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  HOW INFORMATIVE
     IS YOUR 
 SEGMENTATION?

BY PIETER SHETH-VOSS AND ISMAEL E. CARRERAS

 S
egmentation is a common tool that helps orga-
nizations discern and describe key patterns in 
complex markets. In his article, “Rediscovering 
Market Segmentation” (Harvard Business Review, 
2006), Daniel Yankelovich cites a finding that 59 

percent of executives across industries reported a major seg-
mentation exercise in the past 24 months. Yet segmentation is 
often perceived as among the most enigmatic of quantitative 
market research analyses. The same article later presents a 
case study stating, “Although the solution was mathematically 
sound, management did not trust its findings.” Sentiments like 
this are commonly heard in practice.

Segmentation is distinct from analyses such as conjoint 
analysis, where different experienced practitioners would 
likely collect similar data, estimate similar models and yield 
similar solutions. By contrast, segmentations are often based 
on diverse information sources, complex algorithms and 
much iterative analysis. Practitioners advocate a variety of 
approaches that can be bewildering to clients. These include 
a diverse array of algorithms, such as latent class analysis 
(LCA), K-means clustering, CART/CHAID, hierarchical 
clustering, factor-cluster and ensemble models, among others. 

Furthermore, there are many philosophies about goals, bases 
and inputs to segmentation, including psychographic, behav-
ioral, attitudinal, “human centric” and others. Different busi-
ness goals entail different results. An “unmet-needs-based” 
segmentation for marketing communication will almost cer-
tainly yield a different solution than an “opportunity-based” 
segmentation for sales force targeting. A multivariate solution 
based on multiple data sources will differ from a 2x2 matrix 
posed by an industry veteran. 

Regardless of the segmentation algorithm used, how do 
we know that a particular solution is good for the intended 
purpose? What do the mathematics actually do? Without a 
clear understanding of these algorithms, and absent objective 
criteria for evaluating and comparing solutions, segmentation 
retains its aura of mystery. The goal here is not to advocate 
any algorithm or approach, but rather merely to explore how 
different solutions can be compared.

A simple practical metric—net mutual information—can be 
used to compare segmentations “apples to apples,” based on 
how much information they convey about a set of attributes. 
This can be applied to compare alternative segmentations on 
common terms. 

Importantly, the comparison is independent of the means 
by which the solutions were derived, whether using different 
bases, by different algorithms or even by people versus com-
puters. We show that latent class analysis (and K-means clus-

A simple new metric  
yields surprising results. 
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tering) can be viewed as maximizing this metric. This yields 
a simple new understanding of how these two algorithms 
work and can support more effective application of these two 
algorithms in practice.

Any discrete attribute is a segmentation. Any customer 
attribute measured as a discrete (or discretized) variable can 
be a segmentation. Customers can be divided by age, gender, 
region, product interest, geography, attitudes, blood pressure 
or any other dimension. Segmentations “exist” as soon as we 
define them. But not all segmentations are equally good for a 
given purpose. 

One key decision in segmentation research is choosing an 
algorithm to define segments. Figure 1(a) on page 11 shows 
how K-means clustering analysis segmented an actual mar-
ket data set. Interestingly, K-means clustering will find such 
partitions even if there is no clear natural separation, and the 
boundaries are linear (in much the same way that boundaries 
between soap bubbles are planes). Figure 1(b) shows another 
reasonable way this data set might reasonably be linearly par-
titioned—as a 2x2 matrix divided at the medians. 

How can we compare two segmentations? And, important-
ly for quantitative segmentation analysis, how can we measure 
the difference in meaningful terms?

Good segmentations convey information. In our view, 
segmentation is information compression. A segmentation 
is not useful unless it conveys information about important 
customer attributes. Ideally the converse is also true; observ-
able customer attributes convey information about segment 
membership.

Fortunately, information is measurable. Information theory 
was pioneered by Claude Shannon in the 1940s to define the 
requirements for telecommunication bandwidth. Today, infor-
mation theory is the basis for technology including modern 
cryptography, cell phones and ZIP files.

