
1

Comparative evaluation of tools
providing access to different types of
data resources exposed on the Grid

A joint test program of INFN, SPACI-UNILE

and INAF

Giacinto Donvito

INFN-Bari

2

• Motivations

• The tools under evaluation

• The testbed

• The test plan

• Issues

• Some Results

• Example of use

• Conclusions

Outline

3

• Provide access in GRID to Bioinformatics data stored in relational

DB’s

– BioinfoGRID EU project (http://www.bioinfogrid.eu/)

– LIBI Italian MIUR project (http://www.libi.it/libi)

• Provide access to multiple astronomical databases (archives,

Astronomical Catalogues, etc.) for the Astrophysical community.

– The Virtual Observatory (http://www.euro-vo.org/pub/ http://www.ivoa.net/)

• Provide access to population data for porting “public

administrations” applications to the GRID

– EGG Italian MIUR project

• Diffuse inside the Italian community the knowledge and the

expertise to access relational DB’s from Grid.

Motivations

4

4

The tools under evaluation

• GRelC: Grid Relational Catalog

– Developed by SPACI Consortium and University of Salento, Lecce
 Giovanni Aloisio (giovanni.aloisio@unile.it) , Supervisior

 Sandro Fiore (sandro.fiore@unile.it .Project P.I ,(

 Massimo Cafaro (massimo.cafaro@unile.it), Team Member

 Alessandro Negro (alssendro.negro@unile.it) , Team Member

 Salvatore Vadacca(salvatore.vadacca@unile.it), Team Member
– Project site: http://grelc.unile.it

• G-DSE (INAF + INFN)

– Developed by INAF and INFN
 Edgardo Ambrosi (amborsi@cnaf.infn.it)

 Giuliano Taffoni (taffoni@oats.inaf.it)

 Andrea Barisani (lcars@infis.units.it)

– Project site: http://wwwas.oats.inaf.it/grid/G-DSE

• OGSA-DAI

– Developed as part of the Open Middleware Infrastructure Institute UK (OMII-UK) project.

– Project site: http://www.ogsadai.org.uk/index.php

• AMGA

– Developed as part of gLite by:
 Birger Koblitz: Initial design, project responsible.

 Tony Calanducci: RPM building and testing. User support.

 Salvatore Scifo: Java API maintainer

 Claudio Cherubino: PHP client

– Project site: http://amga.web.cern.ch/amga/

The GRelC Project

• Grid Relational Catalogue is a project which aims at
designing and developing a set of efficient, secure and
transparent Data Grid Services (Starting date, January
2001).

• Developed by SPACI Consortium and University of
Salento, Lecce

• GRelC Data Access Service aims at providing a large set
of functionalities to access both relational and non
relational Databases in a grid environment

http://indico.cern.ch/contributionDisplay.py?
contribId=334&sessionId=28&confId=18714

6

GRelC Data Access Service

• GRelC DAS is a Grid Database Access Service

• Web Service interface GSI enabled and WS-I compliant

• Mutual authentication based on GSI (X.509v3 digital
certificates)

• Authorization Framework leveraging local ACL and
VOMS

7

GRelC DAS: Main Features

• Protection against SQL Query Injection

• Single Query: prefetch, dime, memory, stream etc.

• Dinamic binding to heterogeneous DBMSs:

– Postgres, MySQL, SQLite

– DB2, Oracle

– Microsoft SQL Server

– UnixODBC

• Graphical User Interface (Qt based)

• Web Interface (For Admin tasks and User Query)

8

GRelC DAS and gLite

• Information System Support (BDII compliant)

• Porting on LCG-2-4-0, LCG-2-7-0 and gLite 3.x

• It also runs on the following platforms:
– Linux

– MAC OS X

– FreeBSD

– Both IA64 and IA32 platforms are supported

• Wide deployment on GILDA t-Infrastructure
– A tutorial is also available on Grid CT Wiki (GILDA)

– https://grid.ct.infn.it/twiki/bin/view/GILDA/GRelCDataAccessService

Data Source Engine Concepts

• The Grid Resource Framework Layer, Information System
and Data Model is extended so that a software virtual
machine as a Data Source Engine becomes a valid
instance for a Grid computing model.

