= Previous Lecture:
= Review
= Color as a 3-vector
= Linear interpolation

= Today’s Lecture:
= Finite/inexact arithmetic
= Plotting continuous functions using vectors and vectorized code
= Introduction to user-defined functions

= Announcements:
= Discussion this week in classrooms as listed on roster, not the lab
= Prelim | on Thursday, Feb 24 at 7:30pm
= Last names A-O in Statler Aud. main floor
= Last names P-Z in Statler Aud. balcony

sin(x)

Discrete vs. continuous

sin(x)

sin(x)

Plot made from discrete values,
but it looks continuous since
there're many points

Lecture 9 3

Plot a continuous function (from a table of values)

1t

X sin (x) 2?
0.00 0.0
1.57 1.0
3.14 0.0
4.71 ~1.0
6.28 0.0

-0.81
1t

-1 0 1 2 3 4 5 6 7

sin(x)

Plot based on 5 points

Lecture 9 4

Plot based on 200 discrete points, but it
looks smooth

sin(x)

Lecture 9

b4 sin (x) 1-dimension
.000 0.000 _ _
7184 0.707 x= linspace(0,2*pi1i,9);

571 1.000 Y= sin(x);
357 0.707 Plot(x,¥)

.142 0.000 N
927 -0.707
712 -1.000
498 -0.707
.283 0.000

sin(x)

o 01 dWWDMNEKEODO

Note: x, y are shown in columns due to space limitation; they should be rows.

Built-in function linspace

x= linspace(1l,3,5)

"

x= linspace(0,1,101)

Left endpoint Number
of points

X sin (x)

How did we get all the sine values?

0.00 0.0
1.57 1.0
3.14 0.0
4.71 -1.0
6. .0

B P N R

sin

T) O T

Lecture 9 8

Examples of functions that can work with arrays

Lecture 9

Does this assign to y the values
sin(0°), sin(1°), sin(2°), ..., sin(90°)?

x = linspace(0,pi/2,90);

y = sin(x);

10

Can we plot this!?

sin(Sx)exp(—x/2) for
1+ x> 2<=X<=3

J(x)=

February 23, 2010 Lecture 9 11

Can we plot this!?

sin(Sx)exp(—x/2) for
1+ x> 2<=X<=3

J(x)=

Yesl!

February 23, 2010 Lecture 9 12

See plotComparison.m

Can we plot this!?

sin(Sx)exp(—x/2) for
1+ x> 2<=X<=3

J(x)=

Yes!

x = linspace(-2,3,200);
y = sin(5*x) .*exp(-x/2)./(1 + x.%2);

plot(x,y) "‘ "‘ "‘

Element-by-element arithmetic
operations on arrays

February 23, 2010 Lecture 9 13

Element-by-element arithmetic operations on arrays...

Also called “vectorized code” -z
< and y are vecte

linspace(-2,3,200);
sin (5*x) . *exp (-x/2) ./(1 + x.72);

<X
I

Contrast with scalar operations that we’ve used
previously...

ly) the
The operafors arii (mO;T g’l
a=2.1; <ame; The operancs Y
b = sin(5*a); scalars or vectors:
d is a vector,
alars hen an operane "
a and b A€ - \::\cl)u have "vectorizé code

February 23, 2010 Lecture 9 14

Vectorized addition

I
N
w
w
Ol
O

Matlab code: z= x + y

February 23, 2010 Lecture 9 15

Vectorized subtraction

Matlab code: z= x - y

February 23, 2010 Lecture 9 16

Vectorized code

—a Matlab-specific feature

See Sec 4.1 for list of vectorized
arithmetic operations

m Code that performs element-by-element
arithmetic/relational/logical operations on array
operands in one step

m Scalar operation: x +y

where X, y are scalar variables

m Vectorized code: x +y

where x and/or y are vectors. If x and y are both
vectors, they must be of the same shape and length

