

PEDESTRIAN DETECTION IN LOW-RESOLUTION VIDEOS

by

Hisham Sager

 ii

A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial

fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering).

Golden, Colorado

Date ______________

Signed: ___________________________

Hisham Sager

Signed: ___________________________
Dr. William Hoff

Thesis Advisor

Golden, Colorado

Date ______________

Signed: ___________________________

Dr. Randy Haupt
Professor and Head

Department of Electrical Engineering and Computer Science

 iii

ABSTRACT

In this dissertation, we address the problem of detecting pedestrians in low-resolution

videos taken by stationary cameras and cameras mounted on aerial platforms. The target

pedestrians are as small as 20 pixels in height. Pedestrian detection is a key problem in computer

vision, and has several applications such as search and rescue, law enforcement and general

surveillance, and military applications against enemies. The most common approach for

pedestrian detection is to use high resolution single frame, and there is relatively little work

focused on pedestrian detection in low resolution scenarios. Under more realistic and challenging

conditions, performance of the available approaches degrades rapidly, while approaches that are

based on appearance cues mostly fail since the pedestrians are only a few pixels in height.

Detecting pedestrians is a challenging task, since pedestrians are non-rigid objects, ranging over

a high variability of poses, appearances, and scales. The detection task typically takes place at

scenes with a lot of background clutter which require high classification precision. The task

becomes more challenging in aerial videos, due to the rapid change in viewpoints and scales,

which makes video stabilization more difficult. Furthermore, the much larger search space and

the small number of pixels on the target make it difficult to distinguish pedestrians from

background clutter. In this problem domain, the existing state-of-the-art pedestrian detection

methods have poor performance. Therefore, there is a clear need for a method that can detect

pedestrians in low resolution imagery.

To overcome these challenges, we propose a novel detection method that recognizes

pedestrians in short sequences of frames (about ½ second in duration). We extend the single-

frame HOG-based detector to a multiple frames detector. Our approach uses video stabilization

to detect potential moving objects. A classifier is then applied to volumetric normalized features

extracted from spatio-temporal volumes surrounding the potential moving objects. On several

challenging stationary and aerial video datasets (PETS 2001, Stationary VIRAT, UCF-2009,

UCF-2007, and aerial VIRAT), our detection accuracy is significantly better than the standard

single-frame HOG-based detection method, and outperforms the previously published detector

that uses Haar-like features at the same low false positive rates.

 iv

TABLE OF CONTENTS

ABSTRACT.. iii

LIST OF FIGURES ..vi

LIST OF TABLES ..ix

ACKNOWLEDGEMENTS ..x

CHAPTER 1: INTRODUCTION...1

1.1 Approach ...5

1.2 Objective and Contributions..8

1.3 Assumptions and Limitations..9

1.4 Outline...10

CHAPTER 2: LITERATURE REVIEW ..11

2.1 Pedestrian Detection in Single Images ..11

2.2 Pedestrian Detection in Image Sequences ...14

2.2.1 Optical Flow and Frequency Based Features...14

2.2.2 Haar-Like Features ..15

2.2.3 Spatio-Temporal Features..16

2.3 Pedestrian Detection in Aerial Images ..17

2.4 Critique of Previous Work ..18

2.5 Detection versus Tracking...19

CHAPTER 3: PEDESTRIAN DETECTION METHOD...23

3.1 Overview of the Approach ..23

3.2 Video Stabilization..24

3.3 ROI Detection ...27

3.4 Formation of Spatiotemporal Volumes and Feature Extraction ..28

3.4.1 Feature Extraction..29

3.4.2 Normalization ..32

3.4.3 Dimensionality Reduction ...33

3.5 SVM Classifier..35

3.6 Training ...39

3.6.1 Cross-Validation ..40

3.6.2 Baseline Classifier ...42

 v

3.7 Non-Maximum Suppression..42

CHAPTER 4: EXPERIMENTS AND RESULTS ..44

4.1 Evaluation Metrics ..44

4.1.1 Confusion Matrix...44

4.1.2 Receiver Operating Characteristic (ROC) Curve...47

4.2 Experimental Procedure and Datasets ...48

4.2.1 Stationary Datasets ..49

4.2.2 Aerial Datasets...51

4.2.3 Image Sharpness Estimation..54

4.3 Detector Performance Overall Results ..55

4.3.1 Stationary Datasets ...56

4.3.2 Aerial Datasets ...58

4.3.3 Summary and Discussion ..59

4.4 Effect of Number of Slices on Performance..61

4.5 Detection Examples and Discussion ...63

Example 1: True Positive ..66

Example 2: False Negative..68

4.6 Analysis of the Effect of Various Parameters ...68

4.6.1 Detector Window Size ...69

4.6.2 Normalization ..71

4.6.3 Block Overlapping...71

4.6.4 The Effect of Cell Size...72

4.6.5 Dimensionality Reduction ...74

4.7 Frame Randomization ...74

Chapter 5: Conclusions and Future Work ..76

5.1 Summary ...76

5.2 Contributions...77

5.3 Limitations ..78

5.4 Future Work ..79

References...82

 vi

LIST OF FIGURES

Figure 1.1 Examples of surveillance scenarios ……………………………………... 1

Figure 1.2 An example pedestrian at four different resolution levels …………….... 2

Figure 1.3 Example images from aerial video ……………....……………................ 4

Figure 1.4 Sample image shots changing over time due to flight motion ………….. 4

Figure 1.5 Sequence of frames from video of walking person ……………............... 5

Figure 1.6 Dot configuration of a walking subject ……………....……………......... 5

Figure 1.7 Spatiotemporal volume of images ……………....……………................. 6

Figure 1.8 Positive example (pedestrian) and negative example ……………........... 7

Figure 1.9 An overview of the detector algorithm ……………....……………......... 8

Figure 2.1 An example of HOG features ……………....……………....…………… 12

Figure 2.2 Three different types of filters ……………....……………....…………... 16

Figure 2.3 The three main tracking categories ……………....……………............... 20

Figure 2.4 Residuals, tracklets, and associating tracklets into final tracks …………. 21

Figure 2.5 Short- term detections ……………....……………....……………........... 22

Figure 3.1 The architecture of our overall pedestrian detection system ……………. 24

Figure 3.2 Example of a transformation between two images ……………............... 25

Figure 3.3 Examples of overlapping sequences of 32 frames ……………................ 27

Figure 3.4 An example of detected ROIs ……………....……………....…………... 28

Figure 3.5 The sliding window ……………....……………....…………….............. 29

Figure 3.6 Spatiotemporal Volume example ……………………………………….. 29

Figure 3.7 Spatiotemporal Volume ……………....……………....……………......... 30

Figure 3.8 Interpreting gradient orientations into 9 bins histogram ……………....... 31

Figure 3.9 Example HOG feature vector for one cell of size 4×4 Pixels …………... 32

Figure 3.10 Volumetric Block ……………....……………....…………….................. 33

Figure 3.11 Example of two dimensional data ……………....……………....………. 37

Figure 3.12 Input space is mapped into higher-dimensional feature space ………….. 38

Figure 3.13 Positive examples ……………....……………....……………....……….. 40

Figure 3.14 Negative examples ……………....……………....……………................ 41

Figure 4.1 General example of ROC curve ……………....……………....………… 47

 vii

Figure 4.2 Frames from PETS 2001 ……………....……………....……………....... 50

Figure 4.3 Frames from stationary VIRAT ……………....……………....………… 50

Figure 4.4 Frames from Aerial VIRAT ……………....……………....…………….. 51

Figure 4.5 Frames from Aerial VIRAT ……………....……………....…………….. 52

Figure 4.6 Frames from aerial UCF-2009 ……………....……………....………….. 53

Figure 4.7 Frames from aerial UCF-2007 ……………....……………....………….. 53

Figure 4.8 Example frame from UCF-2007 dataset with interlacing artifacts ……... 54

Figure 4.9 Sharpness estimation curve ……………....……………....……………... 55

Figure 4.10 Results of the steps of applying the proposed approach ……………....... 57

Figure 4.11 ROC curves of the three detectors on Stationary dataset ……………...... 58

Figure 4.12 ROC curves of the three detectors on aerial dataset …………….............. 60

Figure 4.13 ROC curves for the Multi-Frame HOG Detector on different datasets.... 61

Figure 4.14 The effect of the number of slices per volume on DR …………….......... 62

Figure 4.15 ROC of the classifiers with different number of slices/volume ………… 63

Figure 4.16 Frames from VIRAT dataset with detections ……………....…………… 64

Figure 4.17 Frames from UCF-2009 dataset with detections ……………................... 65

Figure 4.18 Frames from UCF-2007 dataset with detections ……………................... 65

Figure 4.19 Frames from PETS2001 and Stationary VIRAT dataset with detections. 65

Figure 4.20 Sequence of slices of Example 1 ……………....……………................... 67

Figure 4.21 Sequence of slices of Example 2 ……………....……………................... 69

Figure 4.22 Sample image shot from a surveillance video (WebcamMania) ………... 70

Figure 4.23 example slices of two different sizes ……………....……………............. 71

Figure 4.24 Block overlapping ……………....……………....……………................. 72

Figure 4.25 Effect of cell size on detection rate ……………....……………............... 73

Figure 4.26 An example pedestrian height of 20 pixels ……………....……………... 73

Figure 4.27 ROC curves of 6 classifiers each trained with different number of PC ... 74

Figure 4.28 The effect of randomizing the order of frames ……………..................... 75

Figure 5.1 Very low-resolution examples of pedestrians ……………...................... 79

Figure 5.2 Example from the results of detecting pedestrians in YouTube video …. 79

Figure 5.3 Training detectors with different walking directions ……………............ 80

Figure 5.4 An example of visual versus thermal image ……………......................... 80

 viii

LIST OF TABLES

Table 4.1 Confusion matrix for two-class classifier ……………………………...... 45

Table 4.2 DRs for the Dalal detector and the new detector ……………………….. 60

Table 4.3 Decision values vs. number of slices per volume of Example 1 ………... 67

Table 4.4 Decision values vs. number of slices per volume of Example 2 ………... 68

 ix

To my parents, my wife, and my children.

 x

ACKNOWLEDGEMENTS

I would like to thank Dr. William Hoff for his guidance and support. His constant

motivation and faith in my ability was a very important factor in the completion of this work.

I would also like to thank my wife for her continuous support for more than five years,

remaining away from her family that was 10,000 kilometers distant.

I am also grateful to Dr. Hua Wang for his advice, and I am so thankful to all of my thesis

committee members for serving on the committee:

 Dr. Kevin Moore, Dean of the College of Engineering.

 Dr. Christian Debrunner, Lockheed Martin Company.

 Dr. Paul Martin, Professor in the Math Department.

 Dr. Hua Wang, Professor in the Department of Electrical Engineering and Computer Science.

I would like to express my thanks to the Ministry of Higher Education and Scientific Research of

my country Libya who sponsored my graduate program.

I would also like to thank all of the professors who taught me in the Department of Electrical

Engineering and Computer Science and thank my colleagues for their support.

 1

CHAPTER 1: INTRODUCTION

The task of detecting people in videos has attracted growing interest from both academia

and industry, and is an important and active area of research. In this thesis, we address the

special problem of detecting pedestrians in videos. By “pedestrians”, we mean upright people

who are walking. Much current work on pedestrian recognition focuses on detection by cameras

mounted on moving cars, motivated by the need for safe operation of self-driving cars. Another

scenario is detecting pedestrians in surveillance videos. In this case, the videos are taken by

stationary outdoor cameras or by moving cameras mounted on an aerial platform such as a

helicopter or unmanned aerial vehicle (UAV). Unlike the automotive scenario, in surveillance

videos the camera is typically looking down on the scene at an oblique angle, and the pedestrians

can be quite small in the images. In this thesis, we focus on the latter scenario; i.e., that of

surveillance video.

Pedestrian detection in surveillance videos has many applications, including commercial,

search and rescue, law enforcement, border monitoring, and military applications. For example,

pedestrian detection offers ways to measure visitor traffic that flows into and around retail stores,

malls and shopping centers. Pedestrian detection can help maximize the efficiency and

effectiveness of businesses and provides insight into the movement of individuals. It is not

limited to the entrance point of a company's business, but has a wide range of applications that

provide information to management on the volume and flow of people throughout a location [1].

Figure 1.1 shows some examples of different applications.

Figure 1.1: Examples of surveillance scenarios: (a) Aerial video of open plaza. (b) A street
surveillance stationary camera. (c) Military application, aerial VIRAT dataset.

 2

The problem of detecting pedestrians in surveillance video can be challenging for many

reasons: There is a wide range of pedestrian poses and appearance, including variety of clothing.

The lighting can vary and shadows can be present. Background clutter can have a similar

appearance to pedestrians. Pedestrians can be partially occluded by other objects, or by other

pedestrians.

As discussed in Chapter 2, the most successful approaches to this problem use histogram

of oriented gradient (HOG) features, with a support vector machine (SVM) classifier [2]. The

approach requires many labeled training example images of people. Extensions to this method

detect parts of the person (e.g., head, arms, and torso) instead of just looking for the overall

shape e.g. [3]. However, these methods require fairly high resolution images of people.

In the case of surveillance video, the size of pedestrians can vary widely in the image, due

to the distance from the camera. When the size of a pedestrian becomes very small, many shape

details are lost, and it is difficult to distinguish a pedestrian from a non-pedestrian. For example,

Figure 1.2 shows an example pedestrian at four different resolution levels. As described in

Chapter 2, existing algorithms for pedestrian detection do fairly well for high resolution images,

but performance degrades dramatically when the height of pedestrians is 30 pixels or less.

The task of pedestrian detection in aerial videos is even more difficult than in videos

captured by stationary cameras. The camera is often higher, and the size of pedestrians is

therefore smaller. The effective resolution of the video is often degraded due to motion blur and

haze, further reducing the available visual information on shape and appearance.

 (a) (b)
Figure 1.2: An example pedestrian at four different resolution levels: The height
of the pedestrian is 140, 50, 20, and 10 pixels tall. (a) Images at actual size. (b)
The same images as in (a), except that the images are stretched for easier
visualization. The example is from VIRAT dataset [7].

 3

One approach to detecting pedestrians is to first detect moving objects in the scene. In this

approach, an estimate of the background image is computed (often called a background model).

Then moving objects in the scene are detected by finding the difference between the current

frame and the background model (e.g., [4]). These foreground regions could be due to moving

objects such as pedestrians. However, other moving objects (such as cars, blowing trees) can

also cause foreground regions to be detected. Sensor noise can also cause false detection of

moving objects. In the case of aerial video, where the camera is continuously moving, the

current image must first be registered to the background image. Misregistration can cause false

foreground objects to be detected. At areas of high contrast such as edges of buildings, a slight

misregistration can cause false foreground objects. Thus, simply detecting foreground regions is

not sufficient for pedestrian detection, although it does help reduce the search space (i.e., one

need only search for pedestrians in the vicinity of detected foreground image regions).

Another approach is to do “detection by tracking”. As discussed in Chapter 2, detections

over multiple images can be associated and formed into “tracks”. The tracker must perform

object correspondence from frame to frame to generate the tracks. Correspondence can be done

using shape and appearance features, as well as a motion model of the moving object (i.e.,

velocity). With this method, detections of objects as small as a few pixels in size can be formed

into tracks. Discrimination of “pedestrian” vs. “non-pedestrian” for very small objects can be

done using the motion model – i.e., if the object moves at about the expected speed of a

pedestrian, then it must be a pedestrian. One problem with this method is that it cannot

distinguish between a pedestrian and a non-pedestrian moving at about the same speed.

Another problem with the “detection by tracking” approach is that it requires a fairly long

sequence of images of the scene, in order to build up tracks. For example, the approach of [5]

can detect and track vehicles and people only a few pixels in size, but uses sequences ranging

from tens of seconds to minutes long. In the case of aerial video, sequences of this length may

not be available. In the case of a camera mounted on a rapidly moving helicopter or UAV, the

camera is continuously translating and rotating, and occasionally undergoes large amplitude

rotations. The camera does not dwell for long on a particular portion of the scene. Thus,

algorithms that rely on a long sequence of observations to build up a motion track model may not

be applicable.

 4

As an example, Figure 1.3 shows snapshots from a video taken from a small quadrotor

UAV flying rapidly over a field [6]. The camera moves erratically, undergoing large amplitude

rotations and translations. As a result, people are usually only within the field of view for a short

time (as briefly as several seconds). Although the size of people varies due to the changing

altitude of the camera, the height of people is often as small as 20 pixels tall.

As another example, Figure 1.4 shows snapshots from an aerial video sequence from

VIRAT dataset [7]. The images are roughly 10 seconds apart in time. This example shows some

of the characteristics of aerial videos such as changing viewpoints and scales, which presents

crucial challenges to the task of video stabilization and dealing with any imperfect pixel-to-pixel

alignment. The example also shows the variety of objects in the scene; this includes various

types of facilities, such as buildings, storage, and parking lots, as well as vehicles and people.

