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MODELING THE SPATIAL DISTRIBUTION OF LIGHTNING FIRES ON TWO 

 
 NATIONAL FORESTS 

Abstract 

 
by Sara H. Brown, M.S. 

Washington State University 
August 2009 

 
 
 

Chair:  Richard Gill  
 

Forest fire ignitions on National forest lands have many causes; however 

lightning remains the most consistent ignition source. By understanding the spatial 

distribution of lightning fires over a sixty-five year temporal scale allows fire and timber 

managers to gain a better understanding of how to spatially locate, and manage, fuel 

treatments on these forests. It is hypothesized that elevation plays a significant role in the 

probability of a lightning strike igniting a forest fire given acceptable climatic and fuel 

conditions. The two study areas were chosen for several reasons; first, fire suppression 

data was available across a similar temporal scale for both forests. Second, the Gallatin 

National Forest in Montana provides a platform to test this hypothesis in a Pinus contorta 

dominated, high severity fire regime, while the Willamette National Forest in Oregon 

provides a mixed-conifer mixed severity fire regime.  Additionally, these two forest types 

provide over two million acres upon which to test our point process model. An 

inhomogeneous Poisson cluster point process model was developed to describe the 

spatial distribution of lightning-caused fires as a function of elevation on the Gallatin and 

Willamette National Forests. The results of this study provide a range of elevations at 

which the probability of a lightning strike igniting a forest fire is significantly higher on 
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each forest. On the Willamette National Forest, elevations between 700m and 1600m 

have the highest ignition probability, while the Gallatin National Forest high probability 

elevations ranged between 2300m to 2600m. Managers of these two forests, as well as 

managers of similar forest types, can focus attention at these elevations for both fuel 

reduction efforts as well as urban interface fire suppression efforts.  
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INTRODUCTION 

 

Fire is a widely recognized ecological driver and an important part of the disturbance 

regime of the western United States. Scarcity of fires during the 20th century in some 

ecosystems may be the result of successful fire suppression policies. However, the past 

ten years has seen an average increase of 10% per year in land area consumed by wildfire 

as compared with the previous decade (National Interagency Fire Center, 2008).  With 

more complete modern records, and an increase in land under federal protection since the 

1960’s this trend is unmistakably apparent over the past half-century (Schoennagel et.al., 

2004).  In 2000, for example, over 3.5 million ha burned in western Montana, northern 

Idaho, and California despite over $1.3 billion spent on fire fighting efforts (National 

Interagency Fire Center, 2008). Additionally, 1998 and 2002 burned 3.0 million and 2.8 

million ha respectively; the year 2006 has proven to be one of the largest fire years, with 

over 3.8 million ha burned and $875 million spent on suppression (National Interagency 

Fire Center, 2008).    

 

The role of fire as important ecological process on the landscape has become well 

understood in both the scientific and management communities over the past several 

decades. A greater management emphasis on the use of controlled fire on public lands 

increased in the mid-1980s with a focus on managing natural fuel buildup that has 

occurred over several decades of successful fire suppression and other stringent fire 

control policies.  Recent large fire events have been widely blamed on fuel build-up, in 

particular the “thickening” of the forest that has occurred in recent decades in the absence 
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of fire and harvest. This idea was developed primarily from experience in dry ponderosa 

pine (Pinus ponderosa) forests in the US Southwest, the interior West and the Sierra 

Nevada, rather than in wetter forests where the absence of fire is consistent with long-

term fire regime patterns (Covington and Moore, 1999).  

 

As a blanket approach to this “fuel build-up” problem, the National Fire Plan directed 

over $200 million be allocated in 2001 as part of a fuel mitigation program, and increased  

suppression effort (USDA Forest Service, 2002).  In 2002, thinning and prescribed fire 

projects were carried out across 1 million ha of federal land (www.fireplan.gov, 2009) to 

reduce the fire hazard and to restore historical species composition and stand structure. 