• A new Grid component (G-DSE) that enables the access to
a Data Source Engine and Data Source, totally integrated
with the Grid Monitoring and Discovery System and
Resource Broker is defined

• A new Grid Element, the Query Element, can be built on top
of the G-DSE component.

http://indico.cern.ch/contributionDisplay.py?
contribId=333&sessionId=28&confId=18714

The Query Element

CE

The Query Element

CE

code

The Query Element

CE

code

QE
query

QE implementation

• Runs on any linux/unix flavor: GT>=2.4.3

• Backends: any DB vendor (MySQL, Oracle, PostgreSQL,
etc…) + flat files

• Two protocols: GRAM or WS

• Authentication based on GSI

• Authorization based on VOMS

• API: C, C++, python, Java, perl

GDSE

ora

psql

file

GRAM

SOAP

OGSA-DAI

OGSA-DAI can support the following:
– Different types of data resources - including relational, XML and files can be

exposed via web services. A number of popular data resource products are
supported.

– Data within each of these types of resource can be queried and updated.

– Data can be transformed (using XSLT), compressed and decompressed (using
ZIP and GZIP compression).

– Data can be delivered to clients, other OGSA-DAI web services, URLs, FTP
servers, GridFTP servers, or files.

– Requests to OGSA-DAI web services have a uniform format irrespective of the
data resource exposed by the service. (though the actions specified within each
request may be data resource-specific).

– Information on the data resources exposed by an OGSA-DAI web service and
the functionality supported by the service can be accessed by clients.

– OGSA-DAI users can extend OGSA-DAI web services to expose their own data
resources and to support application-specific functionality, in addition to that
provided by OGSA-DAI.

– Can execute data-centric workflow and data transformations

– http://indico.cern.ch/contributionDisplay.py?
contribId=397&sessionId=28&confId=18714

AMGA

• AMGA (ARDA Metadata Grid Application):
– It is designed to provide metadata access to grid application

– It allows the use of several back-ends:

 Oracle, MySQL, PostgreSQL, SQLite

– It is oriented to files (Metadata describes files on the grid)

– It is possible to use it in order to access DB using a dedicated Languages.
 This languages allows a lot of functionality provided by SQL but it is not SQL

standard

 Some very complex query are not possible in an easy way

 Pre-existent application should be modified

– It provides both Web Service and socket connection

– It gives the possibility to exploit advanced replication functionality
 Also between server using different back-end

 and with “streaming” behavior

– It has a lot of good facilities for supporting ACL (Unix like) on tables (or
entries), based on GSI authentication

– API available in several languages: C++, Java, Python, Perl, Ruby

– It is available also with standalone Python library (for single user)

TESTBED

Test Database: Bioinformatics

database containing just a “molecule

table” with about 500.000 tuples

(350MB, PostgreSQL).

Other Databases:

Sakila (MySQL 23 tables)

World (MySQL 6 tables)

Dellstore (PostgreSQL 8 tables)

uniutrdb_test (MySQL 35 tables)

go_5_06 (MySQL 18 tables)

homo_sapiens (MySQL 74 tables)

2MASS (PostgreSQL)

Population db (PostgreSQL)

OGSA-DAI

G-DSE

AMGA

GRELC-DAS

The test plan

• Sequential tests
– extraction of zero tuples - Estimate GSI services overhead

– extraction of 10, 100, 1000, 10000, 100000 simple tuples

– extraction of result sets of increasing dimensions: O(kb), O(MB), O
(100MB)

– extraction of 10, 100, 1000, 10000, 100000 with increasing table
complexity

– Submission of complex queries (join, multiple queries, etc)

– Submission of INSERT, UPDATE, and DELETE queries
 Performance evaluation for a single action

– Evaluate the differences between LAN and WAN queries

DB Access tools -- LIBI Meetin -- 2-3 July 2007 16

The test plan

• Concurrent tests
– Whit O(10) concurrent clients extract

 Zero, 10, 100, 1000 tuples

– Repeat the extractions with O(100) concurrent clients

• Use a common working environment for the three
tools
– Only GSI authentication

 VOMS authentication not supported by some of them

– Same type of output format
 No date post or pre processing allowed (avoid translation in a

more user friendly format (XML,….))