The images are 640×480 pixels, taken at a 30Hz frame rate. Although the zoom changes

occasionally, the typical height of people is about 20 pixels tall. Detecting people in images such

as these is extremely difficult, due to the low resolution.

Figure 1.3: Example images from aerial video (taken about 4 seconds apart). Size
of images is 380×640 pixels.

Time
Figure1.4: Sample image shots changing over time due to flight motion.

 5

1.1 Approach

Although it is very difficult to recognize a person in a single low-resolution image, the

task is much easier when a short sequence of images is used. For example, Figure 1.5 (a) shows

a single low-resolution frame in which it is difficult to recognize the object. The right portion of

the figure is a sequence of frames in which a subject is performing a recognizable movement; in

this case, walking. Despite the deficiency of recognizable features in the static image, the

movement can be easily recognized when the sequence is put in motion on a screen.

This phenomenon is well known from the pioneering work of Johansson [8], whose

moving light display (MLD) experiments showed convincingly that the human visual system can

easily recognize people in image sequences, even if the images contain only a few bright spots

(attached to their joints and represented with the red dots in Figure 1.6). A static image of spots

is meaningless to observers, while a sequence of images creates a vivid perception of a person

walking, running, dancing, etc. The media upon which these words are printed precludes the

reader from experiencing the impact of viewing the video.

 (a) (b)
Figure 1.6: (a) Dot configuration of a walking subject. (b) Bright spots attached to
subject joints.

 (a) (b)

Figure 1.5: (a) Single frame. (b) Sequence of frames from video of walking person.

 6

Inspired by these examples, we can use the additional information provided by motion to

compensate for the lack of visual details in a single image. The approach of our work (described

in Chapter 3) uses features extracted from a spatiotemporal volume of images. A volume

composed of up to N “slices” is used, where each slice is a small subimage window of size of

32×32 pixels. This volume represents a duration of about one second or less (Figure 1.7). As in

the situation with the human visual system, the information contained in the additional images

should help the system recognize the pedestrian.

In this thesis, we take the single-frame HOG-based detector commonly used in pedestrian

detection and extend it to multiple frames. Our approach (described in Chapter 3) uses HOG

features extracted from a spatiotemporal volume of images. The idea is that the motion of a

person walking is distinctive, and we can train a classifier to recognize the temporal sequence of

feature vectors within the volume.

As an example, consider the images of a walking person shown in the top row of Figure

1.8. The corresponding HOG features are shown in the second row. The third row shows

images of a region containing a moving car. The corresponding HOG features (bottom row) of

the negative example are visually quite different from those of the positive example. This

example indicates that it may be possible to train a classifier to recognize the pattern of features

of a pedestrian from that of non-pedestrian.

Slice t n

Slice t i + 1
Slice t i

Slice t i - 1

Slice t 1

Slice t n

Slice t i + 1
Slice t i

Slice t i - 1

Slice t 1

Figure 1.7: Spatiotemporal volume of images (slices) is used to gather more information
about a moving object. The collection of these slices is called a volume; which is shown
with the blue lines in the figure.

 7

A possible difficulty in using short image sequences for detection is that the space of

possible motions of a pedestrian is potentially large. A person can walk with different speeds,

amplitudes, and gait patterns. Their arms can be swinging naturally or be carrying something.

Although generally periodic, the pattern of motion can vary over time. For example, a pedestrian

can turn part way through the sequence, change from a walk to a run, or change from a walk to a

stop.

We address these difficulties in two ways: First we keep the sequence length fairly short

(i.e., one second or less). This limits the amount that motion can vary over that time duration.

However, it is still possible to have examples where the motion variability is large enough to

cause detection failure, as shown in Chapter 4. The second way we address the difficulties is to

use a large number of training examples to train the classifier. We need to have sufficient

examples that cover the range of possible motions that a pedestrian can have.

An overview of the detector algorithm is shown in Figure 1.9. The algorithm starts with

stabilizing the video by registering each frame to a reference frame. Secondly, a background

subtraction algorithm is used to identify foreground “regions of interest” (ROIs), which

(a)

(b)

Figure 1.8: (a) Positive example (pedestrian). Images are 32x32 pixels. (b) Negative example
(part of a car passing by a post). In these two examples: the top row is a sequence of slices
subsampled from a longer sequence of 32 slices (1 second duration), and the bottom row
shows the HOG features of the sequence.

 8

correspond to potential moving objects. Then a novel multi-frame HOG-based detector is used

to search for pedestrians in the final ROIs.

1.2 Objective and Contributions

The objective of this thesis is to show that pedestrians can be successfully detected in low-

resolution video using short-term image sequences. The time duration used should be long

enough to capture the characteristic walking motion of a pedestrian. However, it need not be

long enough to perform tracking. Thus, the method is applicable to situation such as video taken

from a rapidly flying UAV as shown in Figure 1.4.

Although our system uses multiple images to perform detection; it is a detector, not a

tracker. As a detector, it simply reports the presence of a pedestrian at a specific location in the

Figure 1.9: After stabilizing the video, we find the motion regions using a background
subtraction algorithm. A trained multi-frame HOG-based detector is used to recognize
pedestrians around these motion regions.

 9

image sequence and does not perform association between detections. On the other hand, the

aim of a tracker is to generate the trajectory of a moving object over time by establishing

correspondences between the object detections across frames. However, our detector can be

incorporated into any standard tracking algorithm, such as a multiple hypothesis tracker or a

particle filter-based tracker, if a longer sequence of images of the same scene is available. The

improved accuracy of our detector should make it possible to estimate more reliable tracks using

a shorter sequence of images. More discussion and comparison between detection and tracking

is presented in Section 2.5 of Chapter 2.

The main contribution of this thesis is the development of a new pedestrian detector that is

able to detect pedestrians in surveillance videos at lower resolutions than has been reported in

previous work. The algorithm performance has been evaluated through experiments on several

standard public datasets; including some challenging aerial datasets. The new pedestrian

detection system significantly outperforms several existing state-of-the-art pedestrian detection

systems (Chapter 4). The system is suitable for outdoor stationary surveillance cameras as well

as aerial imagery. A preliminary version of this work was published in the IEEE WACV 2014

conference [9] and final version has been submitted to the IEEE CVPR 2015 conference.

1.3 Assumptions and Limitations

Some assumptions of this work include:

• We use grayscale optical imagery only, even though thermal (infrared) imagery has been

used in some of the previous work and could be helpful for detecting people. The method

described in this thesis could certainly be applied to infrared imagery.

• Fully (or mostly) visible (not occluded) upright walking people are targeted for detection.

The camera is assumed to be looking down at the people at an oblique angle. The learned

model is constrained to such poses.

• Pedestrians are assumed to be walking with a moderate speed. This allows for a reasonable

amount of information to be included as input to the classifier. It is about one second of

walking (or less), which is about two walking steps. Depending on camera frame rate, this

corresponds to about 16 to 32 frames. A base slice size of 32 × 32 pixels has been chosen so

that with a pedestrian 20 pixels tall who has a moderate walking speed (not very fast walking

and not running), the pedestrian will stay within the detection volumetric space.

 10

1.4 Outline

This chapter has given a brief introduction and defined the problem of detecting low-

resolution pedestrians in surveillance videos, and some of the applications. It has described the

work's motivation and inspiration and provided an overview of the proposed approach,

assumptions, and contributions of this thesis. The remainder of this thesis is broken into four

chapters as follows: Chapter 2 describes the state-of-art in the field of pedestrian detection and

presents previous work related to the topic. The chapter also presents a comparison between the

new detection approach and tracking methods and summarizes a critique to previous work.

Chapter 3 describes the new proposed approach in detail; starting from video stabilization until

a classification decision is made. Chapter 4 describes in detail the experiments, used datasets,

adjusted parameters, and algorithm performance at different settings. The chapter also discusses

the experimental results, and comparison to other methods' results. Chapter 5 summarizes the

key findings of the proposed approach, discusses conclusions, presents approach advantages and

limitations, suggests solutions, and finally, provides some pointers to future research directions

and approach improvements.

 11

CHAPTER 2: LITERATURE REVIEW

There is an extensive body of literature on people detection, although there is relatively

little work on pedestrian detection in low-resolution videos, and very little work on pedestrian

detection in aerial videos. Most work focuses on pedestrian detection in single high-resolution

images.

Some work on pedestrian detection in automotive applications uses contextual information

to improve detection performance [10]. For example, pedestrians are often around vehicles in

traffic scenes, and algorithms can make use of that fact. Our work does not use contextual

information since we wanted to make our approach more general and not be limited to traffic

scenes.

Following the convention of [11], we use the following terms: a near scale or high

resolution pedestrian is defined as a pedestrian over 80 pixels tall; medium scale is 30-80 pixels;

and far scale or low-resolution is under 30 pixels. Comprehensive reviews can be found in [1],

[11], [12], [13], and [14]. The cited works on pedestrian (and people in general) detection can be

classified according to the number of frames used by the detection system. This includes two

categories: (1) Pedestrian detection in single images, and (2) pedestrian detection in sequences

of images. The previous work is reviewed according to these two categories. In addition, work

on the special problem of people detection in aerial videos is reviewed.

Section 2.1 reviews pedestrian detection in single images. Section 2.2 covers the work of

pedestrian detection that is based on image sequences. Work on people detection in aerial videos

and images is reviewed in Section 2.3. Section 2.4 presents a critique of previous work. A

comparison with tracking is presented in Section 2.5.

2.1 Pedestrian Detection in Single Images

There have been many approaches to detecting people in images. One class of approaches

uses explicit knowledge of human kinematics as the basis of implementation. These approaches

use articulated object models and attempt to match image features to body parts (see for example

the survey of [15]). We do not consider this approach because in low-resolution images, body

parts may not be clearly visible.

 12

Approaches that are more applicable to lower resolution images are those that attempt to

detect the whole person. Instead of an explicit model, an implicit representation is learned from

examples, using machine-learning techniques. These approaches typically extract features from

the image and then apply a classifier to decide if the image contains a person. Typically, the

detection system is applied to sub-images over the entire image, using a sliding window

approach. A multi-scale approach can be used to handle different sizes of the person in the

window. Alternatively, the detection system can be preceded by a region-of-interest selector,

which generates initial object hypotheses, using some simple and fast tests. Then the full person

detection system is applied to the candidate windows.

A recent survey found that the most successful approaches for single frame pedestrian

detection use some form of gradient histograms [13]. The “Histogram of Oriented Gradient”

(HOG) features were introduced by Dalal and Triggs [2]. In their approach, the detector is

applied to a subimage (typically 64×128 pixels). The subimage is divided into small regions

called cells. In each cell, the gradient magnitude and orientation is computed at each pixel. To

compute the gradient histogram for the cell, each pixel casts a vote, weighted by its gradient

magnitude, for the bin corresponding to its gradient orientation. The local histograms are

normalized across regions of the image, called blocks. The combined histograms from all cells

then represents the descriptor, or feature vector, for the subimage. An example of HOG features

is shown in Figure 2.1 (a).

Figure 2.1: Detections obtained with (a) single component person model [2], (b) model
defined by several high resolution part filters. The parts filters specify weights for HOGs
features. Their visualization shows the positive weights at different orientations, [3].

 13

The approach of Dalal and Triggs has been extended by others. Felzenszwalb et al.

trained deformable part models for object detection [3]. Instead of using a single model for a

person, they use a set of models for each part (such as head, arms, and torso). The part models

are related to a root model using a set of deformation models representing the expected location

of body parts (Figure 2.1 (b)). Park et al. developed a multiresolution model that automatically

switches to parts only at sufficiently high resolutions [16]. The work integrated a rigid HOG-

based template for low-resolution, with a deformable parts model for high resolution. They

found that part-based models are not useful for pedestrian heights less than 90 pixels. The work

of [17] uses orientation and magnitude of gradient features that are similar to HOG. According to

the authors, their algorithm gives accuracy similar to that of the Dalal algorithm.

Once features are extracted from an image, they are then sent to a classification algorithm.

To train a classifier, feature vectors from a large number of training images are used. The

training images are labeled as positive (“contains a person”) or negative (“does not contain a

person”). One common type of classifier that is used is a Support Vector Machine (SVM), [18].

The SVM looks for an optimal hyper-plane as a decision function. The classification task is to

take an input vector x and assign it to one of the two classes. More details about how SVM

classifier works are discussed in Section 3.5.

An alternative classifier that is commonly used in pedestrian detection is adaptive

boosting, or “AdaBoost” [19]. AdaBoost combines the output of many simple classification

algorithms into a weighted sum that represents the final output of the boosted classifier.

AdaBoost is adaptive in the sense that subsequent weak learners are adjusted in favor of those

instances misclassified by previous classifiers.

The Dalal algorithm is of interest to our work, since it is so widely used to detect

pedestrians. In Chapter 4, we compare the performance of our algorithm to theirs. According to

evaluations of pedestrian detectors [13], no single feature has been shown to outperform the

HOG feature for near scale pedestrians, although other features can provide complementary

information, which can increase performance. Evaluations found that the performance of HOG-

based pedestrian detectors degrades rapidly at medium and far scales (i.e., less than 80 pixels in

height). A low-resolution image simply does not provide enough information to accurately

detect pedestrians based on shape.

 14

2.2 Pedestrian Detection in Image Sequences

Instead of using a single frame pedestrian detector, a different approach can be used.

Namely, a detector can be developed which directly analyzes a short sequence of frames. Since

a sequence contains more information than a single frame, the classification result can potentially

be more accurate. The remainder of this section reviews past work using this approach. The

research on detecting people in videos is not as voluminous as that of single frame methods.

2.2.1 Optical Flow and Frequency Based Features

One method to make use of temporal information is to use optical flow as a feature. The

approaches of [20] and [21] employ optical flow-based motion descriptors. The algorithm in

[20] combines HOG descriptors with optical flow-based motion descriptors. The detector

combines appearance descriptors extracted from a single frame of a video sequence with motion

descriptors extracted from optical flow. It scans a window across the image at multiple scales,

and runs a linear SVM classifier. In [21] the authors attempted to recognize an individual's

action by matching the sequence of optical flow descriptors with examples in a database. They

looked for the best matches for classification (e.g., ballet, tennis). According to the results

reported in [21] the approach was successful at medium scale and required clear backgrounds.

The optical flow-based features appear to help in high resolution [13], but in low-resolution

scenarios, detection results are poor due to noise, camera jitter, and the limited number of pixels

available.

Another class of approaches [22] and [23] perform foreground segmentation and

frequency analysis. The approach of [22] segments a moving object from the background and

applies time-frequency analysis to characterize the periodic motion. Periodic motion shows up

as peaks in the spectrum. The algorithm classifies different types of periodicity due to different

types of motion symmetry such as walking/running humans, running dogs, and flying birds. The

approach of [23] tries to discriminate and track pedestrians in low-resolution aerial video

sequences. In this algorithm, foreground objects are segmented and tracked. Frequency-based

measures are used to detect the existence of human motion (e.g., the motion of a leg).

 15

2.2.2 Haar-Like Features

An alternative to HOG features is the so-called Haar-like features. Haar-like features owe

their name to their similarity to Haar wavelets. In mathematics, a Haar wavelet is a sequence of

square shaped functions that form a wavelet basis used in analysis [24]. Haar-like features are

differences of rectangular regions in the images. These features are simple and very fast to

compute. Although each feature is not very discriminatory, a large number of features can be

chained together to achieve good performance. The method of AdaBoost can be used to train a

classifier and select features [25, 26, 27].

One of the first sliding window detectors was proposed in 2000 by Papgeorgiou and

Poggio [28]. This algorithm used Haar-like wavelets as input descriptors. They extended the

idea of using intensity differences between local adjacent regions to a wavelet-based

representation for people, car, and face detection. For classification, they combined the Haar

wavelets features with a polynomial SVM classifier.

Haar-like features were also used by Viola and Jones [29]. Although their detector can be

trained to detect a variety of classes of objects, it was motivated primarily by the problem of

detecting faces. In their detection framework, they employed AdaBoost to both select the best

features and to train the classifier. Approaches of [30], [31], [32], and [33] also used Haar-like

features.

Viola and Jones [31] extended their work of face detection to detecting pedestrians. In

this method, Haar-like wavelets are used to compute features in pairs of successive images to

detect motion. A rectangle of pixels in the current image is compared to the corresponding

rectangle in the previous image, as well as a shifted version of the rectangle in four directions:

up, down, left, and right. These represent four directions of walking. AdaBoost is used to build

a cascade classifier based on a set of manually labeled training images.