February 23, 2010 Lecture 9 17

Vectorized multiplication

Matlab code: ¢= a

February 23, 2010

.* b

L

Lecture 9

18

See full list of ops in §4.1

Vectorized code
element-by-element arithmetic operations
on arrays

A dot (.) is necessary in front of these math operators

February 23, 2010 Lecture 9 19

Shift

Matlab code:

February 23, 2010

X
+ Y 51| 8
= V4 3.5 11
ZzZ= X + Yy

Lecture 9

Reciprocate

Matlab code: z= x

X
/ y 8
= Z 125
oy

February 23, 2010

L

Lecture 9

21

See full list of ops in §4.1

Vectorized code
element-by-element arithmetic operations between an
array and a scalar

L]+ [L+ LT
LIy - o - L
[Ty~ [L LT
(LTI r] 7 [

H -/
ey -~ e NN EE

A dot (.) is necessary in front of these math operators

Thedotin [L1]-*] , - *C1] , [1-/[] not necessary but OK

February 23, 2010 Lecture 9 22

sin(x)

Discrete vs. continuous

Plots are made from discrete
values, but when there're many
points the plot looks continuous

sin(x)

081
061
04r
0.2r

-0.21
-0.4r
-0.61

sin(x)

There're similar considerations
with computer arithmetic

Lecture 8 24

Does this script print anything?

k =0;

while 1 + 1/2%k > 1
k = k+1;

end

disp (k)

25

Computer Arithmetic—floating point arithmetic

Suppose you have a calculator with
a window like this:

+f2]4]1]-]3

representing 2.41 x 10-3

26

Floating point addition

+f2]4]1]-]3
+frjojol-|3

Result: [+ 13141 |02

Floating point addition

+f2]4]1]-]3
+frjojol-]4

Result: [+ 1251 [Ol2

Floating point addition

+f2]4]1]-]3
+frjojol-|s

Result: [+ [2]4]2 |2

Floating point addition

+f2]4]1]-]3
+fr1jojo]-]6

Result: [+ [2] 41 [O]2

Floating point addition

Result: |+ |2]|4]|1|-|3

—

The loop DOES terminate given the limitations of
floating point arithmetic!

1+1/2753 is calculated to be just 1,
so "53" is printed.

32

Patriot missile failure

In 1991, a Patriot
Missile failed, resulting
in 28 deaths and about
100 injured. The cause!?

www.namsa.nato.int/gallery/systems

Lecture 8 33

Inexact representation of time/number

= System clock represented time in tenths of a
second: a clock tick every 1/10 of a second

m [ime = number of clock ticks x 0.l

1 exaCtH VaV

.00011001100110011001100110011...

.00011001100110011001100117 value in Patriot system

Error of .000000095 every clock tick

Lecture 8 34

Resulting error

... after 100 hours

000000095 x (100x60x60)

0.34 second

At a velocity of 1700 m/s, missed target by more
than 500 meters!

Computer arithmetic is inexact

= There is error in computer arithmetic—floating
point arithmetic—due to limitation in
“hardware.” Computer memory is finite.

= Whatis | + 10762
= 1.0000000000000001 in real arithmetic
= | in floating point arithmetic (IEEE)

s Read Sec 4.3

Built-in functions

= We've used many Matlab built-in functions, e.g.,
rand, abs, floor, rem

s Example: abs (x-.5)

= Observations:
= abs is set up to be able to work with any valid data

s abs doesn’t prompt us for input; it expects that we
brovide data that it’ll then work on

February 23, 2010 Lecture 9 37

User-defined functions

= We can write our own functions to perform a
specific task

s Example: generate a random floating point number in
a specified interval

s Example: convert polar coordinates to x-y
(Cartesian) coordinates

February 23, 2010 Lecture 9 38

Draw a bulls eye figure with randomly placed dots

= Dots are randomly placed
within concentric rings

m User decides how many
rings, how many dots

February 23, 2010 Lecture 9 40

Draw a bulls eye figure with randomly placed dots

= What are the main tasks?

