
Previous Lecture:
Review

Color as a 3-vector

Linear interpolation

Today’s Lecture:
Finite/inexact arithmetic

Plotting continuous functions using vectors and vectorized code

Introduction to user-defined functions

Announcements:
Discussion this week in classrooms as listed on roster, not the lab

Prelim 1 on Thursday, Feb 24th at 7:30pm

Last names A-O in Statler Aud. main floor

Last names P-Z in Statler Aud. balcony

3Lecture 9 3

Discrete vs. continuous

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

Plot made from discrete values,
but it looks continuous since
there’re many points

4Lecture 9 4

Plot a continuous function (from a table of values)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

x sin(x)
0.00 0.0
1.57 1.0
3.14 0.0
4.71 -1.0
6.28 0.0

Plot based on 5 points

5Lecture 9 5

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

Plot based on 200 discrete points, but it
looks smooth

6

Generating tables and plots

x sin(x)
0.000 0.000
0.784 0.707
1.571 1.000
2.357 0.707
3.142 0.000
3.927 -0.707
4.712 -1.000
5.498 -0.707
6.283 0.000

x= linspace(0,2*pi,9);
y= sin(x);
plot(x,y)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

x, y are vectors. A vector is a

1-dimensional list of values

Note: x, y are shown in columns due to space limitation; they should be rows.

7Lecture 9 7

Built-in function linspace

x= linspace(1,3,5)

1.0 1.5 2.0 2.5 3.0x

x= linspace(0,1,101)

0.00 0.01 0.02 ... 0.99 1.00x

Left endpoint

Right endpoint

Number

of points

8Lecture 9 8

Built-in functions accept arrays

x sin(x)
0.00 0.0
1.57 1.0
3.14 0.0
4.71 -1.0
6.28 0.0

0.00 1.57 3.14 4.71 6.28

sin

0.00 1.00 0.00 -1.00 0.00

and return arrays

How did we get all the sine values?

9Lecture 9 9

x= linspace(0,1,200);

y= exp(x);

plot(x,y)

x= linspace(1,10,200);

y= log(x);

plot(x,y)

Examples of functions that can work with arrays

10Lecture 9 10

Does this assign to y the values

sin(0o), sin(1o), sin(2o), …, sin(90o)?

x = linspace(0,pi/2,90);

y = sin(x);

A: yes B: no

11February 23, 2010 Lecture 9 11

Can we plot this?

21

)2/exp()5sin(
)(

x

xx
xf

+
−

= for

-2 < = x < = 3

12February 23, 2010 Lecture 9 12

Can we plot this?

21

)2/exp()5sin(
)(

x

xx
xf

+
−

= for

-2 < = x < = 3

Yes!

13February 23, 2010 Lecture 9 13

Can we plot this?

21

)2/exp()5sin(
)(

x

xx
xf

+
−

= for

-2 < = x < = 3

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
plot(x,y)

Element-by-element arithmetic

operations on arrays

Yes!

See plotComparison.m

14February 23, 2010 Lecture 9 14

Element-by-element arithmetic operations on arrays…
Also called “vectorized code”

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);

Contrast with scalar operations that we’ve used
previously…

a = 2.1;
b = sin(5*a);

The operators are (mostly) the

same; the operands may be

scalars or vectors.

When an operand is a vector,

you have “vectorized code.”

x and y are vectors

a and b are scalars

15February 23, 2010 Lecture 9 15

Vectorized addition

2 8.51x

1 102y+

3 9.53z=

Matlab code: z= x + y

16February 23, 2010 Lecture 9 16

Vectorized subtraction

2 8.51x

1 102y-

1 7.5-1z=

Matlab code: z= x - y

17February 23, 2010 Lecture 9 17

Vectorized code
—a Matlab-specific feature

Code that performs element-by-element
arithmetic/relational/logical operations on array
operands in one step