Jones and Snow [33] extended the above algorithm to make use of ten images in a

sequence. Three types of features were used: Haar-like features applied directly at each frame

(appearance filter), absolute difference of Haar-like features in different frames, and a shifted

difference filter to capture the motion of pedestrians. Figure 2.2 shows the three different types

of filters. The first row illustrates one particular appearance filter. Such filters act on a single

window, which could be any of the 10 windows. The second row shows a particular difference

filter. Such filters consist of one filter acting on one window and the negative of that

 16

filter acting on another window. The third row shows a particular shifted difference filter.

Different classifiers were trained to detect pedestrians for each of eight walking directions (north,

northeast, east, southeast, etc). Each detector was trained at the detection window scale of 24×26

pixels. The AdaBoost learning algorithm was used to select a set of features to separate

pedestrians from non-pedestrians for each direction class of the eight classes. Because of the

large number of features that need to be examined at each stage, the training time can be quite

slow (in the order of weeks) [3].

The Jones and Snow algorithm is of interest to our work, since it was specifically designed

to detect pedestrians in low resolution videos. In Chapter 4, we compare the performance of our

algorithm to theirs.

2.2.3 Spatio-Temporal Features

Features can also be extracted using gradients in both the spatial and temporal directions.

The work of [35] extracts spatiotemporal interest points to recognize behaviors (e.g., of mouse)

by analyzing the motion using cuboid descriptors. Their interest point detector is composed of a

2D Gaussian smoothing kernel, applied along the spatial dimensions, and a pair of 1D Gabor

filters applied temporally. Gabor filters are used to obtain localized frequency information since

they are sensitive to change in phase and give sinusoid response. The detector is tuned to fire

whenever variations in local image intensities contain periodic frequency components. The

strongest responses will be evoked whenever periodic motion is detected (e.g., bird flapping its

wings). Local histograms of gradients were then extracted in the neighborhood of each detected

interest point. This approach could be used to detect pedestrians instead of recognizing actions.

However, in low-resolution image sequences, it would be difficult to extract interest points since

the volume is so small and the pedestrian's size is only a few pixels.

Figure 2.2: Three different types of filters 0.

 17

On a related topic, the work of [32] recognizes sign language “words” (i.e., for deaf

people) from video sequences, using volumetric spatiotemporal features based on Haar-like

features. The method relies on a learning system to combine these basic features in such a way

as to depict the motion of hands. In this work, the Haar-like features are 3D volume

summations, rather than 2D rectangle summations. Similar to the 2D case, the 3D features can

be computed very quickly. In this case, integral volumes are used rather than the integral images

of the 2D case. AdaBoost is used for classification.

2.3 Pedestrian Detection in Aerial Images

As previously mentioned, there is very little work on detecting pedestrians in low

resolution aerial videos. Aerial videos are challenging due to the potentially rapid translation

and rotation of the camera, which can cause motion blur. Also, since the camera is continuously

moving, it is more difficult to create a background model for the purpose of segmenting

foreground objects. However, some motion compensation can be done by registering each

image to a reference image. In this way a short-term background image can be computed, which

can be used to detect foreground (moving) objects using image subtraction [23].

The few papers that address pedestrian detection in aerial images often use the same

methods that were discussed above, namely HOG-like features with an SVM classifier (e.g.,

[36]) or Haar-like features with an AdaBoost classifier (e.g. [37]). The work of [36] presents an

algorithm for people detection and identification in a set of aerial images. First, a subject

manually selects a person in one aerial image; then the algorithm automatically finds that person

in another image. To search for the candidate person's image, the algorithm starts by detecting

blobs for candidate locations of people, and then extracts histograms of color values (HSV

channels) and HOG features from the detected blobs. An SVM classifier is used to classify these

feature vectors. Although reported results are promising, the scenarios are presented in high

resolution and need colors for matching. When pedestrians are only a few pixels tall, appearance

cues-based approaches such as these can fail. This limits the general application of this

technique, especially for low-resolution scenarios.

The approach presented in [37] combines thermal (infrared) and optical (visible) imagery

to detect cars in aerial images and uses only thermal imagery for people detection. To detect

people, they use metadata such as the field of view of the camera and the UAV altitude, since the

 18

algorithm constrains the size of candidate detected (rectangular) regions with a maximum width

and height. These regions are detected using color clustering and edge detection to get candidate

locations of humans. Then Haar features are extracted from these regions with an AdaBoost

classifier employed for classification. Quantitative results were not presented.

The only research found that uses image sequences in aerial scenarios was [23]. After

video stabilization, foregrounds are detected using frame differencing. For each candidate

moving object, a sequence of detection window is used to compute frequency measures to detect

the presence of periodic motion of some body parts, such as legs and arms. Searching for

moving object kinematic features might be processed over a period of up to four seconds. The

algorithm was not described in detail, and there are some doubts as to whether this approach

would be feasible in low-resolution sequences.

Another interesting approach is that of [38], which uses single images. This work uses

metadata (latitude, longitude, altitude, as well as pitch, yaw and roll) to predict the orientation of

the ground plane normal, the orientation of shadows, and the size of people's shadows. They

detect blobs to get candidate locations of humans and then Daubechies wavelet [39] features are

extracted from these areas by scanning a small image window around them. Feature vectors are

then fed to an SVM classifier for classification: human/non-human. While the algorithm

achieves good results in low resolution (24×26 pixels image windows), it is not clear that

shadows will always be present in the image. Another problem with this method is that it needs

prior information that may not be available.

2.4 Critique of Previous Work

In summary, state of the art methods in pedestrian detection use HOG features in

conjunction with a classifier such as SVM. However, approaches that use single images perform

poorly when pedestrians are less than 80 pixels in height. The inclusion of motion features

increases the detector performance. The Jones and Snow algorithm [33] achieved good results

on low resolution videos. However, it is possible that more challenging datasets (e.g., with

cluttered background, and more variety in viewing angles) would result in lower performance.

Indeed, a subsequent evaluation [13] found that this approach fails to detect pedestrians with

heights of 30 pixels or less.

 19

Our algorithm, described in Chapter 3, differs from existing approaches since it

compensates for the lack of information in low resolution images by gathering information over

a relatively longer sequence of images.

There has been very little work on detecting pedestrians in low resolution aerial images.

The few papers that were found use similar approaches as in stationary surveillance videos. One

of the goals of this thesis is to develop a method that can successfully detect pedestrians in aerial

videos.

2.5 Detection versus Tracking

As previously mentioned, although our detector uses multiple images, it is a detector, not a

tracker. To avoid any potential reader confusion between our proposed detection approach and

tracking, we give a short review of tracking methods here, along with a discussion of the

distinction between detection and tracking, and where our method lies.

Tracking is a topic that is well studied with wide applications. Since 2000, tracking

algorithms have focused primarily on surveillance applications [27]. Tracking can be defined as

the problem of estimating the trajectory of an object in the image plane as it moves in different

frames of a video.

Of course, detections based on short sequences (called “tracklets”) can be fused into long

tracks. However, in aerial image sequences taken from a rapidly moving camera, a person may

not be visible for very long, so a long track cannot always be assembled. The problem of

assembling detections into long tracks will not be addressed. The idea of fusing detections into

tracks could be one of the paths for future work.

When image sequences are available, the additional information may be used to improve

performance. One approach is to apply the single frame detectors to each image and fuse the

results into tracks. The association of detections into tracks can be a difficult problem. It has

been extensively studied and a number of statistical techniques have been developed. Joint

Probability Data Association Filtering (JPDAF) and Multiple Hypothesis Tracking (MHT) are

two widely used techniques for data association, see e.g. [40].

Tracking methods can be classified into three categories [42]: (1) Point tracking where

the detected objects are represented by points and the association of these points is based on the

previous object state, which might include object position, motion, etc. (see Figure 2.3 (a)). (2)

 20

Kernel tracking which is based on object shape and appearance (e.g., rectangular patch with an

associated histogram, as shown in Figure 2.3 (b)). (3) Silhouette tracking where tracking is

performed by estimating the object region in each frame (e.g., shape matching or contour

evolution, as shown in Figure 2.3 (c)).

Usually there is a relationship between the tracking algorithm and object representation

(point, points, silhouette, geometric shape, etc.), and the application domain. For example, to

represent a human body, a contour or a silhouette is a good representation. For object

association, there are many appearance features used; for example, color features, textures,

covariance features, histogram of gradient orientation, etc. ([42], [43], and [44]).

Pedestrian tracking requires gathering information about a tracked subject over a relatively

longer time period than what is required for detection. For example, detection requires as low as

 (a) (b)

 (c)

Figure 2.3: The three main tracking categories. (a) Point tracking. (b) Kernel tracking. (c)
Silhouette tracking.

 21

a single frame which could correspond to 1/30 of a second, whereas the literature on tracking

suggests up to 4 seconds interval length required to identify kinematic features of the tracked

subject. In [45] in order to obtain meaningful tracks that capture the motion characteristics over

longer durations of time, sequences of several seconds are used. In [5] tracking is done based on

motion and appearance with mean track duration of 21 seconds, and it might be as long as 4

minutes of tracking with association between targets and computed tracks based on spatial

proximity for at least 3.2 seconds.

The pedestrian tracker of [46] uses the output of the part-based detector of [47] to create

what are called tracklets and residuals. A tracklet is a short track segment of high confidence

detections, and residuals are those with low confidence detections according to a certain

threshold. Tracklet descriptors are based on color, motion, and height. The tracker tracks

pedestrians by associating detections across consecutive frames; however, if no more matches

are found for the current tracked object, the track is terminated. A new tracklet is created

whenever detection cannot be associated with other tracked objects. All the part detection

responses that do not get associated with a track are used as residuals during the tracklet

association stage. The algorithm then associates tracklets using the MHT tracker to connect

tracklets into longer tracks. Figure 2.4 illustrates the residuals, tracklets, and associating

tracklets into final tracks.

The main challenge for the tracker occurs when detector output is unreliable and sparse

because detectors usually deliver a discrete set of responses, which yields false positives and

false negatives [44]. A tracker can compensate for an unreliable detector by fusing the noisy

Figure 2.4: The tracklets having same color belong to the same object trajectory. Association
paths of a tracklet are shown by using the lighter shade of the color used for the tracklet; e.g.
light blue segments are associations path generated using tracklet in deep blue.

 22

detections into an estimated track state. False detections can be rejected (since they do not

belong to a track) and missing detections can be tolerated by predicting the position of the object

from the estimated state. The work of [48] and [49] track vehicles, and if there is missing

detection, the object location is estimated to compensate for the unavailable detections.

One advantage of the proposed detector is that it can be integrated into a standard tracker,

which is much easier than integrating other detection approaches which are based on single (or

few) frames. For example, if we use ½ second of time duration for detection (Figure 2.5), and

the resulting detections (tracklets) are used as input to a tracker system; tracking information can

be used to estimate locations of missed detections. This reduces the number of false negatives

and improves the overall performance of the system.

Figure 2.5: Short- term detections (in red) for 0.5 second each can be integrated into long
duration tracking (e.g. 3 seconds). Tracking information can be used to recover from miss-
detections. Volumes in red color represent True Positives (TP), and volumes in blue color
represent False Negatives (FN).

 23

CHAPTER 3: PEDESTRIAN DETECTION METHOD

This chapter describes the new pedestrian detection method in detail. Experimental results

and analysis will be presented in Chapter 4. Section 3.1 gives an overview of the approach.

Sections 3.2 and 3.3 discuss the methods for video registration and detecting ROIs, respectively.

A detailed description of volume formation and feature extraction is presented in Section 3.4.

The classification technique is discussed in Section 3.5, and Section 3.6 summarizes training

details. Section 3.7 describes the process of non-maximum suppression.

3.1 Overview of the Approach

Figure 3.1 shows the architecture of the entire pedestrian detection system, which contains

two phases: a training phase and a detection phase. In the training phase, positive training

examples (i.e., volumes containing pedestrians) and negative training examples (i.e., volumes not

containing pedestrians) are created. Features are then extracted from these volumes. These

examples are used to train a binary classifier, which is used to provide classification decisions.

Figure 3.1 (a) shows this training phase. The detection phase is shown in Figure 3.1 (b). In the

detection phase, the binary classifier constructed during the training phase is used to scan over

detected ROIs in sequences of unseen testing images to search for pedestrians. This phase has

several components: video stabilization (for aerial videos), ROI detection, formation of spatio-

temporal volumes, feature extraction, classification, and non-maximum suppression.

In this work, color images are not used since we assumed that color does not contribute

significantly to detection. It may be useful for tracking, but color (in the form of the hue and

saturation component) is not a useful indicator of the presence of a pedestrian. Shape (as

estimated by the gradient of image magnitude) is more useful. Therefore, we first convert all

color images to grayscale prior to processing.

3.2 Video Stabilization

Video stabilization is applied to short overlapping sequences of 32 frames. We start with

the first frame of each sequence and use it as the reference frame for the sequence. The

remaining frames are registered to the first frame. The results are overlapping groups of 32

 24

frames, which are co-registered. This aids the next step, which is to detect regions of interest

containing potential moving objects. In the case of videos taken from stationary cameras, the

stabilization step can be skipped, since the images are already co-registered.

Image registration (or image alignment) is the process of transforming one image to

minimize the difference between it and another (reference) image. Let T(p; b) represent a

transformation, where p is a pixel location and b is a vector of parameters. The transformation q

= T(p; b) takes the pixel location p from the first image and maps it to a pixel location q in the

second image. The goal of image registration is to find the parameters that minimize the error

between two images I1 and I2; i.e., minimize

()() ()[]∑ −=
x

IIE
2

12 ; pbpT .

One method to estimate the transformation parameters is to first find a small number of

corresponding points between the two images. These points, called “tie points” or “control

points”, can be selected manually or discovered automatically. In our work, we find the

 (a) (b)
Figure 3.1: The architecture of our overall pedestrian detection system which contains
two phases: training phase and detection phase

 25

corresponding points automatically, as described below. Once we have a sufficient number of

corresponding points, we can solve for the transformation parameters. Figure 3.2 shows a simple

example of a spatial transform that maps point p from one image to point q in another image.

In our work, we use a “homography”, or “projective transform”. This has the form

 ()
































==
1

;~

333231

232221

131211

y

x

p

p

bbb

bbb

bbb

bpTq

where q~ is the transformed point in homogeneous coordinates. To recover the coordinates of

the point q from the homogeneous coordinates, the resulting point q~ must be scaled so that the

third element equals 1 (i.e., by dividing q~ by its third element). A homography has 8 unknown

parameters (although the matrix has 9 elements, there are only 8 degrees of freedom due to the

scaling), so at least four corresponding points are required to solve for the transformation.

A homography can accurately model the projection of a plane from one viewpoint to

another viewpoint in a projective camera such as a pinhole camera. In our problem domain, we

assume that the camera is looking down at the ground, which is approximately a planar surface.

Thus, the homography transform models the relationship between any image in the sequence and

the reference image.

 The assumption of a planar surface is only an approximation, although it is usually good

if the camera is high above the ground. However, any objects (such as buildings and trees)

above the plane will be miss-registered, and may result in ROIs that do not correspond to actual

moving objects. Our classifier will subsequently filter these out, since motion patterns within

these ROIs do not match the patterns of a walking person.

To automatically determine corresponding points, Harris corner interest points [50] are

matched between the reference image and each subsequent image. A large number of points are

used, to achieve better accuracy. However, some of the point correspondences may be incorrect.

These outlier correspondences will corrupt the estimated transformation, and it is important to

Figure 3.2: Example of a transformation between two images.

 26

filter them out. We use the RANdom SAmple Consensus (RANSAC) algorithm ([3], [51])

which is a widely used approach to this problem. The RANSAC algorithm starts by selecting a

minimal set of points randomly and solving for the transformation. It counts the number of

points that agree with this transformation. If this transformation has the highest number of

inliers so far, it is saved, and then the algorithm repeats for a number of trials and returns the best

transformation.

Figure 3.3 shows the idea of overlapped groups of 32 frames. We perform registration for

each sequence of 32 frames, and then shift the reference frame by four frames. Algorithm 1

presents the overall process of video stabilization.

Algorithm 1: Video Stabilization
Input: Frames of aerial video: {f1, f2, f3, …, fn}.
Output: Registered frame groups: {R1, R2, R3, …, Rm}.
i = 1;
while i ≤ n do

sequence_count = 1
fReference ← fi

Rj ← {fi }
IP ← Find Interest Points(fReference)
k = i + 1

while sequence_count ≤ 32 do
MIP ← Match interest points between fReference and fk
H = Fit a homography between IP and MIP
Transform fk using H, and append to the set Rj
sequence_count = sequence_count + 1
k = k + 1

end
i ← i + 4

end

3.3 ROI Detection

 After stabilization, background subtraction is used to identify foreground objects in the

scene for subsequent analysis. The literature on background subtraction and motion

segmentation is vast, and there are many surveys for the topic of background subtraction; (e.g.,

[52], [53], and [54]). Background subtraction approaches were developed as early as the 1970s;

for example, the work of [55] which used frame differencing to detect moving objects.