Security

Tools GSI VOMS
Authentication

Transport
Layer

Security

Data

Encryption

OGSA-DAI Yes No Yes Yes

GRELC-DAS Yes Yes Yes Yes

G-DSE Yes Yes Yes No

AMGA Yes Yes Yes Yes

Tools installation

• GRelC:

– Easy to install and manage via the grid data portal interface (GRelC Portal)

– Postgresql and Mysql drivers currently available from the website.

– New drivers related to Oracle, DB2, etc. are in a preproduction phase.

• G-DSE:

– The installation and configuration procedure was not straightforward.

– Installation based on yaim (glite tool)

– Found problems in almost all the sites

• OGSA-DAI:

– The installation and configuration of the tool was not straightforward
although a vaste documentation is provided on the web site.

– Greater variety of data sources accessed

• AMGA:

– The installation is quite easy and straightforward

– It is not simple to use more than one DB at the same time

Population DB: Test Result

• Tests have been performed on the population database using
the real use case query.

• Such query includes complex join query between two or more
tables, inner join and outer join between tables.

• It has been found that the database itself is bottleneck in this
case.

• No big difference found in the query response time between
running query using database client and any of three tools.

• Current version of AMGA does not support such complex join
query like inner join or outer join between tables and require a
readjust of the DB.

… before numbers…

• For all the results:

– These numbers are the result of a quite long process of optimization
and interaction with the developers of each tools, but ...
improvements are still possible.

• AMGA does not still support standard SQL query

0,01

0,1

1

10

100

1000

Number of

Tuples

1 5 10 50 100 500 1000 5000 10000 50000

OGSA-DAI CSV CLI

OGSA-DAI CSV API (s)

OGSA-DAI CLI (s)

GRELC-DAS DIME (s)

GRELC-DAS STREAM (s)

GDSE (s)

AMGA (s)

Simple query: tests results
s
e
c

Number of

Tuples

OGSA-DAI

CSV CLI (s)

OGSA-DAI

CSV API (s)

OGSA-DAI

CLI (s)

GRELC-DAS

DIME (s)

GRELC-DAS

STREAM (s)

GDSE (s) AMGA (s)

1 5,07 0,23 4,7 0,21 0,358 1,454 0,024

5 5,13 0,26 4,77 0,316 0,352 1,48 0,03

10 5,31 0,27 4,65 0,214 0,35 1,496 0,03

50 5,32 0,304 5,25 0,234 0,448 1,572 0,044

100 5,43 0,324 6,15 0,248 0,366 1,62 0,06

500 5,61 0,45 6,37 0,442 0,486 1,642 0,224

1000 6,63 0,65 7 0,652 0,592 1,77 0,416

5000 7,74 2,41 14,8 2,606 1,634 2,602 2,106

10000 9,96 4,61 24,46 4,962 2,754 3,398 4,208

50000 19,31 15,21 95,63 23,686 11,696 10,71 21,454

100000 37,42 34,21 188,86 46,486 23,002 18,764 41,336

Simple query: tests results (2)

• OGSA-DAI CLI is much slower than all other due to the time
needed to start the JVM:

– For this reason we report also the time spent for a query using the
API:

 We measure only the time needed to run just the query.

Concurrent test: description

• We use a fixed number of clients that run constantly
the same query against the server.

• We measure the number of queries that each service
is able to provide for a fixed time-window (30 min).

• This gives an idea of the performance that each
software is able to reach under high load

• We strictly keep under control the load on both client
and server side

Concurrent test: number of query

• In this graph are showed the amount of query server by each tools per
hour, related to the given amount of concurrent client

Concurrent test: issues

• OGSA-DAI clients are loading much more the client
machine instead of loading the server

• For each execution 4 seconds are spent to start the
JVM and only 0.2 seconds in order to execute the
query.