The goals of this fire hazard reduction and ecological restoration may converge in some 

ecosystems, yet they may be incompatible in others (Veblen et al., 2000). Nonetheless, 

managers of federal forests have focused much of their attention on trying to identify and 

recreate the fire regimes that existed at the time of Euro-American settlement and before 

extensive fire suppression was in existence.  

 

Packaged in this ecological framework, the ultimate target of these mandated fuel 

management activities is to reduce the damaging effects of large fires on human 

communities, as well as provide fiscal relief to tax payers from the exponential increase 

of fire suppression costs. While these targets also include ecological considerations such 

as fire damage to soils and rare and endemic species, a balance must be reached. The 

ecological damage to the White Mountain Apache Reservation in Arizona after the 

Rodeo-Chediski Fire in 2002 was unprecedented. That same year similar impacts from 
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the catastrophic Hayman Fire in Colorado were seen in riparian areas and surrounding 

soils (NIFC, 2008) (Shoennagle et.al, 2004). True ecological stability of forested areas 

requires fire to burn naturally; unsuppressed over large, and small, forested areas at a 

variety of intensities. Obviously fire suppression is a social necessity at this time.  

 

One of the variables that forest and fire mangers have struggled with for the past century 

is spatially locating and accessing fire starts. Numerous location tactics have been used 

on National forests throughout fire suppression history: Fire lookouts on high peaks, 

patrols throughout forested areas (on foot and in vehicles), air patrols in fixed wing and 

rotor-wing aircraft, and more recently, online real-time atmospheric lightning maps. Each 

of these methods have benefits, however each faces the same weakness--a long time lag 

from time of fire ignition to full suppression. Once a fire location has been identified, fire 

managers must determine how to get suppression professionals to the fire in a timely 

manner. Ground crews can travel by vehicle to get as close to the fire incident as 

possible, then continue on foot to suppress it. Fire engines require the same vehicular 

drive time getting to the incident. Helicopters have a shorter travel time to the fire, but 

require either a large landing site, or a safe rappel site to get troops to the fire. Fixed wing 

aircraft can drop personnel via parachute relatively close to the fire, but personnel usually 

must hike on foot to the fire once arriving on the ground. Each of these delivery methods 

requires a significant amount of time. Under hot, dry conditions in dense fuels, fires can 

burn large areas in short periods of time (Shoennagle et.al., 2004). These conditions 

allow fires to escape control of the suppression experts before they even arrive at the fire 

scene.  
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Lightning is a leading natural cause of wildfire ignitions. In the Intermountain West, 

lightning accounts for a high proportion of forest fires that cause substantial damage 

(Borig and Ferguson, 2002).  Lightning fires burn a disproportionate share of National 

forest land because they are harder to detect and reach, and they arrive in spatial and 

temporal clusters that can strain fire managers. Because of this important contribution to 

the total number of fires and area burned, research in this area has been a priority since 

organized fire protection began (Podur et.al., 2003). Gaining insight into the spatial 

distribution of lightning fires allows predictions to be made about general areas within a 

given landscape that will receive a high number of ignitions.           

 

If managers had the ability to predict general areas where fires were likely to start, 

several protocols could be put in place that would drastically reduce the amount of time 

necessary for personnel to start active suppression, or suggest “let it burn” protocol. Fire 

engines and crews could be staged in the predicted area. Forest fuel treatments could be 

completed in these specific areas rather than on a landscape scale, saving significant time 

and money; and urban interface areas could be prepared for imminent fire danger.    

        

In this paper, the spatial distribution of lightning caused fires on two national forests, the 

Willamette in Oregon, and the Gallatin in Montana will be examined. These two forests 

provide both dry and wet forest environments, as well as have varying degrees of harvest 

and fuel treatments practiced over the past 50 years. It is hypothesized that the spatial 

distribution of lightning caused fires reflects an underlying spatial variation in the 
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environment with respect to its suitability to ignite a fire. Elevation can influence the 

probability of lightning strikes, and given the right conditions, the likelihood of a fire 

(Granstrun, 1993; Marsden, 1982).  Modeling the spatial distribution of lightning fires as 

a function of elevation on a given National forest will provide an approximate elevational 

band for forest and fire managers to target. Suppression personnel staging, fuel 

treatments, and creating defensible space around urban interface areas can be done with 

the target elevational bands in mind. Limiting these efforts to an elevational “band” 

within the National Forest will save time, money and theoretically lead to fewer large 

uncontrolled fires.  