Subsequent approaches proposed the use of statistical methods to model the background.

 27

The work of [4] proposed the use of the median over a window of images to model the

background. [56] presented the idea of modeling the background by representing each pixel with

a mixture of Gaussians and updating the model over time. The updating was done recursively,

which can model slow changes in a scene, but not rapid changes. Most methods assume that the

scene is observed over a (relatively) long period of time, and that changes in the scene occur

gradually.

In our application, we may not be able to observe the scene for a long period of time.

Thus, we have to compute a “local” background model for only a short sequence of images. The

method we use is very simple. We compute a background model for each group of 32 registered

frames by computing the mean of the frames. Although it is a simple model, the experiments

show that it is reliable in detecting initial foregrounds.

We then take the difference between the middle frame in each sequence and the

background model for that sequence. Initial foreground pixels are identified by thresholding the

difference image, D. These foreground pixels could correspond to real moving objects or

possibly static objects due to non-perfect stabilization. The difference between current frame at

pixel (i,j) and the background is:

|),(),(|),(jiBjiIjiD −=

A pixel in the difference image D is classified according to an empirical threshold TL as follows:





 >

≤∈ LTjiDifForeground

LTjiDifBackground
i,jD

),(,

),(,
)(

 f1 f2 f3 f4 f5 f6 … f32

(a)

 f5 f6 f7 f8 f9 f10 … f36

(b)
Figure 3.3: Examples of overlapping sequences of 32 frames each (to be registered together).
(a) Sequence1: frame1 to frame32. (b) Sequence2: frame5 to frame36.

 28

In our work, the threshold was empirically set to 15−25 (depending on the image sequence).

Morphological opening and closing operations are applied to eliminate small regions and join

broken regions. Then connected components are found to obtain initial ROIs. The final ROIs

are the ones that pass the final area thresholds: AL and AH. For example, a ROI is included as a

member in the final ROI set if its area in pixels satisfies the following condition:

HROIL AAreaA <<

In our work, these area thresholds were empirically set to 20 and 500 pixels, respectively. An

example of an image containing the final ROIs is shown in Figure 3.4.

3.4 Formation of Spatiotemporal Volumes and Feature Extraction

A sliding window of size 32×32 pixels is scanned within the bounding box of each ROI

detected above (see Figure 3.5). At each position, a spatiotemporal volume is created by

extracting a sequence of subimages (slices), at a fixed position in the registered images, for N

frames (we used up to 32 frames). At a typical camera frame rate of 30 frames per second, this

corresponds to a duration of up to one second (see Figure 3.6).

The slice window size was chosen to be 32×32 pixels. This size is large enough so a

pedestrian remains within the window throughout the sequence at normal walking speeds, which

usually corresponds to about ½ pixel per frame. Since our detector is trained to detect

pedestrians with a height of approximately 20 pixels, this allows a border of about 6 pixels above

and below the person.

 (a) (b)

Figure 3.4: An example of detected ROIs shown on: (a) The binary image.
(b) The registered Image.

 29

To handle possible variations in scale, we extract volumes at multiple scales in the image

sequence by creating a pyramid of images of different sizes. A scale factor of 0.75 is used

between levels of the pyramid (for a total of 6 pyramid levels). This allows us to detect people

that are taller than 20 pixels – the detector will detect people at the level of the image pyramid

where the height is about 20 pixels.

3.4.1 Feature Extraction

The next step is to extract features from the series of slices that make up the volume

(Figure 3.7). We first compute the image gradient at each point in each slice. This is done by

convolving a gradient mask M with the gray scale image I in x and y directions. A simple

scheme of centered 1-D mask is used as follows.

Figure 3.5: The sliding window is shown in green. The bounding boxes of detected
ROIs are shown in blue. For example, the green window slides from ROI corner point
(r1, c1) to (r2, c2) searching for pedestrians. Note: the grey area (on left and bottom
borders) results from the image registration process.

 (a) (b)

Figure 3.6: (a) Spatiotemporal Volume of size of 32 pixels × 32 pixels × N slices. (b)
Features from all blocks the volume are concatenated into a single feature vector.

 30

T1] 0 [-1 where,

1] 0 [-1 where,

=∗=

=∗=

yyy

xxx

MIMG

MIMG

The resulting Gx and Gy are used to compute gradient magnitude and orientation as follows.

22),(),(|),(| yxGyxGyxG yx +=

),(

),(
)),(tan(

yxG

yxG
yx

x

y=φ

HOG features are then extracted from each of the slices that make up the volume. We

divide each 32×32 pixel slice into square cells (typically 4×4 pixels each), and compute a

histogram of gradient directions in each cell. Gradient directions are quantized to 9 bins, which

represent unsigned directions from 0°-180°. Each pixel within the cell casts a vote for the bin in

the histogram corresponding to its gradient direction, weighted by its gradient magnitude. The

result is a histogram for each cell, consisting of 9 values. Figure 3.8 shows an example of the

steps of extracting HOG descriptor features from an image.

Following the method of [2], cells are grouped into (possibly overlapping) blocks, where

each block consists of 2×2 cells. The histograms from each cell within the block are

concatenated to make a combined histogram, with 36 elements.

 (a) (b) (c)
Figure 3.7: Spatiotemporal Volume. (a) Positive example. (b) Gradient. (c) Computed HOG,
with block (shown in red color), and cell (shown in yellow color)

 31

For example, assume we have the image of Figure 3.9(a). The block (of size 2×2 cells) in

red color has the following feature vector, where each cell (in yellow color) has a size of 4×4

pixels. Each pixel within this cell casts a gradient magnitude weighted vote for an orientation

based histogram channel. The HOG feature vector of this block is

()4
9

4
1

3
9

3
1

2
9

2
1

1
9

1
1 ,...,,,...,,,...,,,..., hhhhhhhhf = .

For example, for the second cell, the 9 features are:

()2
9

2
1 ,..., hh .

Assume the orientations given in Figure 3.9(b) and the magnitudes given in Figure 3.9(c); the

magnitude voting for 9 bins can be as shown in Figure 3.9(d).

Finally, the histograms from each block and each slice are concatenated into a single

large vector. This represents the feature vector for the volume. More about the best choices of

key parameters (e.g., cell size, block size, number of bins) will be discussed in Chapter 4.

3.4.2 Normalization

The gradient magnitude can vary widely in images, due to changes in illumination. To

avoid undesirable effects on detection performance, we normalize the gradients. Normalization

can be performed in the input space (i.e., the image values) or in the feature space (i.e., the

histogram values). Normalization in the input space amounts to rescaling the intensity of the

pixels of the images. This normalization strategy has little or no effect on performance and

sometimes decreases the performance. Normalization in the feature space outperforms the one in

the input space ([2], [57], and [58]).

Figure 3.8: Interpreting gradient orientations into 9 bins histogram for each cell, and
computing HOG features. Slice size is 32×32 pixels, cell size is 4×4 pixels, block size is 2×2
cells, and number of bins is 9. (Note: assuming block overlapping).

 32

In the work of [59], they normalized gradients within each block. This was done as

follows. Let v be the descriptor vector for the block and ε be a small constant. They normalize

each vector using the equation

ε+
←

2
2

v

v
v

where
2

2
v is the squared L2-norm. The magnitude of the vector was then clipped to an

empirically defined threshold, and renormalized again.

In our algorithm, we normalize gradients within each “volumetric block”. A volumetric

block is the set of blocks at the same place in the image, across all slices, as shown in Figure

3.10. We use empirically derived values in range of 0.001 to 0.0001 for the constant ε, and clip

the feature vector magnitude to an empirically defined threshold, and renormalized again. The

result of the normalization step is a set of feature vectors that are better invariant to changes in

illumination or shadowing.

Figure 3.9: Example HOG feature vector for one cell of size 4×4 Pixels. (a) An
example pedestrian. (b) The computed orientations for one cell. (c) The computed
magnitude for one cell. (d) The magnitude voting for 9 bins.

 33

3.4.3 Dimensionality Reduction

The feature vector size is determined by the number of orientation bins in each cell (nbins),

the number of cells in each block (ncells), the number of blocks in each slice (nblocks), the number

of slices per volume (nslices). For example, using a volume of 16 slices, each slice of size 32×32

pixels, cells of size 4×4 pixels with 9 bins for histogram (i.e., the angular histogram bins are

evenly spaced over 0°–180°), with block of size 2×2 cells with no overlap between blocks, the

feature vector size (FVs) can be computed as:

features 9216941616 =×××=
×××=

s

binscellsblocksslicess

FV

nnnnFV

If block overlap is allowed, there are more blocks in each slice and the feature vector size is

correspondingly larger.

It is desirable to reduce the size of the feature vectors if possible. Using lower

dimensional features produces models with fewer parameters, which speeds up the training and

detection algorithms, while keeping a reasonable detection performance. The Principal

Components Analysis (PCA) technique has been used for dimensionality reduction in many well

known computer vision algorithms (e.g., SIFT descriptor [59] and HOG descriptor [3]). Many

pedestrian algorithms apply PCA to their feature vectors, (e.g. [60]).

Following this reduction method, PCA is used to reduce the dimensionality of the features.

Feature vectors are transformed to principal component space, and only those principal

components that account for the most variance in the data are kept. In the learning stage, a large

Figure 3.10: (a) Volumetric Block. (b) Spatiotemporal volume of 16 slices.

 34

number of 36-dimensional HOG features (i.e., for each block) are collected and PCA is

performed on them. The number of principal components is determined using the rate of

cumulative contribution. Eigenvalues are used to calculate the cumulative contribution rate to

determine the number of dimensions as following. Assume we initially have n eigenvalues

0...21 ≥≥≥≥ nλλλ

The contribution rate ek of the kth principal component corresponding to the eigenvalue λk is

defined as

∑ =

=
n

i i

k

ke

1
λ

λ

The cumulative contribution rate of the first m principal components (m < n) is defined as

∑
∑

=

==
n

i i

m

i i
E

1

1

λ

λ

To reduce the dimensionality, we use half of the principal components. Experimentally,

we find that the top 50% of the principal components account for 80% to 90% of the variance in

the data.

 Let's assume that iv is the feature vector of training example i , and we have N training

vectors, each of dimension M. The mean vector can be defined as

∑ =
= N

i iv
N

v
1

1

The full orthonormal matrix U can be obtained by solving the eigen equation of the covariance

matrix Σ .

Λ=Σ UU ,)(IUU T =

 35

∑
=

−−=Σ
N

i

T

ii vvvv
N 1

))((
1

where Λ is the diagonal matrix of which the diagonal elements are the eigenvalues. The

principal scores (the representation of features in the principal space) are obtained using the

projection matrix U as

)(vvUy i

T

i −=

These are the new features projected in the new space (i.e., the output of the PCA algorithm).

After training on reduced dimensionality features (the chosen subspace using truncated U), the

PCA scores for any HOG features are computed using this equation according to the selected

number of principal components. The results of PCA experiments are discussed in Section 4.6.5.

3.5 SVM Classifier

SVMs were proposed by Vapnik ([17], [18]) and have yielded excellent results in various

data classification tasks. The SVM classifier has been adopted in human detection in many

computer vision algorithms. SVM is effective in high dimensional spaces, even in the cases

where the number of dimensions is greater than the number of samples. This section gives a

short explanation of SVM and defines some terms related to SVM classifier used throughout this

thesis.

During classification, the SVM uses a subset of training points in the decision function.

These points are called support vectors, SVs. The use of a subset of training points (i.e., the SVs)

saves the memory cost. In addition, there are many kernel functions that can be used for the

decision function. As a common example, kernel function can be defined as a function that

corresponds to a dot product of two feature vectors in some expanded feature space (kernel

examples will be shown later). There are some common kernels used, and it is possible to

specify custom kernels [61].

To define some terms, assume we have the two dimensional data of Figure 3.11. The data

include some positive and negative examples. We look for a linear function (hyperplane) f(x)

that separates the two classes. The best discrimination function is the one that maximizes the

margin between positive and negative examples. Using a linear model, the two-class

 36

classification problem can be put in the form bxwxf T +=)(, where w denotes the learned

weights (weight vector). w is normal to the separation line and b is a bias parameter. Assume

we have training data X, such that }1,1{,),(),...,,(11 +−=×∈ YYXyxyx ll . For positive and

negative examples

1.:1)(positive ≥+= bxwy iiix

1.:1)(negative −≤+−= bxwy iiix

For support vectors: 1. ±=+bxw i , as shown in the figure below. The distance between

point and hyperplane is
||||

|.|

w
bxw i +

. Therefore, the margin is given by
||||

2

w
, and we need to

maximize this margin to have good separation. This is equivalent to minimizing 2|||| w , see [62]

and [63] for more details. The purpose of training is to find w and b such that:

wwT

bw 2

1
minarg
,

Subject to 1).(≥+bxwy ii

This is an example of a quadratic programming problem in which we are trying to minimize a

quadratic function subject to a set of linear inequality constraints.

To solve this problem, Lagrange multipliers are introduced and the solution is

∑=
i iii xyw α , where

iα is the Lagrange multiplier, and
ix is support vector. 0≠iα only for

SVs. The final SVM predictor (the decision function) can be expressed for test point x as

bxxybxwxf
SVi

T

iii

T +=+⋅= ∑ ∈
.)(α

Given f(x), the classification of a new point x is obtained as





<−
>+

==
0)(1

0)(1
))((

xf

xf
xfsigny

,

i.e., ()bxwsigny T +=

 37

In the case where data is not linearly separable, the original input space can be mapped to

some higher-dimensional feature space where the training set is separable:

).(: xx Φ→Φ

A simple example is shown in Figure 3.12. Assume that we need to separate the red

circles (positive examples) from the blue circles (negative examples) on a plane as shown below

on the left figure. Transforming this data into a higher dimensional space (e.g., 3 dimensions in

this case) through the mapping shown in the figure would make the problem much easier since

the points are now separated by a simple plane. This embedding on a higher dimension is called

the kernel trick.

If we define a kernel function K such that)(x)(x)x,K(x jiji Φ⋅Φ= , where (x)Φ is a

feature space transformation, then in order to classify new data jx , the decision boundary

becomes by
SVi ii +∑ ∈

)x,K(x jiα . The following are examples of commonly used kernel

functions:

• Linear kernel: j

T
iji xxxxK =),(

• Polynomial kernel: P

j

T
iji xxxxK)1(),(+=

• Radial-Basis Function (RBF) kernel












 −
−=

2

2

2

||||
exp),(

σ
ji

ji

xx
xxK

Figure 3.11: Example of two dimensional data includes positives and negatives. The
hyperplane separates the examples into two classes.

 38

In this thesis, two SVM kernels – a linear kernel and a radial basis function kernel were

used. Although the nonlinear kernel gives slightly more accurate results, for simplicity and

speed, the linear kernel is chosen as the baseline classifier throughout this study.

In practice, the class-conditional distributions may overlap, so the case of exact separation

of the training data could lead to poor generalization. Therefore the SVM is modified to allow

some of the training points to be misclassified (soft margin). To do this, slack variables 0≥nξ

are defined; where Nn ,...,1= , and 0=nξ for data points that are on or inside the correct margin

boundary ([64], [17]).

Therefore, adding the slack variables to handle non-separable cases makes the

optimization problem become ∑
=≥

+
N

n

n
bw

wC
n 1

2

0,,

||||
2

1
minarg ξ
ξ

such that
iii bxwy ξ−≥+ 1).(and

0≥nξ , where the regularization parameter 0>C controls the trade-off between the slack

variable penalty and the margin. In the limit ∞→C , the SVM for separable data is recovered.

In the experiments shown in Chapter 4, a freely available SVM-based classifier is used:

the OSU-SVM toolbox version 3.0 [65]. This is a MATLAB SVM toolbox based on the C++

package SVMLIB. It retains the high efficiency of SVMLIB but at the same time has the

convenience brought from MATLAB.

Figure 3.12: A simple example when the original input space is mapped into some
higher-dimensional feature space where the training set is separable.

 39

3.6 Training

The data is separated into two sets: a training set and a testing set. The training set is used

to train the classifier. Each instance in the training set X contains one target value and several

attributes. The target value is called class label and for our binary case its value is +1 for

pedestrian example and -1 for non-pedestrian example. The attributes are the features or

observed variables that represent each example. The goal of the learning process is to produce

an optimal decision function f (based on the training data) that can recognize pedestrian

examples.

}1,1{: +−→mRf , that is based on data }1,1{,),(),...,,(11 +−=×∈ YYXyxyx ll ,

where l is the number of training instances that are vectors belonging to the space m
RX ⊆ .

This function predicts the target values of unseen (test) data correctly given only the test data

attributes.

The first stage of training is to create the training data which contains positive examples

(subwindows containing a pedestrian) and negative examples (completely person-free

subwindows). To extract positive examples (Figures 3.13) from the training videos, the

following procedure was followed. A pedestrian was manually selected in one of the images (in

one of the detected ROIs) and a square subwindow was extracted from the image surrounding

the pedestrian. This subwindow was scaled such that the person was 20 pixels tall, and the

subwindow size was 32 × 32 pixels.