Scalar operation: x + y

where x, y are scalar variables

Vectorized code: x + y

where x and/or y are vectors. If x and y are both
vectors, they must be of the same shape and length

See Sec 4.1 for list of vectorized

arithmetic operations

18February 23, 2010 Lecture 9 18

Vectorized multiplication

2 8.51a

1 102b×

2 802c=

Matlab code: c= a .* b

19February 23, 2010 Lecture 9 19

Vectorized code
element-by-element arithmetic operations
on arrays

+

-

.*

./

A dot (.) is necessary in front of these math operators

.^

See full list of ops in §4.1

20February 23, 2010 Lecture 9 20

Shift

2 8.51

x

y+

5 113.54z=

Matlab code: z= x + y

3

21February 23, 2010 Lecture 9 21

Reciprocate

2 8.51

x

y/

.5 .12521z=

Matlab code: z= x ./ y

1

22February 23, 2010 Lecture 9 22

./

A dot (.) is necessary in front of these math operators

Vectorized code
element-by-element arithmetic operations between an
array and a scalar

+

-

*

/

+

-

*

.^ .^

.* .* ./The dot in not necessary but OK, ,

See full list of ops in §4.1

24Lecture 8 24

Discrete vs. continuous

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

Plots are made from discrete
values, but when there’re many
points the plot looks continuous

There’re similar considerations
with computer arithmetic

25

Does this script print anything?

k = 0;

while 1 + 1/2^k > 1

k = k+1;

end

disp(k)

26

Computer Arithmetic—floating point arithmetic

Suppose you have a calculator with

a window like this:

+ 312 4 -

representing 2.41 x 10-3

27

Floating point addition

+ 312 4 -

+ 301 0 -

+ 313 4 -Result:

28

Floating point addition

+ 312 4 -

+ 401 0 -

+ 312 5 -Result:

29

Floating point addition

+ 312 4 -

+ 501 0 -

+ 322 4 -Result:

30

Floating point addition

+ 312 4 -

+ 601 0 -

+ 312 4 -Result:

31

Floating point addition

+ 312 4 -

+ 601 0 -

+ 312 4 -Result:

Not enough room to

represent .002411

32

The loop DOES terminate given the limitations of
floating point arithmetic!

k = 0;

while 1 + 1/2^k > 1

k = k+1;

end

disp(k)

1 + 1/2^53 is calculated to be just 1,
so “53” is printed.

33Lecture 8 33

Patriot missile failure

In 1991, a Patriot
Missile failed, resulting
in 28 deaths and about
100 injured. The cause?

www.namsa.nato.int/gallery/systems

34Lecture 8 34

Inexact representation of time/number

System clock represented time in tenths of a
second: a clock tick every 1/10 of a second

Time = number of clock ticks x 0.1

.00011001100110011001100110011…

.0001100110011001100110011

“exact” value

value in Patriot system

Error of .000000095 every clock tick

35Lecture 8 35

Resulting error

… after 100 hours

.000000095 x (100x60x60)

0.34 second

At a velocity of 1700 m/s, missed target by more
than 500 meters!

36Lecture 8 36

Computer arithmetic is inexact

There is error in computer arithmetic—floating
point arithmetic—due to limitation in
“hardware.” Computer memory is finite.

What is 1 + 10-16 ?

1.0000000000000001 in real arithmetic

1 in floating point arithmetic (IEEE)

Read Sec 4.3

37February 23, 2010 Lecture 9 37

Built-in functions

We’ve used many Matlab built-in functions, e.g.,
rand, abs, floor, rem

Example: abs(x-.5)

Observations:

abs is set up to be able to work with any valid data

abs doesn’t prompt us for input; it expects that we

provide data that it’ll then work on

38February 23, 2010 Lecture 9 38

User-defined functions

We can write our own functions to perform a
specific task

Example: generate a random floating point number in
a specified interval

Example: convert polar coordinates to x-y
(Cartesian) coordinates

40February 23, 2010 Lecture 9 40

Draw a bulls eye figure with randomly placed dots

Dots are randomly placed
within concentric rings

User decides how many
rings, how many dots

41February 23, 2010 Lecture 9 41

Draw a bulls eye figure with randomly placed dots

What are the main tasks?