Shannon’s work provides a framework to measure the 
information a segmentation conveys about relevant customer 
attributes. As a result, the “best” segmentation is one that 
conveys the most information about those attributes. This is 
the main principle behind LCA—to generate segments that 
maximize as much information on the basis variables.

To be clear, information is only one reasonable metric of 
segmentation quality. Other aspects also matter in practice, in-
cluding established (if less readily quantifiable) considerations 
of identifiability (the ability to find these segments in a larger 
population), substantiality (the relative size of the segments), 
accessibility (the ease with which segments can be reached), 
responsiveness (the extent to which segments respond to mar-
keting interventions or strategies), stability (the repeatability 
of the segmentation solution) and actionability (the ability to 
execute marketing strategies to the segments).

A Brief Primer on Information Theory 
Computer science and statistics have derived similar concepts 
independently using different terms and assumptions. In par-
ticular, computer science has made extensive use of a metric 
called Shannon information (a different concept than Fisher 
information in statistics). Here we provide a brief primer on 
information theory, describing three key concepts: surprise,  
entropy and information. Here, surprise and entropy are main-
ly stepping stones on the way to understanding information.  

Surprise! Surprise, S(x), is a measure of improbability of an 
outcome X=x, defined as the negative logarithm of probabil-
ity, p = Pr{X = x}:

S(x) = -log2p
The logarithm is usually base 2 as computers represent 

data in binary form. Therefore, the units are “bits” (as in 
computer bits). Surprise is also known as the Shannon infor-
mation content of an outcome.

For example, getting heads on one fair coin flip would be 
exactly 1 bit surprising: S(X) = -log2 (0.50) = 1.0. Also, get-
ting five heads on five consecutive coin flips would be 5.0 bits 
surprising, S(X) = -log2 (2-5) = 5.0. On the other hand, getting 
heads on a double-headed coin would be 100 percent likely, 
and thus not at all surprising:  S(X) = -log2 (1) = 0.

What should be evident from these examples is that the 
surprise of an event is inversely related to its likelihood. In 
other words, the lower the likelihood of an event, the greater 
its surprise if it occurs. Surprise has a lower bound of 0 for 
certainties and an upper bound of positive infinity for events 
that are “impossible” to occur.

Entropy. Entropy, H(X), is a measure of uncertainty, analo-
gous to variance for discrete variables. It is formally defined as 
the expected surprise over all possible values of X:  

H(X) = -∑pilog2 pi

 Here i is an index over all the possible values that X may 
assume. Entropy is also defined for continuous variables, re-
placing the discrete summation with a continuous integral, in 
which case it is called the differential, or Boltzmann, entropy.

Entropy may seem at first to be an abstract concept, but it 
has a very practical interpretation: It is the number of com-
puter bits that are theoretically required, on average, to store 
the observed values of a random variable in an optimally com-
pressed data file (under basic assumptions). 

As an example, we might measure product interest and 
partition customers into two segments: “high” if product in-

Executive Summary

Alternative segmentations must be compared on an “apples-to-

apples” basis, by the amount of information they convey 

about a set of customer attributes. This article presents 

a simple and effective new metric to compare different 

segmentations on a common basis—the information 

they convey about a particular set of relevant attributes. 

This turns out to be the same metric that latent class 

analysis maximizes, yielding new insights into how seg-

mentation algorithms work and how they can be better 

harnessed in practice. 
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terest is above the population 
median and “low” if product 
interest is below the median. 
Any one customer has a 50 
percent chance of being high 
(which is 1.0 bits surprising) 
and a 50 percent chance of be-
ing low (which is also 1.0 bits 
surprising). So the expected 
surprise, or entropy, is 1.0 bits:

H(X) = 0.50 log2 (0.50) + 
0.50 log2 (0.50) = 1.0

 Now, imagine a bet is 
placed on getting two heads 
in a row. Assuming the coin 
is fair, there is a 25 percent 
chance of winning that bet, 
which would be 2.0 bits 
surprising. Conversely, there is 
a 75 percent chance of losing 
the bet, which would be 0.41 
bits surprising. Therefore, the 
expected surprise or entropy 
H(X) = 0.81 bits:

H(X) = 0.25 log2 (0.25) + 
0.75 log2 (0.75) = 0.81

Entropy is maximized 
when the data are uniformly 
distributed. As probability 
mass is concentrated in fewer 
states, entropy decreases. 
Said another way, a variable’s 
entropy becomes smaller as 
the distribution of responses 
gets concentrated into fewer 
levels. For example, if income 
is measured with six catego-
ries, but most respondents in a 
sample fall into only three of the categories, its entropy will 
be smaller than if the responses were more broadly distrib-
uted across all of the categories. And if all the probability is 
concentrated in a single state (i.e., the variable is certain), the 
entropy is zero.

For binary variables, the maximum entropy is 1.0, where 
the maximum possible entropy is the logarithm of the number 
of states. For example, a variable with four possible states 
has a maximum possible entropy of 2.0. This makes intuitive 
sense, as one could represent any four-state variable as two 
binary variables.

Mutual information. Mutual information, I(X;S), between 
two variables (X and S) is the reduction in uncertainty (en-
tropy) in X we would expect from knowing the value of S: 
     I(X;S) = H(X) - H (X | S)

Conceptually, segmentations are useful if they convey 
information about attributes of interest. Here, information is 
a measure of correlation for discrete variables. Let’s continue 

with our previous example of 
product interest where, in the 
overall sample, 50 percent of 
customers are above the median 
and 50 percent are below. Now 
let’s imagine that product 
interest varies by segment, as 
shown in Figure 2, on page 
13. Within the “Quinn” seg-
ment, 75 percent of customers 
have high interest, 60 percent 
in the “Welby” segment and 
15 percent in the “Becker” 
segment. Overall, the entropy 
of product interest is 1.0, as 
shown previously. Note that 
within each segment, however, 
entropy is lower. Assuming that 
each segment is equally likely, 
the expected entropy within 
each segment is H(X|S) =0.80. 
Therefore, knowing the value of 
segment reduces our expected 
uncertainty by 0.20 bits, or said 
in another way, segment con-
veys 0.20 bits of information 
about product interest.

Mutual information is sym-
metric, that is I(S;X) = I(X;S). 
Conversely, knowing product 
interest would convey 0.20 bits 
of information about segment 
membership.

Total Mutual Information  
We now introduce a new metric 
of segmentation quality we 

call the total mutual information, 
I(S,X), that a segmentation S conveys about a set of basis 
variables, X= {Xi}:  
    I(X;S) = ∑

i

I(Xi ;S) 

This metric can easily be calculated for any segmentation 
(even one defined by managerial insight) and evaluated with 
respect to any set of basis variables (even if different from that 
used to derive or define the segmentation). It can be calculated 
for discrete and/or continuous basis variables.

For example, let’s say the variable segment is associated 
with product interest (I=0.20), market TRx (I=0.22) and a 
certain attitude statement (I=0.11). Thus the total mutual 
information that segment conveys about these three variables 
is 0.53 bits.

I(X;S) = 0.20 + 0.22 + 0.11 = 0.53
If the segmentation S is itself defined in terms of the basis 

variables, as is often the case in “post-hoc” segmentation 
analyses and classification algorithms, a more appropriate 

Figure 1: Two segmentations of the same data

(a) K-means segmentation

(b) Simple 2x2 matrix
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measure is the net mutual information, I'(X;S), which sub-
tracts the entropy of the segmentation itself:
I'(X;S) = ∑

i

I(Xi ;S)-H(S)
To get an intuitive sense of why this correction is useful, 

consider an extreme example of a segmentation defined as one 
basis variable itself, SX1. Clearly, S conveys all the possible 
information about X1, as I(X;S) = H(X), but it conveys no net 
information, I'(X,S) = I(X1;S) - H(X1) = 0. 

Subtracting the entropy of the segmentation itself, H(S), ef-
fectively penalizes the total mutual information score for more 
complex segmentations. Generally, one can almost always 
convey more total information by allowing more segments. 
Net mutual information corrects for that effect, as adding 
more segments eventually increases entropy H(S) as fast (or 
faster) than the total mutual information I(X; S). 