This size is large enough so the pedestrian remains within the window throughout the

whole sequence, at normal (moderate) walking speeds, which usually corresponds to ½ pixels

per frame. Training pedestrians were chosen un-occluded, centered in the middle slice (central

slice) of the sequence, with no interference with other pedestrians, and away from image borders.

Next, a sequence of subwindows was extracted from the registered images; half of them

preceding and half of them following the central image, at the same fixed place in all (registered)

images, and the subwindows were similarly scaled. A total of 32 such slices were assembled

into a spatiotemporal volume, representing a single positive example. We placed the starting

position of the central window to ensure that the person remained in the 32 × 32 window

throughout the duration of the 32 slice sequence.

 40

Negative examples (Figures 3.14) were also extracted from the training images. These

were spatiotemporal volumes of the same size as the positive examples, but sampled randomly

from completely person-free areas of detected ROIs. The binary classifier is trained using these

examples.

3.6.1 Cross-Validation

The performance of SVM classifier depends on the choice of the regularization parameter

C and the kernel parameters. For example, for RBF kernel, the bandwidth parameter γ is the

only kernel parameter to be selected. Adapting the hyper parameters is referred to as SVM

(a)

(b)
Figure 3.13: (a) Positive examples. (b) Each 2 rows of 32 windows (slices) comprise one
positive example. In each example, slice at time t1 is shown on top left, and slice at time
t32 is shown on bottom right

 41

model selection. One of the simplest and most widely used methods for estimating prediction

error is cross-validation. Cross-validation was used to select the value of C to be used with

linear kernel, and also to select C and γ for the RBF kernel.

Let)Pr,(ssedictedClaTrueClassL be the price paid for classifying an observation

belonging to class 1C as 2C . So, if we have input example X, with predicted class)(
^

Xf , and

actual class Y, the expected prediction error (or expected test error) is

))](ˆ,([XfYLEErr =

This method directly estimates the expected error Err; the error when method)(
^

Xf is applied to

an independent test sample from the joint distribution of X and Y ([66], [61]).

In cross-validation, data is partitioned into n segments. One sample is chosen as a validation

set and the accuracy of the model derived from the remaining (n-1) segments is scored. This is

Figure 3.14: Negative examples. Each 2 rows of 32 windows (slices) comprise one
example. In each example, slice at time t1 is shown on top left, and slice at time t32 is
shown on bottom right.

 42

repeated for all the n samples so that every sample acts as a validation set. The predictive error

obtained is used as a measure of internal validation of the predictive power of the classifier

developed using the full data set. All aspects of the classifier development process should be

repeated. For example, if we use 5-fold cross-validation, part of the available data is used to fit

the model, and a different part to test it. The data is split into 5 roughly equal-sized parts. The

scenario looks like the following:

For the nth part (fourth above), we fit the model to the other (n-1) parts of the data, and

calculate the prediction error of the fitted model when predicting the nth part of the data. We do

this for n = 1, 2, …, 5 and combine the 5 estimates of prediction error.

In this work, 5-fold cross-validation was used for parameter selection, by partitioning the

training data into 5 equally sized segments and then iterations of training and validation were

performed to pick the best parameters for the SVM kernels.

3.6.2 Baseline Classifier

The baseline classifier throughout this thesis uses the following parameters (except if

specified otherwise): blocks are of size 2×2 cells, with no overlap, and each cell consists of 4×4

pixels. The gradient filter [-1, 0, 1] is used, 9 bins are used for gradient orientations, and we

normalize volumetric blocks using the L2-Hys norm. The size of image slices is 32×32 pixels

and a soft linear SVM is used with control parameter C = 0.01. The parameters were set using

cross validation or empirically. Section 4.4 of the next chapter shows how the best choices of

key parameters are made through experiments.

3.7 Non-Maximum Suppression

Non-maximum suppression (NMS) is applied to all detections in the image with

confidence above a certain threshold as a postprocessing step to remove redundant detections.

NMS is the task of finding all local maxima in an area of an image. The first appearance of the

term of ‘non-maximum suppression’ was in an edge detection context [67], and then it was

 1 2 3 4 5

 Train Train Train Validation Train

 43

adopted for other applications. The work of [68] shows different aspects of implementing NMS

tasks.

As described in the algorithm above, during testing a volumetric detection window is

scanned across detected ROIs in the image sequence at all positions within the ROI and all scales

within the image pyramid. The detector typically generates many multiple responses around the

target object (i.e., the pedestrian). A standard convention to deal with this is to remove any

detector responses in the neighborhood of detections with locally maximal confidence scores.

Each detection is defined by a score and a bounding box (BB). The score is the decision

value the classifier produces as a classification output. The BB is of the same size and at the

same (x, y) coordinates of the detection window that detected the pedestrian. For each instance

of a pedestrian, we may get multiple overlapping detections; that is, overlapping BBs.

Detections are sorted according to their detection decision value. Then a greedy algorithm

is used to select the detection with the highest score, and nearby BB detections are merged to a

single final detection. The BB that is covered with at least 50% of previous BB is considered a

repeated detection and eliminated. This method is commonly used by other researchers in the

field of pedestrian detection, (e.g., [3]).

 44

CHAPTER 4: EXPERIMENTS AND RESULTS

This chapter presents the experimental work, the various datasets used for evaluation, and

the results and findings. In addition to evaluating our algorithm, we compare our results to two

other algorithms: the Dalal-Triggs algorithm [2], which is among the most popular approaches

for single frame pedestrian detection, and the Jones and Snow algorithm ([1], [33]), which was

the best performing algorithm on low resolution pedestrians that we found. If we limit our

algorithm to use only a single image, it is essentially the same as the Dalal-Triggs algorithm.

Therefore, we can directly compare the performance of our algorithm to that of the Dalal-Triggs

algorithm on each of the datasets. In the case of the Jones and Snow algorithm, we did not have

an implementation of that to work with. However, Jones and Snow give performance results on

one of the datasets that we used, so we can compare our algorithm to theirs on that dataset.

Section 4.1 gives an overview of metrics used to evaluate algorithm performance.

Datasets used are presented in Section 4.2. Section 4.3 gives an overview of the results. Section

4.4 analyzes the effect of the number of slices on performance. Detection examples and

discussion are presented in Section 4.5. Performance and the effect of different parameters are

discussed in Section 4.6. In Section 4.7 we discuss the effect of frame randomization.

4.1 Evaluation Metrics

Different measures can be used to evaluate different characteristics of classification

algorithms. One well known approach used for evaluating a detector's performance is the

Receiver Operating Characteristics (ROC) curve. The ROC is based on another commonly used

evaluation tool called the confusion matrix, [69]. These two tools are used because of their

ability to visualize characteristics of binary classifiers.

4.1.1 Confusion Matrix

In the machine learning field, a table known as a confusion matrix is used to visualize the

performance of an algorithm. Its name reflects the fact that the matrix makes it easy to see if the

system is confusing two classes. The confusion matrix contains the information about actual and

 45

predicted classifications made by a classification system [70]. Table 4.1 shows the confusion

matrix for a two-class classifier.

This matrix forms the basis for many commonly used metrics in the object detection field.

The numbers along the major diagonal (TP, TN) represent the correct decisions made, and the

numbers off this diagonal (FP, FN) represent the errors (the confusion) between the classes. In

the context of this study, the entries in the confusion matrix can be defined as follows:

• False Positives (FP): examples predicted as positive (pedestrian), which are from the

negative class (non-pedestrian).

• False Negatives (FN): examples predicted as negative (non-pedestrian), whose true class

is positive (pedestrian).

• True Positives (TP): examples correctly predicted as pertaining to the positive class

(pedestrian).

• True Negatives (TN): examples correctly predicted as belonging to the negative class

(non-pedestrian).

In this thesis, “examples” are the volumes within ROIs that were tested and classified by the

detector.

In this work, we use standard metrics that are defined based on the entries of the confusion

matrix. The “Detection Rate” (DR) measures how accurate the classifier is in sensing targets of

interest. It is the proportion of positive examples (pedestrians) that were correctly identified.

Table 4.1: Confusion matrix for two-class classifier

 Predicted Class

 Positive

(pedestrian)

Negative

(non-pedestrian)

Positive

(pedestrian)

TP

FN

T

ru
e

C
la

ss

Negative

(non-pedestrian)

FP

TN

 46

DR is also called “Recall”, “True Positive Rate (TPR)”, or “Sensitivity”. DR is calculated using

the equation:

Positives Total

Classified Correctly Positives
=DR

FNTP

TP
DR

+
=

The “False Positive Rate” (FPR) is the proportion of negative examples (non-pedestrians)

that were incorrectly classified as positives (pedestrians), as calculated using the equation:

Negatives Total

Classifiedy Incorrectl Negatives=FPR

FPTN

FP
FPR

+
=

Another commonly used metric is “Accuracy”, which is the proportion of the total number

of predictions that were correct. It is determined using the equation:

Trials ofNumber Total

Examples ClassiedCorrectly
=Acc

FNFPTNTP

TNTP
Acc

+++
+=

We define the ratio β as the proportion of positive class in the dataset such that

NP

P

+
=β

where P is the number of positive examples, and N is the number of negative examples. We can

obtain the following equation:

yspecificitysensitivitAcc ×−+×=)1(ββ

 47

If a dataset is balanced, then β ≈ 0.5; in this case, maximizing the overall accuracy is equal

to maximizing both sensitivity and specificity with the same weight. However, in the case with

an imbalanced dataset with β ≈ 0 (positive class minority), maximizing the overall accuracy will

bias toward maximizing specificity more than sensitivity, and vice versa as β approaches 1.

4.1.2 Receiver Operating Characteristic (ROC) Curve

The ROC curve is a useful tool for visualizing and evaluating binary classifier

performance. It depicts the tradeoff between hit rates (DR) and false alarm rates of a classifier.

The ROC curve illustrates the performance of a binary classifier system as some of its

parameters are tuned (varied). It is created by plotting DR (y-axis) versus FPR (x-axis); that is,

the fraction of true positives out of the total actual positives versus the fraction of false

positives out of the total actual negatives ([71], [72], and [73]).

To show some details of how to read the ROC curve, Figure 4.1 shows examples of three

ROC curves. Point (0, 0) represents a non-positive classification; this means the classifier's

output was negative all the time. Point (1, 1) on the other hand, represents all-positive

classification all the time. That is, the output of the classifier was always positive. Point (0, 1)

represents perfect classification, whereas point (1, 0) represents perfect misclassification. Thus,

the ROC curve helps in choosing a threshold which defines a point towards the top left of the

curve that has the effect of maximizing TPR while minimizing FPR (in the direction of the red

arrow in Figure 4.1).

Figure 4.1: General example of ROC curve.

 48

The operating point for a classifier can be chosen so that the classifier gives the best trade-

off between the costs of decreasing true positives against the costs of increasing detected false

positives. For example, if the target application is a surveillance system and all positive

responses must be shown to a human operator who can only process a certain number of events

per some time period, it is important to limit the false positive rate to some acceptable value.

The performance of the classifier is then determined by the detection rate at that false positive

rate. This can be used to compare two classifiers – for example, in Section 4.3, when we

compare our method to other detection methods; we evaluate our system’s DR at the same FPR

that the other methods use.

4.2 Experimental Procedure and Datasets

Following the method of [3], a detection is considered to be correct if there is at least 50%

overlap between the detection window and the ground truth; i.e. they share 50% of the area. To

save time, we apply the detector to every fourth frame in a sequence, instead of every frame. We

still construct the volumes using up to 32 consecutive frames, but the volumes in time direction

are shifted every four frames. We treat detections at different times as if they were independent.

This means that a pedestrian detected in frames 1-32 and also in frames 5-36 is counted as two

detected instances. A tracker (perhaps developed in future work) could assemble these

detections into a single track.

There are a number of datasets that have been used for pedestrian detection. Many of

these are specifically designed to evaluate pedestrian detection from moving cars. Since our

target application is surveillance video from stationary or aerial images, these datasets are not

appropriate for evaluating our system. Other datasets consist of video taken by indoor

surveillance cameras. In these datasets the people are relatively large in the images. Since our

target problem is detecting people in low resolution images, these are also not applicable.

We found five commonly used datasets that are representative for our application. These

are two stationary camera datasets (PETS2001, VIRAT public 1.0), and three aerial datasets

(VIRAT Fort AP Hill, UCF-2009, UCF-2007). In the stationary datasets, videos were collected

from a stationary surveillance camera. In such scenarios, no video stabilization is needed. All

the images were converted from color to grayscale since color information was not used during

feature extraction. In addition, grayscale images were used during image registration.

 49

All these datasets are low resolution; however, the height of people in some images is

greater than 20 pixels. Although our detector was designed to detect people with heights of 20

pixels, it can still detect these larger pedestrians. Since an image pyramid was used, the detector

can detect people at the image level where the height was about 20 pixels. This guarantees that

at some level of the pyramid the people will be close to 20 pixels height and can be detected by

the algorithm.

4.2.1 Stationary Datasets

The PETS 2001 dataset was released in 2001 [74]. PETS 2001 is probably the most

popular of the PETS series in automated surveillance research [67]. The PETS 2001 dataset was

also used by Jones and Snow to evaluate their algorithm [33]. The PETS 2001 dataset contains

16 video sequences of about two to four minutes length, with a frame rate of 25 frames/second,

and frame size of 768 pixels in width and 576 pixels in height. Half the videos are designated as

training, and half for testing. The sequences were taken by two stationary cameras mounted on

high vantage points looking down upon a street and parking lot in front of a building. Cars and

pedestrians periodically move through the scene at different times of the day with different light

conditions (Figure 4.2).

The second stationary camera dataset is the stationary VIRAT (Video Image Retrieval and

Analysis Tool) dataset. This dataset was designed to be realistic, natural and challenging

for video surveillance domains in terms of activities and pixel resolution on pedestrians [7]. The

video sequences were taken by stationary cameras mostly at the top of high buildings to record

large numbers of event instances across a very wide area while avoiding occlusion as much as

possible. The cameras look down upon a scene containing streets with buildings, trees, and

parking lots. Cars and pedestrians periodically move through the scene. Pedestrians in this

dataset appear in cluttered backgrounds and have a wide range of appearances, due to different

poses, body sizes, and outdoor lighting conditions. The dataset consists of twenty video

sequences; each approximately 0.5 to 5 minutes length with a frame rate of 30 frames/second,

and frame size of 1280 pixels in width and 720 pixels in height. The heights of pedestrians

within the videos range from 25 to 200 pixels (Figure 4.3).

 50

(a) (b)

(c)

Figure 4.2: (a) and (b) Two frames from PETS 2001. (c) Four different example
sequences. Note: video sequences were taken at different time of the day, with
different illumination conditions.

(a) (b)

(c)

Figure 4.3: (a) and (b) Two frames from stationary VIRAT. (c) Positive example
sequences.

 51

4.2.2 Aerial Datasets

The VIRAT Fort AP Hill aerial dataset was recorded using an electro-optical sensor from

a military aircraft flying at a height up to 1000 meters. The resolution of these aerial videos is

640×480 with 30Hz frame rate, and the typical pixel height of people in the collection is about

20 pixels. The data was collected in natural scenes to be realistic, showing people in standard

contexts. Directed actors were minimized; most were general population. The videos include

buildings and parking lots where people and vehicles are engaged in different activities. The

data is challenging in terms of low resolution, uncontrolled background clutter, diversity in

scenes, rapidly changing viewpoints, changing illumination, and low pedestrian image sharpness

[7]. Figure 4.4 shows examples of frames and sequences from the aerial VIRAT dataset.

This dataset also contained sequences with some very low-resolution pedestrians, in which

pedestrians are of less than 20 pixels in height. Figure 4.5 shows some very low-resolution

images from the aerial VIRAT dataset, and some example sequences. Although our algorithm is

designed to detect pedestrians of height 20 pixels or more, we also evaluated the algorithm on

some of this data as well, to understand how the performance degrades as the resolution is

lowered.

(a) (b)

(c)

Figure 4.4: (a) and (b) Two example frames from aerial VIRAT. (c) Different
example sequences created from registered frames.

 52

The UCF-2009 dataset is from the University of Central Florida. It is also known as the

UCF-Lockheed Martin Dataset (we call it UCF-2009 to distinguish it from an earlier UCF

dataset of 2007). Video sequences were obtained using an R/C-controlled blimp equipped with a

camera mounted on a gimbal in a dirt parking lot near the football stadium in Florida. The flying

altitudes ranged from 400–450 feet. Actions were performed by different actors. The UCF-2009

dataset has a resolution of 540×960 pixels with a 23Hz frame rate. Figure 4.6 shows two

example frames and four example sequences.