 

This study uses historical fire suppression records from both the Willamette National 

Forest in Oregon, and the Gallatin National Forest in Montana to provide fire locations 

over a 65 year period from the year 1940 to 2005.  A single fire event has been recorded 

throughout US history as a point-based concept, described by its x and y geographic 

position, rather than an area based event. It has only been in the past few decades that 

accurate spatial estimates of fire, as well as the surface nature and spreading behavior of a 

fire have been recorded. Using the spatial fire data available, a parsimonious 

inhomogeneous Poisson cluster process model is used to model the spatial distribution of 

lightning fires on these two National Forests. 
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METHODS 

Study Site Description  

The two research sites are the Willamette National Forest in Oregon, and the Gallatin 

National Forest in Montana. When added together, both forests total over 1,375,931 ha in 

size. Basic climate, elevation, vegetation, and forest history information further describe 

the important ecological differences between these two forest types. Determining how 

elevation impacts fire ignitions in these two divergent fire regimes will provide managers 

locations to target during fire suppression, staging and fuel management.  

Willamette National Forest 

The Willamette National Forest (Figure 1) was originally established in 1893, and was 

administratively organized in its current form as a National Forest in 1933. It has been 

managed by the Forest Service within the U.S. Department of Agriculture since 1905. 

About one-fifth of the forest (154,106 ha) is designated as wilderness (USDA Forest 

Service, 2008).  

The Forest is 678,013 ha in size and stretches for 110 miles along the western slopes of 

the Cascade Range in western Oregon. It extends from the Mt. Jefferson area east of 

Salem, to the Calapooya Mountains northeast of Roseburg. Elevations on the forest range 

from 1,500 feet (457.2 m) above sea level to 10,495 feet (3198.8 m) atop Mt. Jefferson, 

Oregon's second highest peak. The Forest receives a large amount of precipitation each 

year, much of it as snow from October through April (USDA Forest Service, 2008).  
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Figure 1: Location of the Willamette National Forest. (USDA Forest Service, 2008)  
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The landscape is varied; most of the forest is covered with Douglas-fir (Pseudotsuga 

menziessi), a valuable timber species in the United States. At least 15 other conifer 

species are also common on the forest, these species are combined into four basic forest 

types. Douglas-fir is the most common. Second dominant is mixed conifer. Third is 

Pacific silver fir, and fourth is mountain hemlock (Table 1), (USDA Forest Service, 

2008). 
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Table 1: Four most common forest types in rank order on the Willamette National 
Forest. 
_______________________________________________________ 

Forest Type     Major Tree Species within Forest Type   
1. Douglas-fir Douglas-fir (Pseudotsuga menziessi), western hemlock 

(Tsuga heterophylla), western redcedar (Thuja plicata) 
   

2. Mixed conifer Douglas-fir (Pseudotsuga menziessi), grand fir (abies 

grandis), sugar pine (Pinus lambertiana), incense cedar 
(Calocedrus decurrens), ponderosa pine (Pinus 

ponderosa).  
  
3. Pacific Silver fir Hemlock (Tsuga Canadensis), Pacific silver fir (Abies 

amabilis) 
 
4. Mountain hemlock  Mountain hemlock (Tsuga mertensiana) 

_________________________________________________________ 
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While many consider the western Cascade Mountains to be wet, the climate in the Pacific 

Northwest can be very dry during the late summer and early fall.  This climate regime 

and the flammable nature of coniferous tree needles and branches combine to produce an 

ecosystem that is subject to and adapted to wildfire.  Depending upon forest conditions, 

the time of year, and local weather, fires can be slow creeping ground fires that reduce 

the amount of flammable fuel on the forest floor, (while killing most of the understory 

vegetation), or they can be crown fires that may kill tens of thousands of acres of trees 

(USDA Forest Service, 2008). Under this fire regime, fires are fairly frequent, but of 

relatively low intensity. Most fires occur between the months of June and October.   