s Accommodate variable number
of rings—loop

m For each ring
= Need many dots

s For each dot

=« Generate random position
» Choose color

= Draw it

February 23, 2010 Lecture 9 41

Convert from polar to Cartesian coordinates

Polar coordinates Cartesian coordinates

February 23, 2010 Lecture 9

42

c= input('How many concentric rings? ');
d= input ('How many dots? ') ;

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1l:c

% Draw d dots

for count= 1:d

% Generate random dot location (polar coord.)
theta=
r=

% Convert from polar to Cartesian

xX=
V=

A common task! Create a
function polar2xy to do
% Use plot to draw dot this. polar2xy ||kely will
end be useful in other problems
end as well.

February 23, 2010 Lecture 9 43

function [x, y] = polar2xy(r,theta)

% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
X= r*c?s(rads); 013t
y= r*sin(rads) P

February 23, 2010 Lecture 9

46

function [x, y] = polar2xy(r,theta)

% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).

% theta is in degrees.

rads= theta*pi/180; % radian
X= r*cos(rads)

y= r*sin (rads) ;

Think of polar2xy as a factory

theta

function [x, y] = polar2xy(r,theta)

% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).

% theta is in degrees.

rads= theta*pi/180; % radian “uﬂc\‘\o(\ ’&'\\;
x= r*cos(rads) ; 1a£2$y'
y= r*sin(rads) ; PO

r= input (‘Enter radius: ');
theta= input(‘Enter angle in degrees: ') ;

rads= theta*pi/180; % radian Paﬁ(ﬁ\a
x= r*cos (rads) ; ksof\p‘ f\e

y= r*sin (rads) ;

function [x, y] = polar2xykr,thetaA

% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).

% theta is in degrees.

rads= theta*pi/180; % radian “Uﬂc\‘\o(\ ’&'\\i\
x= r*cos(rads) ; 1a£2$y'
y= r*sin(rads) ; PO

r= input (‘Enter radius: ');
theta= input(‘Enter angle in degrees: ') ;

rads= theta*pi/180; % radian Pa“(ﬁ\a
x= r*cos (rads) ; ksof\p‘ f\e

y= r*sin (rads) ;

function [x, y] = polar2xy(r,theta)
A

Input parameter

Function name list enclosed in

(This file’s name is ()
polar2xy.m)

Output
parameter list
enclosed in[]

February 23, 2010 Lecture 9 52

Function header is the “contract” for how the function will be used (called)

You have this function:
function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r, theta) to
% Cartesian coordinates (x,y). Theta in degrees.

Code to call the above function:

February 23, 2010 Lecture 9 53

Function header is the “contract” for how the function will be used (called)

You have this function:
function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r, theta) to
% Cartesian coordinates (x,y). Theta in degrees.

Code to call the above function:

February 23, 2010 Lecture 9 54

Function header is the “contract” for how the function will be used (called)

You have this function:
function [x, y] = polar2xy(r, theta)

Code to /all the abovdlifun@itic

% C sn ert polar rl,t) 1> Cartesian (xl,yl)
rl: | tl= 30;

plot(xl, yl, ‘b*)

February 23, 2010 Lecture 9 55

General form of a user-defined function

function [outl, out2, ...]= functionName (inl, in2, ...)
% |-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters outl, out2, ...

m inl,in2, ... are defined when the function begins execution.
Variables inl, in2, ... are called function parameters and they hold
the function arguments used when the function is invoked (called).

m outl, out2, ... are not defined until the executable code in the
function assigns values to them.

February 23, 2010 Lecture 9 56

dotsInCircles.m

(functions with multiple input parameters)
(functions with a single output parameter)
(functions with multiple output parameters)

(functions with no output parameter)

February 23, 2010 Lecture 9 57

Accessing your functions

For now™, put your related functions and scripts
in the same directory.

‘ MyDirectory

dotsInCircles.m polar2xy.m

randDouble.m drawColorDot.m

Any script/function that
calls polar2xy.m

*The path function gives greater flexibility