The UCF-2007 dataset is an earlier dataset from UCF, and is more challenging (compared to

the UCF-2009 dataset) due to large variations in camera motion, rapidly changing viewpoints,

changes in object appearance, pose, object scale, cluttered background, and illumination

conditions. In this dataset, people walk in different directions in a park and get close to trees and

bushes. Figure 4.7 shows two example frames and some example sequences.

The UCF-2007 data suffers from interlacing, motion blur, and poor focus. Interlaced video is

a technology that was developed in the early days of television. The interlaced signal contains

(a) (b)

(c)

(d)

Figure 4.5: (a) and (b) Two example frames from aerial VIRAT. (c) Two very low-
resolution positive example sequences created from registered frames. (d) Two
negative example sequences.

 53

two fields of a video frame captured at two different times, which exhibits motion artifacts called

interlacing effects. The effect becomes more obvious particularly in areas with objects in motion

(Figure 4.8 (top), page 54).

(a) (b)

(c) (d)

Figure 4.7: (a) and (b) Two example frames from aerial UCF-2007 dataset. (c) and (d)
Positive examples sequences created from registered frames.

(a) (b)

(c)

(d)
Figure 4.6: (a) and (b) Two example frames from aerial UCF-2009. (c) Positive example
sequences (pedestrians) created from registered frames. (d) Negative example sequences.

 54

To rectify the interlace artifacts we remove every other row and column, therefore halving the

frame resolution (Figure 4.8 (bottom)). The UCF-2007 dataset has a resolution of 854×480

pixels with a 30 Hz frame rate, and after deinterlacing the resolution becomes 427×240 pixels.

4.2.3 Image Sharpness Estimation

We noticed that the datasets differ in image quality. In some datasets, such as aerial

VIRAT, the images are not as sharp. This is important because our algorithm is based on image

gradients. Large gradients occur at sharp discontinuities in the image, which occur at boundaries

of objects and therefore represent information on shape. If images are blurred, the image

gradient decreases in magnitude and the orientation becomes less reliable.

 We can quantify the sharpness of the images. Many algorithms have been proposed to

estimate image sharpness or blurriness. Most methods use edge-appearance models [75] since

edge-appearance is the most affected component by image blurriness. Some of these algorithms

compute the average gradient magnitude in the image. Kumar et al. [76] proposed to use the

average absolute value of the discrete second derivative.

Figure 4.8: (Top) Example frame from UCF-2007 dataset with interlacing artifacts. (b) The
same frame of part (Bottom) after deinterlacing.

 55

The method we used to estimate sharpness was to compute the average gradient

magnitude in targeted sub-images. Since the sub-images of interest to our application are the

ones containing pedestrians, we measured sharpness in those. Figure 4.9 (a) shows some

examples from aerial VIRAT and UCF-2009. Figure 4.9 (b) shows a sharpness comparison

between a sample of 100 slices from those two datasets. The results confirm that the VIRAT

dataset is not as sharp as the UCF-2009 dataset, so we hypothesize the detector performance will

be lower.

4.3 Detector Performance Overall Results

The detector was applied to the test videos of the five datasets described above. The

results in this section use the following default parameters: Blocks are of size of 2×2 cells, with

no overlap, and each cell consists of 4×4 pixels. Gradients are computed using the [-1, 0, 1]

filter. We use 9 bins for gradient orientations, and normalize volumetric blocks using the clipped

L2-norm as described in Section 3.4.2. The size of image slices is 32×32 pixels and the volume

consists of 16 slices. A soft linear SVM is used with a cost parameter C (with a value of 0.01

determined through cross-validation) that controls the trade-off between slack variable penalty

and the margin. In Section 4.4, we present an analysis of the effect of changing these

parameters.

(a) (b)

Figure 4.9: (a) Examples from VIRAT aerial dataset (top raw), and UCF 2009 dataset
(bottom). (b) Sharpness estimation for a sample of 100 slices from VIRAT and 100 slices from
UCF datasets (sorted by sharpness value).

 56

To show the main concept, Figure 4.10 presents an example of the results of applying the

algorithm to one of the aerial datasets. As described in Chapter 3, the process involves video

stabilization (except for stationary camera videos), determining the temporary background frame,

computing the difference image, defining initial foreground, applying some morphological

operations, defining final ROIs, and applying pedestrian detector around these ROIs to search for

pedestrians.

The moving object detector that detects ROIs in image sequences gives a good detection

rate in detecting potential moving objects. For example, in 520 sequences of frames from PETS

2001 dataset (each sequence contains 16 frames) and 524 sequences from Aerial VIRAT dataset

(each sequence contains 16 frames), the moving object detection rate was more than 95%. In

these sequences, most of the ROIs containing pedestrians are detected. For example, in Aerial

VIRAT, in 1607 ROIs only 49 are not detected, and in PETS 2001, in 1929 ROIs only 88 are not

detected.

4.3.1 Stationary Datasets

For the PETS 2001 dataset, we extracted 2,560 training examples from the training

videos. 960 of them were positive examples and 1600 were negative examples. After training,

the detector was applied to ROIs in the test videos. The total number of tested examples was

1,235 positive examples (16 slices each) and 8,730 negative examples (16 slices each). The

subjects in the examples are always upright walking, with a wide range of variations in pose,

appearance, clothing, illumination and background. Pedestrians are walking in various directions

at different distances from the camera, and examples have a variety of blurriness.

Using the detector with the default parameters, a detection rate of 94.7% was achieved

with a false positive rate (FPR) of 10-6. This means that 94.7% of the actual pedestrians were

detected correctly as pedestrians, and for every 1,000,000 non-pedestrian volumes tested, only

one example would be classified as a pedestrian.

At the same FPR, the Dalal algorithm [2], which uses single images, achieved a detection

rate of 73%. On the same dataset, the Jones and Snow algorithm [33] achieved a detection rate

ranges from 84% to 93%, and when they combine 8 detectors (each one was trained separately)

they achieve a detection rate of 93%. Figure 4.11 (top) shows the ROC curves of the three

detectors. To generate these curves, we varied the detection threshold of the detector.

 57

For the stationary VIRAT dataset, the training set consisted of 1760 examples: 780 of

them were positive examples and 980 were negative examples. The trained detector was applied

to video sequences different from the training set. After training, the detector was scanned on

detected ROIs in sequences of images containing positives and negatives. The total number of

tested examples was 720 positive examples (16 slices each) and 3860 negative examples (16

slices each).

 (a) Frame number 1. (b) Frame number 16.

 (c) Frame number 1 (gray scale). (d) Frame number 16 registered to frame number 1.

(e) Temporary background. (f) Difference = Frame number 16 - background.

 (g) Detected motion regions. (h) Detected ROIs (blue), and pedestrians (red).

Figure 10: Results of the steps of applying the proposed approach on a sequence of
images from UCF 2009 dataset.

 58

Using the detector with the default parameters, we achieved a detection rate of 91% with a

false positive rate of 10-6. This means that 91% of actual pedestrians were detected correctly as

pedestrians, and 1 in 1,000,000 tested non-pedestrian volumes were incorrectly classified as

pedestrian. At the same FPR rate, the static detector of Dalal and Trigs [2] achieved a DR of

70%, on the same dataset.

4.3.2 Aerial Datasets

For the aerial VIRAT dataset, the training set consisted of 1,280 positive examples (16

slices each) and 1,280 negative examples (16 slices each). After training, the detector was

scanned on detected ROIs on test set sequences. 30,000 frames were used as a test set. A total

Figure 4.11: (Top) ROC curves of the three detectors on PETS 2001 dataset.
(Bottom) ROC curves of the two detectors on Stationary VIRAT dataset.

 59

of 12,600 volumes were classified during the scanning over the detected ROIs, of which 5,016

were positive examples and 7,584 were negative. Using the detector with the default parameters,

it achieved a DR of 78% at FPR of 4×10-3. This value of FPR means that only 4 in 1000 tested

non-pedestrian volumes were classified as pedestrians. At the same FPR the single-frame Dalal

detector achieved a detection rate of 39%.

We also applied the detector to portions of this dataset where pedestrians are less than 20

pixels in height. In this experiment, the training set consisted of 160 positive examples (16 slices

each) and 320 negative examples (16 slices each). After training, the detector is scanned within

each detected ROI in test set sequences. A total of 460 volumes were classified during the

scanning over the detected ROIs, of which 160 were positive examples and 300 were negative.

Using our dynamic detector on this dataset achieved a DR of 55% at FPR of 4×10-3.

For the UCF-2009 dataset, the training set consisted of 1,000 positive volumes (16 slices

each) and 1,000 negative volumes (16 slices each). During testing, the trained detector was

scanned within each detected ROI in test set sequences. More than 24,000 frames were used as a

test set. A total of 5,880 volumes were classified; 2,184 of them were positives, and 3,696 were

negatives. Using the detector with parameters tuned for the best performance on this dataset, DR

is 92% at FPR of 4×10-3. At the same FPR the Dalal detector achieved a DR of 50%.

For the UCF-2007 dataset, the training set consisted of 250 positive volumes and 250

negative volumes. During testing, a total of 500 volumes were classified; half of them positives

and half of them were negatives. Using the detector with the default parameters, DR is 73% at

FPR of 4×10-3. At the same FPR the Dalal detector achieved a DR of 41%.

Figures 4.12 (a), (b), and (c) show the ROC curves for our multi-frame HOG detector and

the single frame Dalal detector on these two datasets. The new detector outperforms the single-

frame Dalal detector at all FPR rates.

4.3.3 Summary and Discussion

Using the default algorithm parameters, our new multi-frame HOG based detector

consistently outperforms the Dalal single-frame detector. It also outperforms the Jones and

Snow multi-frame detector on the PETS 2001 dataset (we did not have an implementation of

their code, and so could not compare their results on the other datasets).

 60

Table 4.2 shows detection rates for the Dalal algorithm and the new multi-frame HOG-

based algorithm. DRs are evaluated at a constant FPR of 1x10-6 (for the first two) and 4x10-3

(for the last three).

 (a) (b)

(c)

Figure 4.12: ROC curve for Multi-Frame HOG detector and the Dalal detector on (a) Aerial
VIRAT dataset and (b) Aerial UCF-2009 dataset. (c) Aerial UCF-2007 dataset.

 Table 4.2: DRs for the Dalal detector and the new detector

Dataset Dalal Algorithm DR Multi-frame HOG based DR

PETS 2001 73% 94.7%

Stationary VIRAT 70% 91%

Aerial VIRAT 39% 78%

UCF 2009 50% 92%

UCF 2007 41% 73%

 61

Figure 4.13 shows the ROC curves for the multi frame HOG detector on all five datasets.

Several observations can be made from these curves. First, the detector gives better detection

rates and lower false positive rates when it is applied to stationary videos than when it is applied

to aerial videos. One reason is that the aerial videos tend to be more noisy and blurry than

stationary videos since they are taken from higher altitudes. The effective resolution of

pedestrians in aerial videos is lower than that of stationary videos. Another reason is that in

aerial videos, the videos need to be stabilized, and the stabilization is not perfect. The diversity

in scenes in aerial scenarios requires the detectors to learn a greater variety of cluttered

backgrounds.

For the aerial datasets; aerial VIRAT has detection rates consistently lower than those of

the UCF-2009 dataset. As shown in Section 4.2.3, the images in aerial VIRAT are not as sharp

as in UCF-2009. Also, the background clutter and diversity in scenes in aerial VIRAT makes it

more challenging for the detector to be trained than the case of UCF-2009.

4.4 Effect of Number of Slices on Performance

One of the key contributions of this work is the use of multiple frames to compensate for

the lack of information in low-resolution scenarios. We tested the effect of the number of slices

N on the performance of the detector. For values of N ranging from 1 to 32, we trained the

classifier on volumes with N slices, and then tested the trained classifier on volumes with the

Figure 4.13: ROC curves for the Multi-Frame HOG Detector on different datasets.

 62

same number of slices. The curves of Figure 4.14 show detection rates (for constant FPR) as N

is varied for stationary and aerial datasets.

The curves (Figures 4.14) show that improvement increases with the number of slices

until a total of 16 slices is reached. After that, adding more slices does not improve DRs. One

possible reason is that there is enough motion in 16 frames for the classifier to tell whether the

tested example is a pedestrian or not. Note that the case where the number of slices is equal to

one represents the standard single-frame HOG-based pedestrian detector method (Dalal detector

[2]), and it always gives the lowest detection rates.

In the aerial VIRAT dataset, the use of a single frame (i.e., one slice per volume classifier)

gives a DR of 40% at FPR of 4×10-3. At the same FPR, the use of 16 slices per volume raises

the DR to 78%. For the UCF-2009 dataset, the use of a single frame gives a DR of about 50% at

FPR of 4×10-3, and as the number of frames used reaches 16 frames, the DR goes up to 92% at

Figure 4.14: The effect of the number of slices per volume on DR. (Top)
stationary datasets. (Bottom) Aerial datasets.

 63

the same FPR. ROC curves are shown in Figure 4.15, for classifiers using different numbers of

slices.

4.5 Detection Examples and Discussion

Figures 4.16–4.19 show example frames from the different datasets used in this work.

Detection results are shown as boxes, where TP is “true positive”, FP is “false positive”, TN is

“true negative”, and FN is “false negative”.

Figure 4.15: ROC of the classifiers with different number of slices/volume: (Top) Aerial
VIRAT Dataset. (Bottom): Aerial UCF-2009 Dataset.

 64

Figure 4.16 (a) and (b) shows two frames from the aerial VIRAT dataset. Examples of

detection results are shown as boxes (we are not showing all the TNs in these figures). Figure

4.16 (c) shows the sequence of slices for one of the TP detections. Figure 4.16 (d) shows an

example of a sequence of slices for TN detections. TNs result from scanning the classifier

around false ROIs that correspond to motion regions resulting from non-pedestrian motion (e.g.,

vehicles) or from static objects due to non-perfect stabilization. In this example, the ROI

corresponds to a static object (building edges). Since the motion pattern for this object does not

match that of a pedestrian, the classifier labels this as a non-pedestrian.

Figure 4.17 (a) and (b) shows two frames from the UCF-2009 dataset. Examples of

sequences of slices for TN detections are shown in Figure 4.17 (c) and (d). The TNs shown here

resulted from scanning the classifier around false ROIs corresponding to non-pedestrian motion;

(e.g., a car and a bicycle). The motion patterns here do not match that of pedestrians. Therefore,

the classifier labels them as non-pedestrians.

Figure 4.18 shows frames from UCF-2007 dataset with detections, and Figure 4.19 shows

examples from the stationary VIRAT dataset and PETS 2001 dataset with detections.

 (a) (b)

 (c) (d)
Figure 4.16: (a,b) Two frames from VIRAT dataset with detections. (c) Slices for one TP in
(a). (d) Slices for the TN shown in (b).

 65

 (a) (b)

Figure 4.19: Example detections, (a) PETS2001 dataset. (b) Stationary VIRAT dataset.

 (a) (b)

Figure 4.18: (a) and (b) Two frames from UCF-2007 dataset with example detections.

 (a) (b)

 (c) (d)
Figure 4.17: Detections on two frames from UCF-2009 Dataset. (a) FP and TPs. (b) TNs.
(c) and (d) Sequences for TNs shown in (b).

 66

We now examine in detail the behavior of the classifier on two examples from the aerial

VIRAT dataset. Example 1 is a case where a pedestrian was detected as true positive, and

Example 2 is a case where a pedestrian was a false negative (i.e., the classifier failed to detect the

pedestrian). In Figures 4.20 and 4.21, the slices are shown on a larger scale.

As discussed in Chapter 3, during the training phase, the learning process produces the

optimal decision function

)()(bxwxf T +=

that classifies unseen data correctly. The classification (pedestrian � +1 and non-pedestrian �

−1) is obtained as





<−
>+

==
0)(1

0)(1
))((

xf

xf
xfsigny , i.e. ()bxwsigny T +=

In this section, examples of classifying pedestrians using different classifiers are

discussed. Each classifier is trained and tested on sequences containing a different number of

slices. The examples describe the effect of adding more slices on the output of the decision

function f.

Example 1: True Positive

Figure 4.18 shows the first example, and Table 4.3 shows the computed decision values,

which is the output of the decision function when it is fed with the feature vector of this example.

Each value in the DV column represents the decision value computed using a classifier trained

and tested on sequences containing a different number of slices. For example, the decision value

produced by the classifier that is trained and tested on single slice examples is -0.42756.

As shown in the DV column, the positivity of the decision value increases as more slices

per volume are used to represent the example. The DV reaches its peak value when the number

of slices used is between 16 and 24 slices per volume. Obviously, the pedestrian in the example

is hard to recognize, but over a longer sequence, the classifier becomes able to analyze motion

patterns that were learned during the training stage.

 67

Figure 4.20 (a): Sequence of slices of Example 1. In this sequence: slice # 1 is shown
at top left, and slice # 32 is shown at bottom right.