 

The diverse landscape is known for historically yielding a sustainable supply of timber 

and special forest products. Old growth was preferentially harvested on the forest from 

the mid 1920’s to the early 1980’s. During WW II, the Willamette increased timber sales 

to provide resources for the war effort. Between 1942 and 1945, the Willamette sold 559 

million board feet (MMBF) of timber. The years 1945 to 1970 mark an era of intensive 

forestry and forest management. This era included dramatic increases in recreation use, 

timber sales, dam construction, campground construction, and wildlife management. The 

passage of the Wilderness Act (1964) created new wilderness areas and controversy over 

the management of the new areas. This era also marked the establishment and growth of 

an activist environmental movement. Today less than 50 MMBF are removed from the 

forest (USDA Forest Service, 2008).  
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Gallatin National Forest  

The Gallatin National Forest (Figure 2) was established in 1899. Today, the Gallatin is 

part of the Greater Yellowstone Area, the largest intact ecosystem in the continental 

United States. The 728,434 ha forest spans six mountain ranges and includes two 

congressionally-designated wilderness/roadless areas totaling 625,425 ha. Elevations 

range from 5,000-11,000 feet (1524m-3352m) (USDA Forest Service, 2008).  
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Figure 2: Location of the Gallatin National Forest (in green) (USDA Forest Service, 
2008) 
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Grass and shrub habitats occupy the drier south and west-facing slopes throughout the 

forest. Along with the grass/shrub habitats, pure Douglas-fir (Pseudotsuga menziesii) 

forests also occupy the drier south and west-facing slopes. The north and east-facing 

slopes throughout the forest consist of a mix of Douglas-fir /lodgepole pine (Pinus 

contorta) or Douglas-fir/lodgepole pine/subalpine fir (Abies balsamea) forests.  These 

stands characteristically consist of dense tree canopy cover, abundant understory 

vegetation and moderate to high levels of downed fuel. Scattered groves and individual 

aspen (Populus spp.) trees are found throughout the forest as well.  

 

Fires are particularly important to regeneration and survival of high elevation whitebark 

(Pinus albicaulis) pine on the forest. This pine species often survives low-intensity 

surface fires, which more easily kill associated conifers (Morgan et. al., 1992).  Stand-

replacing fires also benefit whitebark pine, although all trees are usually killed. 

Whitebark pine regenerates on burned sites more successfully than many associated tree 

species (Tomback et. al., 1990). Since the onset of successful fire suppression in the early 

1940's, fewer fires have occurred in the subalpine and timberline environments, 

contributing to declining abundance of whitebark pine (Morgan et. al., 1992).  In the 

absence of fire or other major disturbances, whitebark pine is replaced by subalpine fir on 

most of the higher elevation landscapes. 

 

Before the 1950’s much of the harvest on the Gallatin was for railroad ties, mine timbers, 

posts and poles, lumber and firewood. Various methods were used to complete the 

harvest (hand, horse and mechanical). Clearcutting became a primary method of harvest 
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in the accessible areas across the forest. Approximately 2.5 MMBF of timber was 

harvested from 1961 to 1970.  Beginning in the early 1970s to the mid-1980s, an 

epidemic of mountain pine beetle mortality resulted in a significant amount of timber 

harvest activity across the forest. Mechanical clear-cut harvest was intense through this 

period as the forest dealt with the mountain pine beetle epidemic. Many of the early 

(1950 – 1980) harvest treatments have since regenerated and been pre-commercially 

thinned to improve growth, form, vigor and reduce insect and disease problems (USDA 

Forest Service, 2008).   

