Ch. 6 Photosynthesis Note Outline

Forms of energy: 1) Potential – stored E or E of _____ 2) Kinetic – E of *1st Law of Thermodynamics – E cannot be _____ or , only changed from one form to another Energy tends to be : > Approximately _____ the potential E in food is lost as ____ to the environment when it is changed into E. *E conversions reduce the state of order, **entropy**, in the environment (universe). *2nd Law of Thermodynamics – Disorder (______) in the universe constantly increases; in a _____ system, E tends to be converted to less organized systems that are more . Energy is carried by electrons (e-): > E in food is stored in the _____ electrons in the C to H ____ **BONDS** and can be transferred. Chemicals pass e- from one atom or molecule to another in ______ -_____ (redox) rxns. LEO goes GER *Oxidation: _____ of e-'s *Reduction: _____ of e-'s lose e-'s = oxidation Obtaining Energy gain e-'s = reduction : org's that use E from sunlight or inorganic chemicals to make organic compounds "Can make their own food" : animals & other org's, obtain E from instead of from sun or inorganic substances - Have to their food **Overview of Photosynthesis** - Produces organic compounds (_____) & _____ from _____ & ____ - carb's & O₂ are used during _____ to produce CO₂ & H₂O and release E from bonds

2 Stages of Photosynthesis 1.	: light E is converted to cher	mical F & tempo	rarily
stored as ATP & NADPH (an		mear E & tempo	rarriy
	: ATP & NADPH & CO ₂ used to	form organic cou	mnounds
-	. 7 (11 a 147 b) 11 a 002 aooa to	ionii organio ooi	проиназ
Light E 6CO₂ + 6H₂O → C6H₁₂O6 + 6C	D 2		
* This equation does not show the _	pathway		
Light Reactions			
- Require to occ	ur		
 Light is absorbed in 	(organelle in	&	w/
double membrane			
In chloroplasts:			
<u>Thylakoids</u> :			
Grana: stacks of			
Stroma: fluid surrounding			
Light & Pigments - Sunlight appears	_ (visible light spectrum), but is	composed of ma	iny
These colors are	,or		by
objects that contain	(compounds that	light)	
: pigment in n	nembranes of thylakoids		
Chlorophyll a: absorbs majority of I	ight E in	; absorbs	light
Chlorophyll b: an	pigment; absorbs	light	
- Neither absorbs (why	plants look green)		
<u>Carotenoids</u> : accessory pigments (·,, & _)	
is not produce	ed in fruit or flowers of plants; no	t produced in fal	I
Converting Light E to Chemical E			
&	absorb light E		
: cluster of	few-100 pigment molecules & th	e proteins the pi	gments
are embedded in			
- Photosystem & Photosystem _			
Steps of Photosynthesis (p116-11	8)		

1. LIGHT GETS ABSORBED

2. e-'s in chlorophyll a (part of Photosystem II) become	
- Leave the molecule (an oxidation rxn)	
3. e-'s get passed to	
4. From here, e-'s are passed to : (ETC	2)
series of molecules in that transfer e-'s from 1	
molecule to the next	
- Lose E as they move; this E is used to move protons () into the thyla	ıkoid
Making ATP Chemiosmosis: movement of protons conc. gradient, coupled w/ syntheter	sis of
-remember that H+ ions have been pumped into thylakoid from stroma, creating	ј а
ATP synthase: that uses energy of moving H+ to add a to	to
form ATP	
5. Light hits; reenergizes e-'s	
- e-'s leave chlorophyll a to e- acceptor, then to another	
6. Two e-'s reach the side of the thylakoid memb.	
- Combine w/ H+ & NADP+ (an e- acceptor)	
- Forms	
- e-'s by chlorophyll need to be, or photosynthesis wi	II
- e-'s are replaced by splitting a molecule	
2H ₂ O → 4H+ + 4e- + O ₂	
- This is why is necessary for photosynthesis & how is prod	uced
Calvin Cycle	
- Series ofassisted rxn's that produce a 3-Carbon sugar	
: incorporation of CO ₂ from atmosphere into orga	nic
compounds	
-occurs in the of	
*****NOTE: Calvin Cycle sometimes called Rxns	or
Dark Rxns	
- Not directly dependent on, but are dependent on products from ligh	t rxns
(which do require)	
- Are dependent on & from light rxns	

- Calvin C	Calvin Cycle is the most common pathway used by for				
How Does CO:	– ₂ enter P	lant? How Does O ₂ E	xit?		
The	!!!!!				
- When closed	on hot/dr	y days, less water leave	es, but less CO2 ente	ers, inhibiting Calvin Cycle	
Alternative Pa	thwave				
Pathw	_	Pathway			
			olants in 8/o	r environments	
	_ preserv	ing patriways used by p		ICHVIIOHIIICHI3	
Summary of P	hotosyn	thesis			
Stage of Ph	oto.	Reactants	Products		
Light React	tions	Light, H ₂ O, H+ ions (protons) & e-'s from H ₂ O, NADP+, & ADP	O2, ATP, & NADP	Н	
Calvin Cycle Independent	` •	ATP, CO ₂ , NADPH, RuBP	Organic Compound (carb's), NADP+, Al		
- Plants us	se produ	cts of photosynthesis fo	r their own purposes		
- Most ma	ke more	than they n	eed, so are stored as	s in	
chloropla	asts, root	s, & fruit			
Factors that A	ffect Pho	otosynthesis			
1)		: rate of photo.	increases as light int	ensity increases	
- More li	ght	more e-'s, so r			
		as a			
				, but	
		off (just as w/ light intens			
	•	: rate of photosynt	3,	emp increases	
		tain temp, after which e			
-		to	,		
		& will ever	ntually		