Figure 4.20 (b): The curve of computed DV of Example 1.

Table 4.3: Decision values vs. number of slices per volume of the example of Figure 1

Number of
Slices/Volume DV

Number of
Slices/Volume DV

Number of
Slices/Volume DV

1 -0.42756 7 -0.175 13 0.3136

2 -0.50974 8 -0.06097 14 0.3485

3 -0.4413 9 0.011 15 0.4078

4 -0.44541 10 0.1095 16 0.475923

5 -0.4178 11 0.164 24 0.491471

6 -0.2274 12 0.2413 32 0.413252

 68

Example 2: False Negative

In this example (Figure 4.21), the detection was missed by all classifiers (each classifier

was trained using different numbers of slices). Many factors could contribute to making this

example a difficult example. In addition to the blurriness of the slices, the amount of motion

appears not to be enough, so the example might not include the key frames of the walking step.

Also, in slice 13, the pedestrian's shadow starts to be cast on an object in the background, which

makes the background object appear to have motion. In slices 16–24, the pedestrian starts

changing the direction of walking, and in slices 25–32, the pedestrian's torso is occluded by an

object.

Even though the pedestrian is misclassified with both single and multiple slices, the

highest negativity occurs in the single slice case (Table 4.4). The lowest negativity occurs when

the number of used slices is in the range of 13–16. The cases of 24 and 32 slices have DVs with

high negativity; this is probably due to the fact that the person changed his walking direction and

started walking directly toward the camera, so the motion was not consistent over the entire

sequence. Figure 4.21 (b) shows the plot of decision value with respect to the number of slices

per volume.

4.6 Analysis of the Effect of Various Parameters

This section gives details about the effect of various parameter choices on detector

performance. In the performance evaluation, metrics described in Section 4.1 are used.

Throughout this section, results are compared to the baseline detector that has the properties

described in Section 4.3, except when specified otherwise.

Table 4.4: Decision Values of Example 4

Number of
Slices/Volume DV

Number of
Slices/Volume DV

Number of
Slices/Volume DV

1 -1.34077 7 -0.6566 13 -0.4788

2 -0.94728 8 -0.6127 14 -0.4823

3 -0.8411 9 -0.5939 15 -0.4273

4 -0.7721 10 -0.5574 16 -0.48011

5 -0.8167 11 -0.5109 24 -0.76351

6 -0.7892 12 -0.5045 32 -0.81881

 69

4.6.1 Detector Window Size

In early experimental work conducted as a proof of concept and to study the effect of

different parameters on performance, training and testing data were created from a real webcam

surveillance camera that is publicly available on the Internet [77]. A total of seven video

sequences were recorded at different days and times with different light conditions. As training

data, 400 volumes were created; half were positive examples and half were negative examples.

For testing, 800 frames were used. Figure 4.22 shows a sample image shot from the webcam

surveillance video, and some example sequences.

Figure 4.21 (b): The curve of computed DV of Example 3.

Figure 4.21 (a): Sequence of slices of Example 2.

 70

In this experiment, the effect of including a margin around the pedestrian in the detection

window was studied. The results showed the importance of keeping a moderate margin region

around pedestrians. The work began with a slice of 48×48 pixels, which kept a margin of about

14 pixels around the pedestrians (pedestrian height is 20 pixels). Then margin was reduced to

only 6 pixels around the pedestrians with a slice size of 32×32 pixels (and still the same

pedestrian height). This improved performance by 4%. The reason could be that the classifier

might have started learning the background as part of a pedestrian slice when a wider margin

around pedestrians was used. Also, narrowing the margin around pedestrians causes loss of

performance since this does not allow enough area around the pedestrian’s outer edge to be

learned by the classifier. Figure 4.23 shows example slices of two different sizes.

4.6.2 Normalization

As discussed in Section 3.4.4, the influence of large gradient magnitudes can be reduced

using the clipped L2-norm. Following the methods of [59], normalized feature vectors were

applied. The difference is that the features were normalized within each volumetric block,

meaning that the sequence of blocks across the N slices is at the same place in each slice. The

 (a)

 (b) (c)
Figure 4.22: (a) Sample image shot from a surveillance video taken by a webcam camera
(WebcamMania) mounted on a building in Eger, Hungary. (b) Two sequences of negative
examples (truck and cyclist). (c) Two sequences of positive examples (pedestrians).

 71

volumetric blocks were normalized using L2-norm followed by clipping to limit the maximum

values. Next, the features from all the blocks in all slices were concatenated into a single feature

vector.

The conducted experiments confirm that normalization improves accuracy over non-

normalization and makes the features more invariant to changes in illumination and shadowing.

Normalization of the volumetric blocks improved the accuracy detection by a rate of 4% over

non-normalization (e.g., from 74% to 78% for the aerial VIRAT database). The experiments

show that normalization becomes more critical with the aerial datasets where the changes in

illumination and shadowing become more rapid.

4.6.3 Block Overlapping

Figure 4.24 shows the idea of block overlapping. In a block overlapping scheme, each

non-border cell becomes part of more than one block. Each non-border contributes more than

one time in the final feature vector with different normalization. Overlapping allows encoding

20 pix 20 pix
6 pix14 pix

48 pix
32 pix

20 pix 20 pix
6 pix14 pix

48 pix
32 pix

 (a) (b)

(c)

(d)

Figure 4.23: (a) 48×48 pixels slice. (b) 32×32 pixels slice. (c) Sequence of slices of size
48×48 pixels each. (d) Sequence of slices of size 32×32 pixels each.

 72

the same information multiple times in different ways. Block overlapping may increase

performance but at the same time increases the size of the feature vector.

Detector performance was evaluated with block overlapping and non-overlapping. The

use of overlapping blocks in the descriptor improves performance by around 2%. Overlapping

the blocks allows a feature to contribute to the decision more than one time, whereas if there are

no overlapping blocks, a cell is coded only once in the final descriptor. The disadvantage of

overlapping the blocks is that if blocks are overlapped by (for example) half of the block size, the

feature vector dimension is almost doubled.

4.6.4 The Effect of Cell Size

Figure 4.25 plots DR with respect to cell size, for the UCF-2009 dataset. In this dataset, as

well as all the others, we find that a 4×4 pixel cell is the optimal cell size and performs best with

a block size of 2×2 cells.

Figure 4.26 (b) shows an example pedestrian height of 20 pixels. The size of a person’s

head, forearm, upper leg (thigh), and lower leg (shin and foot) appear to be approximately 4×4

pixels, which may allow cells of 4×4 pixels to capture the shape and motion of these parts.

Figure 4.26 (c) and (d) gives some insight into what cues the detector uses to make its

discrimination decision. Here the coefficients of the trained SVM classifier are used as a way of

measuring how much weight each cell has in the final classification decision. Figure 4.26 (c)

Figure 4.24: Block overlapping: Sequence of 16 slices. Dashed areas are two blocks. Each
non-border cell contributes more than one time as it becomes part of more than one block.

 73

shows the weights corresponding to each element of the feature vector; that is, the value of the

elements of w’s in the classifier decision function equation bxwxf T +=)(. In each cell, there

are 3×3 weights corresponding to the 9 gradient directions. The weights are shown for the

central slice in the volume and the brighter pixels represent the higher weights. The figure

suggests that the contours of a pedestrian’s head and shoulders for the upper body part and lower

legs and the region where the feet touch the ground have the highest weights, which represent the

main cues for detection.

(a) (b) (c) (d)

Figure 4.26: (a) 32×32 pixels slice in its actual size. (b) Same slice enlarged 5 times. Cells
of size 4×4 pixels appear to match key parts of the pedestrian’s body. (c) Central part of
SVM positive weights. Each pixel shows one SVM weight (w’s in DF

equation bxwxf T +⋅=)(). The brighter pixels represent higher weights. (d) Same as in

part (c) but for negative weights.

Figure 4.25: Effect of cell size on detection rate

 74

4.6.5 Dimensionality Reduction

In section 3.4.3 we discussed the use of PCA to reduce feature vector dimensionality. The

eigenvalues indicated that about half of the principal components can capture most of the

essential information. In particular, using the top 50% of the principal components yields a

cumulative contribution of 88% to the variance, on the stationary VIRAT dataset.

Here, we present experimental results on the effect of using different numbers of principal

components on pedestrian detection rate. Figure 4.27 shows 6 ROC curves of 6 classifiers each

trained with different number of principal components on the stationary VIRAT dataset. The

classifier using half the principal components (the pink curve) gives a detection rate about the

same as using all of the principal components (i.e., using cumulative contribution of 100%, the

dark blue curve). As a result, we can reduce the number of features to half and keep a good

performance.

4.7 Frame Randomization

To confirm our hypothesis that the classifier learns the characteristic motion of walking

pedestrians, we randomized the order of frames. The expectation is that giving the classifier

temporally incoherent data should reduce the performance.

We followed the same procedure as before to extract ROIs and form spatiotemporal

volumes. However, this time we randomized the slices in both the training and testing volumes.

Figure 4.27: ROC of 6 different classifiers trained with different number of principle
components.

 75

Figure 4.28 shows detection rates obtained from multiple tests on the two datasets. The results

show that the use of randomized frame sequences degraded detection rates by an average of 8%

in the VIRAT dataset experiments and by an average of 12% in the UCF-2009 dataset

experiments at FPR of 4×10-3. For example, for the UCF dataset, when the sequences were used

in their normal coherent order, we obtained a detection rate of 92%. In one of the tests in which

randomized sequences were used, at the same FPR, the detection rate degraded to 80%. These

experiments indicate that the classifier is indeed learning the characteristic motion of walking

pedestrians, and that temporal sequencing of frames is important for pedestrian detection.

Figure 4.28: The effect of randomizing the order of frames on classification performance.
All DRs are measured at FPR of 4×10-3.

 76

Chapter 5: Conclusions and Future Work

This chapter summarizes the thesis findings and suggests directions for further research.

Section 5.1 provides an overall summary, which is detailed further in Section 5.2 along with key

contributions. Section 5.3 discusses limitations, and Section 5.4 presents some of the possible

improvements, extensions, and directions that can be explored in a future work.

5.1 Summary

This thesis has addressed the problem of detecting pedestrians in low-resolution videos

taken by stationary and aerial cameras. The targeted goal of detecting pedestrians as small as 20

pixels in height was achieved and confirmed using standard datasets. The key novel idea was to

take the single-frame HOG-based detector and extend it to multiple frames. Namely, we extract

HOG features from a sequence of subimages centered at the point in the image where the

detector is being applied. Volumes of features are normalized and then a trained classifier is

used to classify the volumetric sequence as a pedestrian or non-pedestrian. We compensate for

the loss of information due to low resolution by using a sequence of images for detection.

We restrict the application of the detector to regions surrounding potential moving objects.

These regions of interest (ROIs) are found using background subtraction, followed by

morphological operations to eliminate small regions, and then connected component labeling. In

the case of moving cameras, we first register frames to a local reference frame by matching

interest points and then transforming the images using a homography transform.

Good detection accuracy was obtained on several standard datasets that contained low

resolution pedestrians (PETS 2001, Stationary VIRAT, UCF-2009, UCF-2007, and aerial

VIRAT). Our detector achieved an improvement of 20% or more over the Dalal algorithm,

which is a standard pedestrian detection algorithm using single frames [2]. We also obtained a

better detection rate than the Jones and Snow algorithm [33], which was the best published

detector on low resolution images that we could find.

We analyzed the effect of several key algorithm parameters. One of the most important

parameters is the number of slices used by the detector. We found that using multiple images for

detection dramatically improves the results. The improvement in detection rate increases with

the number of slices until a total of 16 slices is reached, which corresponds to about half a

 77

second of walking. Beyond 16 slices, performance levels off. The use of multiple frames has

more influence on improving detection rates in aerial videos than in stationary videos.

The effect of other parameters on the system performance was also studied. We found

that:

1. A smaller cell size outperforms the use of a large cell size. In low-resolution images, a

small cell size is better able to capture the shape and motion of pedestrian’s body parts

(e.g., person’s head, forearm, upper leg, and lower leg). We found that 4×4 pixel cells were

optimal.

2. Normalization improves accuracy and makes features more invariant to changes in

illumination and shadowing. The experiments show that normalization becomes more

critical with aerial datasets where illumination and shadows change rapidly.

3. Detector performance was also evaluated with different block overlapping schemes. The

experiments show that the use of overlapping blocks in the descriptor improves

performance slightly. However, the block overlap at half of the block size almost doubles

the feature vector dimension.

4. The experimental work also shows that the use of nonlinear kernel (a radial basis function

kernel) gives slightly more accurate results than using linear kernel. In our baseline

detector we used linear kernel for simplicity and speed.

5.2 Contributions

The main contribution of this thesis is the development of a new pedestrian detector that is

able to detect pedestrians in surveillance videos at lower resolutions than has been reported in

previous work. The detector is novel in that it operates on a short sequence of frames. Although

some previous algorithms have used image sequences, our algorithm is unique in that it uses

longer image sequences than that used in previous work.

Even though we use longer image sequences than previous work, the sequences are still

only about 0.5 to 1.0 seconds long. Our algorithm is a detector, not a tracker. A tracker would

use measurements over much longer sequences, and assemble multiple detections into a single

track file. The new pedestrian detection system significantly outperforms several existing state-

of-the-art pedestrian detection systems (as detailed in Chapter 4).

 78

We conjectured that the motion of a person walking is distinctive, and that the classifier

learns to recognize the temporal sequence of feature vectors within the volume. We confirmed

this in experiments where we trained and tested the classifier on randomized sequences. In these

experiments the algorithm, training procedures, and testing procedures were identical, except that

we randomized the order of slices within volumes. The results showed that giving the classifier

temporally incoherent data significantly degraded performance.

Another contribution is that our detector is applicable to low resolution aerial videos.

Because the detector needs only a short sequence of frames to perform detection, it is applicable

to situations where the camera is moving rapidly and does not dwell on the same portion of the

scene for very long. Ours is one of the first published methods to show results on several

challenging low resolution aerial datasets.

5.3 Limitations

Although the proposed approach gives good results and outperforms state-of-the-art

approaches, especially over traditional single-frame based algorithms, there are still some

limitations.

1. The algorithm detects only upright walking pedestrians. Subjects have to be walking,

not stationary or running. One approach to detecting different motion speeds would be to

train a classifier with multiple labels (e.g. classifier of [78]); such as slow walking, fast

walking, stationary, and running people.

2. The algorithm cannot detect pedestrians that are partially occluded.

3. In the datasets used in this work, videos were captured at an oblique angle. The view

angle needs to be known, so that we train on images at approximately the same angle as the

test images. We did not test other views such as a straight down view, but a straight down

view would probably not work. In a straight down view the characteristic walking motion

of the pedestrian’s body may not be visible.

4. The algorithm gives a good discrimination for pedestrians of 20 pixels height or more

(the targeted goal), but lowering the resolution to very low-resolution situations (Figure 5.1)

degrades the algorithm's performance. In addition to blurriness and an extreme lack of

 79

information, one other possible reason is that several detector parameters need to be tuned

for this scenario. In general, a very low-resolution scenario is still challenging and

unexplored area in the field. Nevertheless, this algorithm is still useful and gives results

better than the single fame method in these scenarios.

5.4 Future Work

Future work should examine the algorithm robustness on more challenging real world

videos. We have begun testing the algorithm on videos taken from a rapidly moving quadrotor

UAV [6], as shown in Figure 1.3. These videos have lower quality than the standard datasets

that we tested, including greater lens distortion and motion blur. Some preliminary results are

shown in Figure 5.2. The results of these experiments show the robustness of our proposed

algorithm even on these challenging videos.

Some of the possible improvements, extensions, and directions that can be explored in the

future include the following:

1. To improve detection performance, a multiclass SVM classifier can be used for

different walking directions. The idea of using different detectors for different directions

could make the classifier more precise in making the classification decision. For example,

Figure 5.2: Example from the results of detecting pedestrians in challenging UAV videos.
Detections are shown at different pyramid levels.

Figure 5.1: Very low-resolution examples of pedestrians
of height < 20 pixels.

 80

eight detectors (or more) could be trained with a specific detector for each direction to

cover the full range of 360o of directions: north, south, east, west, northeast, southeast,

northwest, and southwest (Figure 5.3). In this case, for each detector, the positive examples

would only include pedestrians walking in a specific direction. The use of a muticlass

classifier could also improve the classification of pedestrians with different speeds, ranging

from stationary pedestrians to fast-walking or running pedestrians.

2. To reduce the effect of changing illumination or background texture of visual videos,

thermal (IR) videos could be used. Figure 5.4 shows an example of visual versus thermal

image shots of the same scene [79]. Thermal videos also allow detection to take place at

night.

3. The detector could be incorporated into any standard tracking algorithm if a longer

sequence of images of the same scene is available. The improved accuracy of the detector

should make it possible to estimate more reliable tracks using a shorter sequence of images.