 

Spatial Analysis 

All data for this project was gathered from the USDA Forest Service. Digital elevation 

models (DEM) and forest boundary data were provided via geographic information 

systems (GIS) for each forest.  Historical fire suppression records from the earliest date 

recorded (1940) through 2005 were obtained from both National Forests as well. Fire 

suppression records provided information including size of fire, start date, cause, and 

suppression efforts.  

 

The fire data for each forest were entered into an Excel database, to create histograms of 

the causes of the fires. It was determined that lightning fires constituted a significant 

proportion of the total number of fires. All lightning fires were then selected for analysis. 

Each of the lightning fire locations over the entire temporal scale of 65 years were 

imported to a GIS layer using universal transverse mercator (UTM) coordinates for each 

forest.  
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To describe the spatial distribution of lightning-caused fires, large rectangular regions 

were selected within each National forest. Because of the shape of the Willamette, two 

rectangular areas were necessary to capture the majority of fire clusters; on the Gallatin 

only one large area was necessary (Figures 3 and 4). The rectangular regions were 

selected to simplify the algorithm required to adjust for edge effects, and to include as 

many fires as possible to represent the spatial relationship between lightning-caused fire 

and elevations throughout each forest. Figures 5 and 6 depict the spatial location of all 

fires during the study period overlaid on the DEM of each forest 

 

All spatial analysis was based on Ripley’s k-function (Ripley 1977). Ripley’s k-function 

is a second-order neighborhood analysis developed to test various hypotheses regarding 

the spatial distribution of mapped data sets by examining the proportion of total possible 

pairs of points in Euclidean space whose pair members are within a specified distance of 

each other. The analysis is a second-order because it is based on the variation rather than 

the mean of distances being studied.  

 

Ripley’s k-function is the cumulative distribution function of distances from points in a 

region A to other points in A:  

    (1) 

where Iij(d) = 1 if the distance, dij , between points i and j are less than some specified 

distance, d, and 0 otherwise, and N is the total number of points in the population.  The 
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function F(d), will be subject to a downward bias if no allowance is made for boundaries. 

To take into consideration edge effect Ripley replaces F(d) with 

    .    (2) 

For a Poisson process has an approximate mean of d, and approximate variance of 

1/(2!N
2).  For a unit square,  is an estimate of the proportion of the population 

within d units. 
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Figure 3: DEM of the Willamette National Forest. The yellow line depicts the National 
Forest boundary. The red rectangle depicts the sub-region used to evaluate the spatial 
distribution of lightning-caused fires. 
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Figure 4: DEM of the Gallatin National Forest. The yellow line depicts the National 
Forest boundary. The red rectangle depicts the sub-region used to evaluate the spatial 
distribution of lightning-caused fires.  



 19 

 
Figure 5: DEM of the Willamette National Forest overlaid with locations of all lightning 
fires (teal dots) during the years 1940-2005. The red rectangular region designates the 
sub-region used to evaluate the spatial distribution of lightning caused fires. 
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Figure 6: DEM of the Gallatin National Forest overlaid with the location of all lightning 
fires (teal dots) during the years 1940-2005. The red rectangular region designates the 
sub-region used to evaluate the spatial distribution of lightning caused fires. 
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Test for Complete Spatial Randomness 

The first step in the analysis was to test the null hypothesis; that lightning caused fires are 

randomly distributed. Using the spatial location of each lightning-caused fire in the 

rectangular regions, a Monte Carlo test (Besag and Diggle, 1977) based on the Cramér-

von Mises type statistic (Cressie, 1991) 

                            (3) 

was used to test the null hypothesis of complete spatial randomness (csr); where  is 

the empirical k-function evaluated at distance h.  For a Poisson process, the expectation is 

of . To apply this test we first calculate k1 from the data. Next, ki, i= 2, . . , R 

are calculated as a realization of a Poisson process. Next, we rank the ki’s from1 to R 

where r is the rank of k1. The significance level of the test statistic was calculated as: 

. If!"# is small we would reject the null hypothesis of csr. A small k1 

supports the null hypothesis.  All tests were based on 150 realizations of a spatial Poisson 

process to allow for the calculation of a p-value to the nearest 1 percent.  