Accommodate variable number
of rings—loop

For each ring

Need many dots

For each dot

Generate random position

Choose color

Draw it

42February 23, 2010 Lecture 9 42

Convert from polar to Cartesian coordinates

θ
r

Polar coordinates

y

x

Cartesian coordinates

43February 23, 2010 Lecture 9 43

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location (polar coord.)
theta= _______
r= _______

% Convert from polar to Cartesian
x= _______
y= _______

% Use plot to draw dot
end

end

A common task! Create a
function polar2xy to do
this. polar2xy likely will
be useful in other problems
as well.

46February 23, 2010 Lecture 9 46

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

A function file

pola
r2xy

.m

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

r

theta

Think of polar2xy as a factory

x

y

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

r= input(‘Enter radius: ’);
theta= input(‘Enter angle in degrees: ’);

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

A function file

pola
r2xy

.m

(Part of) a

script file

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

r= input(‘Enter radius: ’);
theta= input(‘Enter angle in degrees: ’);

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

A function file

pola
r2xy

.m

(Part of) a

script file

52February 23, 2010 Lecture 9 52

function [x, y] = polar2xy(r,theta)

Output

parameter list

enclosed in []

Function name

(This file’s name is
polar2xy.m)

Input parameter

list enclosed in

()

53February 23, 2010 Lecture 9 53

Function header is the “contract” for how the function will be used (called)

function [x, y] = polar2xy(r, theta)

% Convert polar coordinates (r, theta) to

% Cartesian coordinates (x,y). Theta in degrees.

…

% Convert polar (r1,t1) to Cartesian (x1,y1)

r1= 1; t1= 30;

[x1, y1]= polar2xy(r1, t1);

plot(x1, y1, ‘b*’)

…

You have this function:

Code to call the above function:

54February 23, 2010 Lecture 9 54

Function header is the “contract” for how the function will be used (called)

function [x, y] = polar2xy(r, theta)

% Convert polar coordinates (r, theta) to

% Cartesian coordinates (x,y). Theta in degrees.

…

% Convert polar (r1,t1) to Cartesian (x1,y1)

r1= 1; t1= 30;

[x1, y1]= polar2xy(r1, t1);

plot(x1, y1, ‘b*’)

…

You have this function:

Code to call the above function:

55February 23, 2010 Lecture 9 55

Function header is the “contract” for how the function will be used (called)

function [x, y] = polar2xy(r, theta)

% Convert polar coordinates (r,theta) to

% Cartesian coordinates (x,y). Theta in degrees.

…

% Convert polar (r1,t1) to Cartesian (x1,y1)

r1= 1; t1= 30;

[x1, y1]= polar2xy(r1, t1);

plot(x1, y1, ‘b*’)

…

You have this function:

Code to call the above function:

56February 23, 2010 Lecture 9 56

General form of a user-defined function

function [out1, out2, …]= functionName (in1, in2, …)

% 1-line comment to describe the function

% Additional description of function

Executable code that at some point assigns

values to output parameters out1, out2, …

in1, in2, … are defined when the function begins execution.
Variables in1, in2, … are called function parameters and they hold
the function arguments used when the function is invoked (called).

out1, out2, … are not defined until the executable code in the
function assigns values to them.

57February 23, 2010 Lecture 9 57

dotsInCircles.m

(functions with multiple input parameters)

(functions with a single output parameter)

(functions with multiple output parameters)

(functions with no output parameter)

Accessing your functions

For now*, put your related functions and scripts
in the same directory.

dotsInCircles.m

randDouble.m

polar2xy.m

drawColorDot.m

*The path function gives greater flexibility

MyDirectory

Any script/ function that
calls polar2xy.m