Latent class analysis maximizes net mutual information. 
It turns out we can show that net mutual information is 
actually the very metric that LCA implicitly uses to compare 
alternative segmentations. In fact, LCA actually yields the 
segmentation with the maximum net mutual information with 
respect to a given set of basis variables, for a given number of 
segments.

LCA maximizes the expected log-likelihood function of a 
formal statistical model that makes a number of statistical as-
sumptions, including that the basis variables are conditionally 
independent given segment:

E[log L(,è | x)]=∑
n=1

∑
s=1

pnslog f(xn|ès)+∑
n=1

∑
s=1

pnslogps

N   S N   S

Here p p = { p ps} are the population proportions of each 
segment, sS, xn are the observed attributes for customer  

n,  f(xn|ès) is the probability distribution function for x, qqs are 
the parameters for the distribution for segment s and pns is the 
probability that customer n is in segment s.  

The log-likelihood function can be rewritten in terms of the 
net mutual information, which parallels the prior expression:

E[log L(,è | x)]=N[I(X,S)-H(X)-H(S)]

In other words, LCA can be re-derived as maximizing net 
mutual information:

E[log L(,è | x)]=N[I'(X,S)-H(X)]]
 
Note that H(X) is constant for given set of attributes X 

and a given set of observed data and thus does not affect the 
maximization. 

Unlike traditional presentations of LCA, this derivation 
does not assume that attributes are “conditionally indepen-
dent” given segment (i.e., that segment membership alone 

explains all the associations among the basis attributes). 
These results also apply to K-means clustering, which can 
be regarded as a special case of latent class analysis when all 
variables are assumed continuous (normally distributed with 
equal variance).

Relation to other metrics. The Bayes information criterion 
(BIC) is another metric that compares alternative segmentation 
solutions. The BIC penalizes the log-likelihood function based 
on the number of model parameters k and sample size N:

 BIC=-2logL(,è|x)+klogN

Given the relationship between net mutual information and 
the expected log-likelihood, one could similarly penalize net 
mutual information analogous to the BIC:

I''(X:S)=I'(X:S)-
 k log N

   2N
The penalty term favors the selection of solutions with 

fewer segments, particularly with smaller data sets. Theo-
retically, the penalty term estimates the difference between 
the estimated model and an assumed true but unobservable 
model. The BIC is typically used to compare hierarchically 
nested solutions (e.g., a three-segment vs. a four-segment 
solution) where the solutions are derived from the same data 
set and model parameterization. In such a case, choosing the 
model that minimizes the BIC will yield the “true” number of 
segments with probability p→1 as N→∞. 

Indeed, much literature on segmentation methods fo-
cuses on how well algorithms can recover “true” segment 
membership in artificial examples. However, in practice, 
segmentations are applied to real-world populations where 

segmentation is merely a 
useful simplification. In 
our view, a more practi-
cal question is how much 
information alternative 

segmentations convey about 
key attributes.

One advantage of net mu-
tual information Iʹ(X,S) is that 

it is not explicitly dependent on either the number of param-
eters estimated in the model used to derive the solution S, on 
the sample size or even predicated on the assumption that a 
segmentation exists a priori. Thus it may be used to com-
pare alternative solutions without regard to how they were 
derived. For instance, even within LCA, one might consider 
different bases (e.g., assumptions of nominal vs. ordinal vs. 
continuous etc.), yielding a number of solutions. Net mutual 
information with respect to a common basis can be compared 
across solutions, whereas the BIC values originally calculated 
for each solution cannot.

Net mutual information also differs from total correlation, 
another generalization of mutual information, not least in 
that the metric proposed here does not attempt to consider 
other correlations among the attributes {Xi} beyond their 
conditional dependence on S. This is similar to the assump-
tion in the LCA model that each attribute is a conditionally 

TO REAL-WORLD POPULATIONS WHERE  
IN PRACTICE, SEGMENTATIONS ARE APPLIED  

SEGMENTATION IS A USEFUL SIMPLIFICATION.
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independent given segment, 
but different in that the metric 
posed here does not explicitly 
assume that the data actually 
fit the conditional indepen-
dence model. 