• We solved the problem building a program that runs
an infinite loop instead of running many times the CLI

• In this way the client is not overloaded and a good
scalability is achieved

Concurrent test: server load

• This graph shows the load average of each server when the concurrent
test is executed:

– It seems evident that for OGSA-DAI the number of client needed to
saturate the machine is not reached yet… maybe we can achieve a better
results increasing the number of concurrent client

Examples:

• GDSE:

– CLI interface:

> globus-job-run grpk005.oat.ts.astro.it:2119/jobmanager-odbc -queue dellstore2
"select products.title,categories.categoryname, products.actor from products,categories
where products.category = categories.category and categories.categoryname=‘Sci-Fi’;”
-XML

Examples:

• GDSE:

– CLI interface:

> globus-job-run grpk005.oat.ts.astro.it:2119/jobmanager-odbc -queue dellstore2
"select products.title,categories.categoryname, products.actor from products,categories
where products.category = categories.category and categories.categoryname=‘Sci-Fi’;”
-XML

<table>
<row>
<title>ACADEMY ACADEMY</title>
<categoryname>Sci-Fi</categoryname>
<actor>PENELOPE GUINESS</actor>
</row>
<row>
<title>ACADEMY ACE</title>
<categoryname>Documentary</categoryname>
<actor>EWAN RICKMAN</actor>
</row>
….

Examples:

• GDSE:

– CLI interface (Parallel Query):

Examples:

• GDSE:

– CLI interface (Parallel Query):

> globus-job-submit -: g.dse.host/dbmanager-ODBC -queue PSQL

“select a,b from table where a < 10;” -: g.dse2.host/dbmanager-

ODBC -queue PSQL “select a,b from table where a between 10 and

20;” -: g.dse.host3/dbmanager-ODBC -queue PSQL “select a,b from

table where a > 20;”

Examples:

• GrelC:

– CLI interface:

Examples:

• GrelC:

– CLI interface:

> /opt/grelc/das/bin/grelc-das-query-stream -s

firblibi03.ba.infn.it -D MOLECULE -Q "select * from molecule

where id<=2" -t

id: 1
id_name: 104K_THEPA
id_molecule_type: 1
id_data_class: 1
id_sequence_type: 1
seq: MKFLILLFNI LCLFPVLAAD NHGVGPQGAS GVDPITFDIN SNQTGPAFLT AVEMAGVKYL QVQHGSNVNI HRLVEGNVVI WENASTPLYT GAIVTNNDGP YMAYVEVLGD
PNLQFFIKSG DAWVTLSEHE YLAKLQEIRQ AVHIESVFSL NMAFQLENNK YEVETHAKNG ANMVTFIPRN GHICKMVYHK NVRIYKATGN DTVTSVVGFF RGLRLLLINV
FSIDDNGMMS NRYFQHVDDK YVPISQKNYE TGIVKLKDYK HAYHPVDLDI KDIDYTMFHL ADATYHEPCF KIIPNTGFCI TKLFDGDQVL YESFNPLIHC INEVHIYDRN
NGSIICLHLN YSPPSYKAYL VLKDTGWEAT THPLLEEKIE ELQDQRACEL DVNFISDKDL YVAALTNADL NYTMVTPRPH RDVIRVSDGS EVLWYYEGLD NFLVCAWIYV
SDGVASLVHL RIKDRIPANN DIYVLKGDLY WTRITKIQFT QEIKRLVKKS KKKLAPITEE DSDKHDEPPE GPGASGLPPK APGDKEGSEG HKGPSKGSDS SKEGKKPGSG
KKPGPAREHK PSKIPTLSKK PSGPKDPKHP RDPKEPRKSK SPRTASPTRR PSPKLPQLSK LPKSTSPRSP PPPTRPSSPE RPEGTKIIKT SKPPSPKPPF DPSFKEKFYD
DYSKAASRSK ETKTTVVLDE SFESILKETL PETPGTPFTT PRPVPPKRPR TPESPFEPPK DPDSPSTSPS EFFTPPESKR TRFHETPADT PLPDVTAELF KEPDVTAETK
SPDEAMKRPR SPSEYEDTSP GDYPSLPMKR HRLERLRLTT TEMETDPGRM AKDASGKPVK LKRSKSFDDL TTVELAPEPK ASRIVVDDEG TEADDEETHP PEERQKTEVR
RRRPPKKPSK SPRPSKPKKP KKPDSAYIPS ILAILVVSLI VGIL
seq_check: 289B4B554A61870E CRC64
mw: 103626
length1: 924
createddate: 1990-04-01
lastupdateddate: 1990-04-01
lastannoteddate: 1992-08-01
descr: 104 kDa microneme-rhoptry antigen
id_database_division:
id_note:
id_db: 1

