Name ______ Date _____

Unit 18: Parametric Equations & Proof by Induction Homework

- 1. Page 586 #3, 5, 8, 9, 17, 19
- 2. Page 587 #23, 24
- 3. $x = 4\sec\theta$ $y = 3\tan\theta$
- 4. $x = \frac{1}{t}$ y = 2t + 3
- 5. $x=1-t^2$ $y=1+t^2$
- 6. Page 587 #30: Graph on a calculator (set t-step to 0.05)
- 7. Page 733 #1, 4, 5, 8
- 8. Prove: $N^3 + 3N^2 + 2N$ is divisible by 3
- 9. Prove: $5^N 1$ is divisible by 4
- 10. Prove: $2(1+3+3^2+....+3^{N-1})=3^N-1$
- 11. Prove: $3^N > 2N + 1$ for $N \ge 2$
- 12. Prove: $\frac{1}{1 \text{ g2}} + \frac{1}{2 \text{ g3}} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$
- 13. Prove: $n! > 2^N$ for $n \ge 4$
- 14. Prove: $\sin(\theta + N\pi) = (-1)^N \sin \theta$
- 15. Page 733 #12
- 16. Prove: $11^N 4^N$ is divisible by 7
- 17. $3^N > 10N$ for $N \ge 4$

18. Graph:
$$x = 3\sqrt{t-3}$$
 $y = 4\sqrt{4-t}$

19. Particles A and B move in the x-y plane according to the following equations:

A:
$$x = 3t - 2$$
 B: $x = 2t - 1$
 $y = -6t + 6$ $y = -(2t - 3)^2 + 1$

Show algebraically that these particles "collide". Justify when the collisions occur.

20. For $0 \le t \le 20$ a particle moves in the x-y plane according to:

$$x = t - \ln t$$
$$y = \cos t - \ln t$$

At what time is x at its minimum value?

21. Prove: $N(N^2 + 5)$ is divisible by 6

22. Graph: $x = 2^{t} - 2^{-t}$ $y = 2^{t} + 2^{-t}$