only be used in this way.

3.7. For Statements

Several variants of the FOR statement as well as several ideas
on optimigation are currently being considered. The key to recog-
nition is the statement beginning %FOR cee)e

3.8. @Go To Statements
Source language: GO0 TO (designational expx-.)

or

G0 {designational expression)
Internal language: (60 (Gesignational expression))
The word TO ls ignored.

The designational expression is like any other expression. The
label is a type. However, there are no conversion functions between
labels and other types (unless the integer label is resurrected).

The only thing to do is to go to it. SWITCH is a synonym for LABEL
ARRAY. They may be multl-dimensional. It is permissible to assign
a label to a switch, whereas the Algol €0 switeh 18 a constant array.
Labels and switches may be used as parameters. Non-local labels
mugt be referred to by tailing.

It 18 not permitted to go into or out of a procedure. It is
permitted to go into or out of a compound statement.

4, Punctions

A function 1s not an expression to be evaluated, The word
function is used here as in LISP. The Algol term <(function
designaton} is confusing, because it describes an expression, and
should be ignored.

There 18 a distinction between a function and & procedure in
LISP II. The function has an expression as its body. The expression
is evaluated and this 1s the value of the function. The procedure
has a statement as 1ts body. The statement is executed. If the
procedure has a value, then this is obtained either by RETURN, as
in the LISP 1.5 PROG, or by the most recent value assigned to the
procedure identifier from within itself as in the Algol €0 procedure.

A function may be an identifier both in the source language
and in the internal language, e.g. CAR.

o

A function may be labeled, in which case it 1s still a function.
Source language: <?abel> $ <?unctioﬁ>
Internal language: (LABEL Qabe]} (f'unction))

A functlon may be designated by a LAMBDA expression, The
ASCII character for A is @.

Source language: @ (X5 .. ,Xm);D 3 cee ;Dh;E

Internal language: (LAMBRDA (1(1 xm) (D1 sea Dn) E)
where the X; are formal parameters, the D, are declarations, and E
i8 an expre&sion. In the internal language, the declaration list
nust always be present even if it is null.

The internal language conventions thus are exaectly those of
LISP 1.5 with the insertion of the declaration list. For LISP 1.5
functlons using slow arithmetie, this will be null.

L,1., Procedures

The syntax is identical to that for functions except that the
symbol € in source langu&ge, and the identifier LAMBDA in internal
language are replaced by the identifier PROCEDURE. The procedure
body 18 a statement rather than an expression.

L2, Values of Funetions and Procedures

The,, ¢ lue returned by a function or procedure must be known &t
compile time 1 efficient arithmetic programs are to be generated.
The type of value may be declared or assumed to be SYMBOL.

Source language: TYPE REAL;
TYPE INTEGER ARRAY;
Internal language: sTYPE REAL)
TYPE INTEGER ARRAY)

5. Declarations

Lists of declarations occur in the headings of blocks, procedures,
and functions. In the source language, they are separated by semi-
colons; in the internal language, they are elements of a list.

5.1. Answer Type Declaratlons

The answer type declaration in the procedure or function de-~
fines the type of the answer returned. See 4.2,)

~6-

5.2. Mode Declarations

. These specify the mode by which a parameter is transmitted.
Source language: VALUE X, ¥; LOC Z; FORMAL W;
Internal language: (VALUE X Y) (LOC 2) (ronMAL\Sﬁ

5.3. Type Declarations
These specify the data type of parameters and variables,

Source language: REAL X, Y; SYMBOL Z;
Internal language: (REAL X Y) (SYMBOL Z)
5.4, Type Declarations with Initialization

A type declaration may also cause initialization of variables
(but not parameters).

Source language: REAL X, Y« 2.0, Z; SYMBOL We-'(A . B);
Internal language: (REAL X (Y 2.0) 2) gSYMBOL (w
(QuoTE (A . B))))

5.5. Storage Specification

' The storage modes are LOCAL (on the push down stack and ac-
cessible only locally), GLOBAL (in a special location and accessible
anywhere), and OWN (statically declared, unrecursive, and accessible
locally or by tailing).

Source language: GLOBAL X; OWN Y;
Internal language: (GLOBAL X) (OWN Y)

5.6. Array Declarations

Since arrays are data in LISP II, it is not always necessary
to declare a size. One may declare that a glven variable is an
array varlable, and later place an array in it. In this case, it
is not meaningful to subscript the variable until an array has been
created. These alternatives execute at various speeds with the static
array being the fastest. OWN arrays must be statlcally declared with
bounds. Arrays must have a data type specifying what type of data
are stored in them. Arrays may be initialized.

Source language: REAL ARRAY W[2,2)a-[[3.0,4.7],
[6.0,4.2]]
Internal language: (REAL ARRAY ((wW 2 2) [[3.0,&,7],
o ' [6.0,4.211))

5.7. Mixed Declarations

‘ Any of the previous declarations may be combined when
meaningful., _
Source language: GLOBAL LOC INTEGER X;

OVWN REAL Y<¢-3.0;
GL.OBAL INTEGER X«U*V;

Internal language: GLOBAL LOC INTEGER X)

OWN REAL (Y 3.02) ‘
GLOBAL INTEGER (X (TIMES U V)))

5.8, Default Assumptions

1. All data types are SYMBOL.

2. All function and procedure values are of type SYMBOL.

3. All parameters are transmitted by VALUE.

4. A1)l parameters and varlables are LOCAL.

5. All arrays are of type SYMEOL.

6. All unspecified initializations are NIL, O, 0.0, FALSE, etc.
. 5.9. Functlon and Progedure Declarations |

It 18 possible to declare a variable whose value is a funection
or procedure:s

Source language: REAL PROCEDURE X;
Internal language: (REAL PROCEDURE X)

Like any other variable definition, this may be initialized
to some function:

Source language: FUNCTION SECOND<¢@(X); CADR (X);

Internal language: (FUNCTION SECOND (LAMBDA (X) () (CADR X)))

In the source language only, there 13 an alternative syntactic
convention that is compatible with Algol 60. Thils consists of

merely eliminating the left arrow and the symbol immediately follow-
ing it. This causes no loss of information.

Source language: ~ FUNCTION SECOND (X); CADR (X);

The procedure declaration is the same as the fune¢tion declara-
tion except that the LAMEDA or @ 1s replaced by PROCEDURE.

Note that in such a declaration, the need for an answer type
declaration within the function disappears. A REAL PROCEDURE must
define a procedure with answer type real.

-8-

@ My apologies for a hasty and undebugged memo. I wanted
everyone to think about these things before the next meeting.
I'm sure there will be lots to object to then.

1/26/€5