Example. Figure 3 shows 
the net mutual information for 
an actual recent project. For 
any given number of segments, 
latent class analysis yields the 
segmentation with the maxi-
mum total mutual information 
as well as the maximum net 
mutual information. However, 
this maximum can increase 
with the number of segments. 
Thus a five-segment solution is 
potentially more informative 
than a four-segment solution, 
with diminishing returns to in-
creasing numbers of segments. 
We further used mutual infor-
mation to identify the specific 
attributes that are highlighted 
in each segmentation. One 
segmentation was more 
focused on “hard” attributes 
such as prescription volumes, 
while another better captured 
“soft” attributes such as treat-
ment attitudes.

Of course, one is not obli-
gated to choose the latent class 
solution. Even in this case, the 
client ultimately chose a solu-
tion that had a slightly lower information score, but which 
was more practical in other aspects, not least simplicity.

The Art of  
Segmentation

In practice, analysts often face the challenge of compar-
ing alternative segmentations. Within one project, alternative 
solutions may be derived using a variety of approaches and 
iterative judgments (e.g., “What if we treat these variables 
as ordinal rather than nominal?” “What if we include cur-
rent product shares as attributes?” “What if we reduce the 
attitudinal questions via factor analysis and use the factors in 
the segmentation analysis?”) There may be prior segmenta-
tions currently in use, perhaps based on statistical analysis or 
simple breaks by market volume. Experienced brand manag-
ers may postulate segmentations based on their experience. 
Relevant questions would be “What attributes do these 
segmentations convey information about?” and “How much 
information do these segmentations convey about customer 
attributes relevant to our current goals?” Approaches such 

as ensemble models address 
this challenge by aggregating 
the alternative solutions. Net 
mutual information provides 
a means to compare them.

We present a simple, effec-
tive, new metric to compare 
different segmentations on a 
common basis—the infor-
mation they convey about 
a particular set of relevant 
attributes. This can be 
compared for any segmenta-
tion, including ones defined 
via computer algorithms 
such as latent class, exist-
ing segmentations already in 
use and even segmentations 
posed qualitatively based on 
managerial insight. It is not 
dependent on the algorithms 
or samples used to derive 
the segmentations. One can 
also use mutual information 
to compare the attributes 
that are highlighted in each 
segmentation.

Further, we can define 
a “best” segmentation as 
one that mathematically 
optimizes this simple metric 
to find the most informa-
tive segmentation. This is 
exactly what algorithms such 
as latent class analysis (and 
its special case, K-means clus-

tering) do. So we can compare any two segmentations on the 
same metric implicitly used by latent class analysis, a leading 
segmentation algorithm. And we now have a simple way to 
understand these algorithms without needing statistical as-
sumptions such as conditional independence or model fit.

Of course, there are many other practical aspects to a good 
segmentation beyond information (and more specifically, this 
narrow definition of information). The art of segmentation 
includes identifying those customer attributes that are impor-
tant, establishing the relative importance of simplicity and 
identifiability versus nuance, measuring them accurately and 
communicating how these can inform decision-making. Un-
derstanding information (and how segmentation algorithms 
work) helps focus the science in support of the art. l

Pieter Sheth-Voss, PhD, is director of product innovation and 
Ismael Carreras, PhD, is a senior research director in market 
intelligence at Quintiles. They may be reached at Pieter.Sheth 
Voss@quintiles.com and Ismael.Carreras@quintiles.com.

Figure 2: Product interest varies by specialty

        Low    High                    Low     High                  Low    High

 H(Interest|Quinn)= 0.81       H(Interest|Welby)= 0.97       H(Interest|Becker)= 0.61

H(Interest|Segment)= 0.81
On average, entropy given segment is only 0.80

I(Interest;Segment)=1.00-0.80= 0.20
Segment thus conveys 0.20 bits of information about product interest
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Figure 3: LCA yields total segment info
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