Examples:

• AMGA:

– CLI interface:

Examples:

• AMGA:

– CLI interface:

> mdcli "selectattr /molecule:id /molecule:id_name /

molecule:id_molecule_type /molecule:id_data_class /

molecule:id_sequence_type /molecule:seq /molecule:seq_check /

molecule:mw /molecule:length1 /molecule:createddate /

molecule:lastupdateddate /molecule:lastannoteddate /

molecule:descr /molecule:id_database_division /

molecule:id_note /molecule:id_db '/molecule:id<$1 and /

molecule:id>0'"

Examples:

• OGSA-DAI:

– API in a simple application:

28

Examples:

28

Examples:
> import java.sql.ResultSet;

…

import uk.org.ogsadai.client.toolkit.Response;

import uk.org.ogsadai.client.toolkit.activity.sql.SQLQuery;

…

 String sql = "select * from molecule where id<=100";

 SQLQuery query = new SQLQuery(sql);

 WebRowSet rowset = new WebRowSet(query.getOutput());

…

 // Set the number of rows to fetch each time to 200

 ResultSet result = deliver.getResultSet(200);

 result.next();

 int rowNumber = 1;

 while (result.next()) {

 System.out.println("id: " + result.getString(1));

 System.out.println("id_name: " + result.getString(2));

 System.out.println("id_molecule_type: " + result.getString(3));

 System.out.println("id_data_class: " + result.getString(4));

 System.out.println("id_sequence_type: " + result.getString(5));

 System.out.println("seq: " + result.getString(6));

 System.out.println("seq_check: " + result.getString(7));

 System.out.println("mw: " + result.getString(8));

 System.out.println("length: " + result.getString(9));

…

Conclusions

• The test is still on going

– Some input from OGSA-DAI developers has improved the reliability of the
results

• From the first results it seems that each middleware has some specific
field of excellence:

– OGSA-DAI:

 has lot of advanced features

 Widely distributed

 Fair good performances when used with API

– GRelC:

 Fast for small/medium/large datasets.

 Fast DML query submission.

 Easy to install. Already ported on gLite

 Easy to manage via the grid data portal interface (GRelC Portal)

Conclusions (2)

• …

– GDSE

 Very efficient for huge query

 Easy to manage

 Good integration with gLite environment (BDII and VOMS enabled)

– AMGA:

 Very quick for small query

 Fast DML query submission (very low GSI latency).

 A lot of advanced functionality (replication master-multi slave, etc)

 Good performance for large datasets

 It will be part of the next release of gLite

• The “best tools” should be chosen taking into account the use case:

– Java Application/Workflow -> OGSA-DAI

– Not strict SQL bound application -> AMGA

– General purpose -> GrelC

– Huge query -> G-DSE

– …

• If a standard unified interface is build: the user can use the same API/
interface to use different back-end in a transparent way (Like SRM for data
access).

35

30

Acknowledgments

• TAFFONI, Giuliano (INAF)

• VUERLI, Claudio (INAF)

• BARISANI, andrea (INAF)

• PASIAN, Fabio (INAF)

• MANNA, Valeria (INAF)

• GISEL, Andreas (CNR-ITB)

• GIORGIO, Emidio (INFN)

• AIFTIMIEI, Cristina (INFN)

• ATUL, Jain (INFN+Politecnico Bari)

• BARBERA, Roberto (INFN+Università
Catania)

• CAROTA, Luciana (INFN)

• DONVITO, Giacinto (INFN)

• GHISELLI, Antonia (INFN)

• LA ROCCA, Giuseppe (INFN)

• MAZZUCATO, Mirco (INFN)

• PIERRO, Antonio (INFN)

• VERLATO, Marco (INFN)

• FIORE, Sandro (Univ. del Salento, Lecce)

• ALOISIO, Giovanni (Univ. del Salento, Lecce)

• CAFARO, Massimo (Univ. del Salento, Lecce)

• VADACCA, Salvatore (Univ. del Salento,
Lecce)

• NEGRO, Alessandro (Univ. del Salento,
Lecce)

• DEL FREO, Federico (EGG project)

• RICCI, Giovanni (EGG project)

• Work supported in part by BioinfoGRID and LIBI projects