     

Modeling the Probability of Lightning-Caused Fires  

If the null hypothesis of complete spatial randomness was rejected, the next step in the 

analysis was to model the relationship between the spatial distribution of lightning-

caused fires and elevation. It was assumed that some elevations, E, had a higher 

probability of a lightning fire than other elevations. Information was available for 

lightning strikes that started a fire, while no information was available on the location of 

strikes that did not start fires, or fires that died out soon after ignition (Podur et. al., 2003; 
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Larjauaara et. al., 2005). Thus, it was not possible to find the exact relationship between 

lightning caused fires, elevation and other variables, but only whether certain elevations 

had a higher or lower likelihood of lightning caused fires. 

Let Yi = 1 if a lightning fire occurs at elevation Xi, and Yi = 0 if there is no fire: 

 

For a given elevation Xi selected at random 

     (4). 

the probability  is the cumulative probability distribution function (cdf)  of 

lightning fires across all elevations in a given National forest.  If the cdf of lightning 

caused fires is logistic: 

 

      (5) 

 
where 
 

                       (6) 

 

is the cumulative probability associated with the ith fire. A general linear model 

(GLM) (Neter et. al., 1985) was used to fit a polynomial regression to describe the 

relationship between the logit transformation (y) and elevation  

(E) (Appendix A). The Yi’s maximum likelihood estimates of the ’s were obtained 

using R, (2005).  
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Taking the first derivative of  yields the probability density function of 

lightning caused fires, . 

.                            (7)  

where y’ represents the first derivative of y with respect to elevation. 

 

Parameter Estimation, Fitting the Model  

Specific elevation values were derived for the location of all lightning-caused fires from 

the DEM’s of each forest. This information was then used to develop a probability model 

describing the relationship between the presence of a lightning-caused fire, and elevation.  

The logistic response function was assumed to be an appropriate descriptor of the 

relationship between lightning-caused fires and elevation.  The empirical distribution 

function was used to approximate the cdf, which concentrates probability 1/n at each of 

the n lightning-caused fires in the dataset.  The empirical distribution function  

based on a sample is a step function defined by 

 (8) 

where  is an indicator function. 

 

Polynomial logistic regression was used to describe the cdf of the probability of a 

lightning-caused fire and elevation. Model parameters were estimated using maximum 

likelihood methods. First, the equation was fit using a first-order (linear) model.  Then 
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additional parameters were added until they did not substantially add to the fit.  Model 

and predictor significance were obtained from the Wald test statistic assuming a chi-

square distribution with 1 degree of freedom (Harrell, 2001).  The relative fit of each 

model to the data was evaluated using Akaike Information Criteria (AIC, Akaike, 1978).  

The selected model was used in conjunction with the DEM to create a GIS grid of the 

probability of lightning-caused fires for the two National forests. 

 

Modeling Spatial Clustering 

 Visual observations of the spatial distribution of lightning fires suggest the 

possibility of clustering.  If the null hypothesis of csr was rejected and it was not possible 

to model the spatial distribution of lightning caused fires as a function of elevation, the 

point data was fit to a Neyman-Scott point process model.  The k-function for a Neyman-

Scott point process is given by (Cressie, 1991):     

K(h;" 
2, #) = !h2 

 +#
-1 

{1- exp(-h 2/2" 
2)}    (9) 

where # is the intensity of the clusters which is assumed to be a homogeneous Poisson 

process, and 2"2 is the mean squared distance to a lightning caused fire from the cluster 

center.  The first term in Eq. 9 represents a Poisson process while the second term 

assumes a random number of fires per cluster positioned in a radially symmetric 

(Gaussian) way around the cluster center.  The extent of clustering is given by: 

    .    (10) 
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Next, let K(h; $) denote a model for the K-function and let  be a nonparametric 

estimator obtained from the data.  A non-linear least-squares estimator for $ was obtained 

by minimizing the ad hoc criteria: 

     (11) 

where h0 is the range in which the model is being fitted and c is a tuning constant.  The 

power transformation parameter c is used to control for heterogeneity of variance of the 

estimate .  For a Neyman-Scott process it is recommended to use c = 0.25.  