The plan for future work is to integrate the detector into a standard tracker. Even in aerial

Figure 5.4: shows an example of visual versus thermal image (OSU
Color-Thermal Database).

Figure 5.3: Eight detectors could be trained with a specific detector for each
walking direction to cover the full range of 360o of directions.

 81

video from rapidly moving cameras, a person is often in the field of view for multiple

seconds. Therefore, multiple detections could be associated into a single track.

4. Although the algorithm does not require metadata, if it is available, it can be used to

improve the system performance. Metadata could include camera altitude, angle, pitch,

zoom, etc. and can be used to constrain the expected size of people.

5. For the scenarios where a wide range of pedestrian scales is expected, typically both

high and low resolution candidate windows are resampled to a common size. One way to

use all the available information (without downsampling the high resolution pedestrians) is

to train different models for different resolutions to improve the performance since the

detector will have access to the full information available at each window size. This

technique has the disadvantage of increasing the computational cost at both the detection

and training phases.

6. The prototype system was written in Matlab, which is good for a scientific environment

to perform analysis. However, it is not very fast when compared to C or C++. In principle,

the proposed approach should be able to run in close to real time since the operations it uses

are similar to other real-time systems based on HOG-like features and SVM classifiers.

 82

References

[1] Hu, Weiming, Tieniu Tan, Liang Wang, and Steve Maybank. 2004. "A survey on visual
surveillance of object motion and behaviors." Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on 34, no. 3: 334-352.

[2] Dalal, Navneet, and Bill Triggs. 2005 "Histograms of oriented gradients for human

detection. 2005." In Computer Vision and Pattern Recognition. IEEE Computer Society

Conference, vol. 1, pp. 886-893.

[3] Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. 2008. "A discriminatively

trained, multiscale, deformable part model." In Computer Vision and Pattern Recognition.

IEEE Conference, pp. 1-8.

[4] Cucchiara, Rita, Costantino Grana, Massimo Piccardi, and Andrea Prati. 2003. "Detecting

moving objects, ghosts, and shadows in video streams." Pattern Analysis and Machine
Intelligence, IEEE Transactions on 25, no. 10: 1337-1342.

[5] Basharat, Arslan, Matt Turek, Yiliang Xu, Chuck Atkins, David Stoup, Keith Fieldhouse,

Paul Tunison, and Anthony Hoogs. 2014."Real-time multi-target tracking at 210
megapixels/second in wide area motion imagery." In Applications of Computer Vision

(WACV), 2014 IEEE Winter Conference on, pp. 839-846.

[6] “Airsoft UAV footage”, downloaded from

https://www.youtube.com/watch?v=rppbsvUSpxY, November 2014.

[7] Oh, Sangmin, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen, Jong Taek

Lee, Saurajit Mukherjee et al. 2011."A large-scale benchmark dataset for event recognition
in surveillance video." In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pp. 3153-3160.

[8] Johansson, Gunnar. 1973. "Visual perception of biological motion and a model for its

analysis." Attention, Perception, & Psychophysics 14, no. 2: 201-211.

[9] Sager, Hisham, and William Hoff. "Pedestrian detection in low resolution videos. 2014."

In Applications of Computer Vision (WACV), 2014 IEEE Winter Conference on, pp. 668-
673.

[10] Yan, Junjie, Xucong Zhang, Zhen Lei, Shengcai Liao, and Stan Z. Li. 2013. "Robust multi-

resolution pedestrian detection in traffic scenes." In Computer Vision and Pattern

Recognition (CVPR), 2013 IEEE Conference on, pp. 3033-3040.

[11] Dollár, Piotr, Christian Wojek, Bernt Schiele, and Pietro Perona. 2009. "Pedestrian

detection: A benchmark." In Computer Vision and Pattern Recognition, 2009. IEEE

Conference, pp. 304-311.

 83

[12] Enzweiler, Markus, and Dariu M. Gavrila. 2009. "Monocular pedestrian detection: Survey
and experiments." Pattern Analysis and Machine Intelligence, IEEE Transactions on 31, no.
12: 2179-2195.

[13] Dollár, Piotr, Christian Wojek, Bernt Schiele, and Pietro Perona. 2012. "Pedestrian

detection: An evaluation of the state of the art." Pattern Analysis and Machine Intelligence,

IEEE Transactions on 34, no. 4: 743-761.

[14] R. Benenson, M. Omran, J. Hosang, B. Schiele. 2014. "Ten years of pedestrian detection,

what have we learned?", ECCV 2014, CVRSUAD workshop.

[15] Gavrila, Dariu M. 1999. "The visual analysis of human movement: A survey." Computer

vision and image understanding 73, no. 1: 82-98.

[16] D. Park, D. Ramanan, and C. Fowlkes.2010. "Multiresolution Models for Object Detection."

Proc. European Conf. Computer Vision.

[17] Liu, Yun-Fu, Jing-Ming Guo, and Che-Hao Chang. 2014. "Low resolution pedestrian

detection using light robust features and hierarchical system." Pattern Recognition 47, no. 4:
1616-1625.

[18] Cortes, Corinna, and Vladimir Vapnik. 1995. "Support-vector networks." Machine learning

20, no. 3: 273-297.

[19] Freund, Yoav, Robert Schapire, and N. Abe. 1999. "A short introduction to boosting."

Journal-Japanese Society For Artificial Intelligence 14, no. 771-780: 1612.

[20] Dalal, Navneet, Bill Triggs, and Cordelia Schmid. 2006. "Human detection using oriented

histograms of flow and appearance." Computer Vision–ECCV: 428-441.

[21] Efros, Alexei A., Alexander C. Berg, Greg Mori, and Jitendra Malik. 2003. "Recognizing

action at a distance." In Computer Vision, 2003. Proceedings. Ninth IEEE International

Conference on, pp. 726-733. IEEE.

[22] Cutler, Ross, and Larry S. Davis. 2000. "Robust real-time periodic motion detection,

analysis, and applications." Pattern Analysis and Machine Intelligence, IEEE Transactions

on 22, no. 8: 781-796.

[23] Narayanaswami, Ranga, Anastasia Tyurina, David Diel, Raman K. Mehra, and Janice M.

Chinn. 2011. "Discrimination and tracking of dismounts using low-resolution aerial video
sequences." In SPIE Optical Engineering+ Applications, pp. 81370H-81370H. International
Society for Optics and Photonics.

[24] Bhamidipati, Sai Lakshmi, Sai Sudha Mindagudla, Harsha Vardhan Devalla, Hima Sagar

Goodi, and Hemanth Nag. 2014. "Analysis of Different Discrete Wavelet Transform Basis

 84

Functions in Speech Signal Compression." IOSR Journal of VLSI and Signal Processing

(IOSR-JVSP). Volume 4, Issue 1, Ver. PP 34-38.

[25] Sun, Jie, James M. Rehg, and Aaron Bobick. 2004. "Automatic cascade training with

perturbation bias." In Computer Vision and Pattern Recognition, 2004. Proceedings of the

2004 IEEE Computer Society Conference on, vol. 2, pp. II-276. IEEE.

[26] Schapire, Robert E. "The boosting approach to machine learning: An overview. 2003."

LECTURE NOTES IN STATISTICS-NEW YORK-SPRINGER VERLAG: 149-172.

[27] Moeslund, Thomas B., Adrian Hilton, and Volker Krüger. 2006. "A survey of advances in

vision-based human motion capture and analysis." Computer vision and image

understanding 104, no. 2: 90-126.

[28] Papageorgiou, Constantine, and Tomaso Poggio. 2000. "A trainable system for object

detection." International Journal of Computer Vision 38, no. 1: 15-33.

[29] Viola, Paul, and Michael Jones. 2001. "Rapid object detection using a boosted cascade of

simple features." Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1.

[30] Viola, Paul, and Michael J. Jones. 2004. "Robust real-time face detection." International

journal of computer vision 57, no. 2: 137-154.

[31] Viola, Paul, Michael J. Jones, and Daniel Snow. 2005. "Detecting pedestrians using patterns

of motion and appearance." International Journal of Computer Vision 63, no. 2: 153-161.

[32] Cooper, Helen, and Richard Bowden. 2009. "Sign Language Recognition: Working with

Limited Corpora." Universal Access in Human-Computer Interaction. Applications and

Services: 472-481.

[33] Jones, Michael J., and Daniel Snow.2008. "Pedestrian detection using boosted features over

many frames." In Pattern Recognition. 19th International Conference, pp. 1-4. IEEE.

[34] Szeliski, Richard. 2011. Computer vision: algorithms and applications. Springer.

[35] Dollár, Piotr, V. Rabaud, G. Cottrell, and Serge Belongie. 2005. "Behavior recognition via

sparse spatio-temporal features." In Visual Surveillance and Performance Evaluation of

Tracking and Surveillance, 2005. 2nd Joint IEEE International Workshop on, pp. 65-72.

[36] Oreifej, Omar, et al.. 2010. "Human identity recognition in aerial images." In Computer

Vision and Pattern Recognition, 2010 IEEE Conference on, pp. 709-716.

[37] Gaszczak, Anna, Toby P. Breckon, and Jiwan Han. "Real-time people and vehicle detection

from UAV imagery. 2011." In Proc. SPIE Conference Intelligent Robots and Computer

Vision XXVIII: Algorithms and Techniques, volume 7878, doi: 10.1117/12.876663.

 85

[38] Reilly, Vladimir, Berkan Solmaz, and Mubarak Shah. 2010. "Geometric constraints for

human detection in aerial imagery." Computer Vision–ECCV 2010 : 252-265.

[39] Daubechies, Ingrid. 1998. "Orthonormal bases of compactly supported wavelets."

Communications on pure and applied mathematics 41, no. 7: 909-996.

[40] Bar-Shalom, Yaakov, and Xiao-Rong Li. 1993. "Estimation and tracking- Principles,

techniques, and software." Norwood, MA: Artech House, Inc.

[41] Blackman, Samuel S. 2004. "Multiple hypothesis tracking for multiple target tracking."

Aerospace and Electronic Systems Magazine, IEEE 19, no. 1: 5-18.

[42] Yilmaz, Alper, Omar Javed, and Mubarak Shah. 2006. "Object tracking: A survey." Acm

computing surveys (CSUR) 38, no. 4: 13.

[43] Wu, Yi, Jongwoo Lim, and Ming-Hsuan Yang. 2013. "Online object tracking: A

benchmark." Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on.

[44] Challa, Sudha. 2011. Fundamentals of object tracking. Cambridge University Press.

[45] Ali, Saad, and Mubarak Shah. 2006."COCOA: tracking in aerial imagery." In Defense and

Security Symposium, pp. 62090D-62090D. International Society for Optics and Photonics.

[46] Singh, Vivek Kumar, Bo Wu, and Ramakant Nevatia. 2008. "Pedestrian tracking by

associating tracklets using detection residuals." In Motion and video Computing, 2008.

WMVC 2008. IEEE Workshop on, pp. 1-8.

[47] Wu, Bo, and Ram Nevatia. 2007. "Detection and tracking of multiple, partially occluded

humans by bayesian combination of edgelet based part detectors." International Journal of

Computer Vision 75, no. 2: 247-266.

[48] O'malley, R., M. Glavin, and E. Jones. 2011. "Vision-based detection and tracking of

vehicles to the rear with perspective correction in low-light conditions." IET Intelligent

Transport Systems 5, no. 1: 1-10.

[49] O'Malley, Ronan, Edward Jones, and Martin Glavin. 2010. "Rear-lamp vehicle detection

and tracking in low-exposure color video for night conditions." Intelligent Transportation

Systems, IEEE Transactions on 11, no. 2: 453-462.

[50] Harris, Chris, and Mike Stephens. 1988. "A combined corner and edge detector." In Alvey

vision conference, vol. 15, p. 50.

[51] Fischler, Martin A., and Robert C. Bolles. 1981. "Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated
cartography." Communications of the ACM 24, no. 6: 381-395.

 86

[52] Piccardi, Massimo. "Background subtraction techniques: a review." In Systems, man and

cybernetics, 2004 IEEE international conference on, vol. 4, pp. 3099-3104. IEEE, 2004.

[53] McIvor, Alan M. "Background subtraction techniques." Proc. of Image and Vision

Computing 1, no. 3 (2000): 155-163.

[54] Brutzer, Sebastian, Benjamin Hoferlin, and Gunther Heidemann. "Evaluation of background

subtraction techniques for video surveillance." In Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, pp. 1937-1944. IEEE, 2011.

[55] Jain, Ramesh, and H-H. Nagel. 1979. "On the analysis of accumulative difference pictures

from image sequences of real world scenes." Pattern Analysis and Machine Intelligence,

IEEE Transactions on 2: 206-214.

[56] Stauffer, Chris, and W. Eric L. Grimson. 1999. "Adaptive background mixture models for

real-time tracking." In Computer Vision and Pattern Recognition. IEEE Computer Society

Conference on, vol. 2.

[57] Graf, Arnulf BA, and Silvio Borer. 2001. "Normalization in support vector machines." In

Pattern Recognition, pp. 277-282. Springer Berlin Heidelberg.

[58] Tax, David MJ, and Robert PW Duin. 2000. Feature Scaling in Support Vector Data

Descriptions. Technical report, American Association for Artificial Intelligence.

[59] Lowe, David G. 2004. "Distinctive image features from scale-invariant key points."

International journal of computer vision 60, no. 2: 91-110.

[60] Ke, Yan, and Rahul Sukthankar. 2004. "PCA-SIFT: A more distinctive representation for

local image descriptors." In Computer Vision and Pattern Recognition, 2004. CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on, vol. 2, pp. II-506.

[61] Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel et al. 2011. "Scikit-learn: Machine learning in
Python." The Journal of Machine Learning Research 12: 2825-2830.

[62] Bishop, Christopher M. 2006. Pattern recognition and machine learning. Vol. 4, no. 4. New

York.

[63] Burges, Christopher JC. 1998. "A tutorial on support vector machines for pattern

recognition." Data mining and knowledge discovery 2, no. 2: 121-167.

[64] Bennett, K. P. 1992. Robust linear programming discrimination of two linearly separable

sets. Optimization Methods and Software 1, no. 1:.

 87

[65] OSU-SVM Toolbox for MATLAB. Last Update: 2009-07-17.
http://sourceforge.net/projects/svm.

[66] Hastie, Trevor, Robert Tibshirani, Jerome Friedman. 2009. The elements of statistical

learning. Vol. 2, no. 1. New York: Springer.

[67] Dee, Hannah M., and Sergio A. Velastin. 2008. "How close are we to solving the problem

of automated visual surveillance?" Machine Vision and Applications19, no. 5-6: 329-343.

[68] Neubeck, Alexander, and Luc Van Gool. 2006. "Efficient non-maximum suppression."

In Pattern Recognition. ICPR 2006. 18th International Conference on, vol. 3, pp. 850-855.

[69] Sokolova, Marina, Nathalie Japkowicz, and Stan Szpakowicz. 2006. "Beyond accuracy, F-

score and ROC: a family of discriminant measures for performance evaluation." In AI 2006:

Advances in Artificial Intelligence, pp. 1015-1021. Springer Berlin Heidelberg.

[70] Provost, Foster J., Tom Fawcett, and Ron Kohavi. 1998. "The case against accuracy

estimation for comparing induction algorithms." In ICML, vol. 98, pp. 445-453.

[71] Green, David Marvin, and John A. Swets. 1996. Signal detection theory and psychophysics.

Vol. 1. New York: Wiley.

[72] Egan, J.P., 1975. "Signal Detection Theory and ROC Analysis." Series in Cognition and

Perception. Academic Press, New York.

[73] Swets, John A., Robyn M. Dawes, and John Monahan. 2000. "Better DECISIONS through."

Scientific American: 283, 82–87.

[74] PET dataset. http://www.cvg.cs.rdg.ac.uk/pets2001/ pets2001-dataset.html.

[75] Vu, Phong V., and Damon M. Chandler. 2012. "A fast wavelet-based algorithm for global

and local image sharpness estimation." Signal Processing Letters, IEEE19, no. 7: 423-426.

[76] Kumar, Jayant, Francine Chen, and David Doermann. 2012. "Sharpness estimation for

document and scene images." In Pattern Recognition (ICPR), 2012 21st International

Conference on, pp. 3292-3295. IEEE.

[77] Webcams Mania. http://www.webcamsmania.com/webcam/egerdoboacuteteacuter.

[78] Harirchi, Farshad, et al. 2010. "Two-level algorithm for MCs detection in mammograms

using Diverse-Adaboost-SVM." In Pattern Recognition (ICPR), 2010 20th International

Conference on, pp. 269-272. IEEE.

[79] Davis, James W., and Vinay Sharma. 2007. "Background-subtraction using contour-based

fusion of thermal and visible imagery." Computer Vision and Image Understanding 106, no.
2: 162-182.