 

Simulation 

The spatial distribution of lightning caused fires was simulated using the Lewis and 

Sholders (1979) rejection sampling algorithm. Let , where  is the 

probability of observing a lightning-caused fire.  First, simulate a homogeneous Poisson 

process over the region B, with intensity , where N(B) is the number of lightning 

caused fires in the region B.  A lightning caused fire is retained with probability .  

For a Neyman-Scott process, cluster centers were distributed as an inhomogeneous 

Poisson process.  Lightning fires were assigned to randomly selected clusters.  The 

location of the fire relative to the cluster center has distribution h (x,y) and is retained 

with probability .  
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The goodness-of-fit of the point process model was assessed by comparing the 

transformed empirical k-function ( ) (Ripley, 1977), corrected for edge 

effect (Cressie, 1991), to the transformed k-functions from 150 simulated realizations of 

the model.  The simulations were used in constructing simulation envelopes based on the 

minimum and maximum transformed k-function to test the null hypothesis of no 

significant differences at the %= 0.007 level.  If, for any distance, the observed 

transformed k-function falls above or below the simulation envelopes the null hypothesis 

is rejected at the appropriate level of significance.  

 

To evaluate the various models, a Cramer von-Mises type statistic was calculated. The 

proportion change in the statistic relative to the null model of complete spatial 

randomness was used as a measure of the overall fit of a model. A value near 0 would 

indicate no improvement over the null model of complete spatial randomness, while a 

value near 1 would indicate an exact fit. 

 

 

RESULTS 

  
Lightning ignitions on the Willamette National Forest account for 54% of all fires (N= 

6,031 fires) over the 65-year study period (Figure 7). Other leading causes of ignition on 

the forest were campfire and smoking (cigarettes, lighters) (Figure 8). The size-class of 

the fires ranges from .0008 to over 424 hectares.  The most common size ranges from 

.0008-0.09 hectares (Figure 9).  On the Gallatin National Forest, lightning ignitions 

accounted for 50% of the total number of fires (N=2,023 fires) (Figure 10). Other leading 

causes of ignition on the forest were campfires, smoking, and “other,” (Figure 11). The 
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fire size-classes range from .04 to 7475 hectares, with the most common size-class at 

approximately .5 hectares (Figure 12). Fires can occur on both forests at any time 

throughout a given year, however the highest frequency is during summer months. 

Lightning-caused fires are typically limited to the months March through October, with 

July and August having the highest frequency. 
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Figure 7: Histogram of both lightning-caused and non lightning-caused fires on the 
Willamette National Forest from 1940-2005 
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Figure 8: Frequency of fire causes on the Willamette National Forest (1940-2005). 
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Figure 9: Frequency distribution of lightning fire size-classes on the Willamette National 
Forest ignited from 1940-2005.  
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Figure 10: Histogram of both lightning-caused and non lightning-caused fires on the 
Gallatin National Forest from 1940-2005. 
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Figure 11: Frequency of fire causes on the Gallatin National Forest (1940-2005). 
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Figure 12: Frequency distribution of lightning fire size-classes on the Gallatin National 
Forest ignited from 1940-2005.  
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Probability of Lightning Caused Fires   

A GLM was used to model the probability of observing a lightning fire as a function of 

elevation. The estimated probability density functions (pdf) of the thresholds of elevation 

are displayed in Figures 13 and 15.  On the Willamette National Forest, elevations 

between 700 m and 1600 m had the highest probability of a lightning fire.  The 

probability increased from approximately 700 m, decreases a smaller portion, then 

continued to increase to a peak at 1600m in a nearly bimodal pattern (Figure 13). The 

Gallatin National Forest had a narrower band of high probability elevations. Elevations of 

approximately 2300m to 2600m had the highest probability of a lightning fire. The 

probabilities fall off steeply on both sides of this narrow elevational band. The fitted 

models of both forests were used to generate a GIS layer of the probability of observing 

lightning-caused fires (Figures 17, 18).    
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Figure 13: Willamette National Forest predicted probability density function of  
lightning-caused fires as a function of elevation (m).   
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Figure 14: Observed (black line) and predicted (red line) empirical distribution function  
of lightning-caused fires as a function of elevation (m) on the Willamette National Forest.  
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Figure 15: Gallatin National Forest predicted probability density function of lightning-
caused fires as a function of elevation (m).   
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Figure 16: Observed (black line) and predicted (red line) empirical distribution function  
of lightning-caused fires as a function of elevation (m) on the Gallatin National Forest.  
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Figure 17: Distribution of the probability ) of lightning caused fires on  

the Willamette National Forest. 
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Figure 18: Distribution of the probability ) of lightning-caused fires on the 

Gallatin National Forest. 
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Spatial Distribution of Lightning-Caused Fires  

Willamette (Northern Modeling Region)  

Figure 19 displays the transformed k-function used to test the spatial models. The black 

step function represents the transformed empirical k-function, while the colored lines 

represent the lower and upper simulation envelopes under the assumption that lightning- 

caused fires follow a) a Poisson distribution (red); b) inhomogenous Poisson process 

(blue) (i.e., elevation) and c) inhomogenous Poisson cluster process (green) (i.e., 

elevation plus clustering). The transformed empirical k-function extends above the 

simulation envelopes indicating that lightning caused fires are not randomly distributed.  

The Cramér-von Mises goodness-of-fit statistic also indicated non-randomness in the 

spatial distribution of lightning caused fires (Table 3). The p-value associated with this 

test was < 0.01 for all distances greater than 0.5 km. The transformed empirical k-

function for the on inhomogeneous point process model that describes the spatial 

distribution of lightning caused fires with elevation did not account for all of the 

clustering associated with lightning caused fires. Elevation alone accounted for only 66% 

of the spatial distribution of lightning fires (Table 3). Assuming a probability of 

aggregation .024, with an average of 10.51 fires per cluster and a cluster radius of 2.0 km 

the transformed k-function is contained nearly perfectly within the simulation envelope, 

suggesting a good fit to the data. The model described 90% of the spatial distribution of 

lightning fires (Table 3).  
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Figure 19: Plot of the transformed k-function, L(h)={K(h)/!}1/2 to model the spatial 
distribution of lightning-caused fires in the northern rectangular sub-region on the 
Willamette National Forest.  The stair-step line represents the empirical k-function, 
calculated from the data. Continuous lines represent the upper and lower 99% simulation 
envelopes for 200 realizations of an inhomogeneous Poisson process.  
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Table 2: Model parameters for the Neyman-Scott point process model used to describe 
clustering of lightning caused fires on the Willamette and Gallatin National Forests.  
 

National Forest Probability of 
Aggregation 

Cluster Size 
(No. Fires) 

Cluster Radius 
(km) 

Willamette     
North 0.024 10.51 2.0 
South 0.024 10.51 5.0 

Gallatin  0.213 10.51 5.0 
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Table 3: Sum of squared deviance (D) and proportion change in deviance ("D) based on  
the Cramer von Mises goodness-of-fit-statistic (Appendix B). 
 

National Forest  

Willamette-North Willamette-South Gallatin 

Model D "D D "D D "D 

CSR 1390.2 ---- 1008.6 ---- 4795.2 ---- 
Elevation 478.1 0.66 223.5 0.78 2285.2 0.52 
Spatial 135.5 0.90 130.6 0.87 679.8 0.86 
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Willamette (Southern Modeling Region)  

Figure 20 depicts the transformed k-function used to test the goodness-of-fit of the 

various models in the rectangular southern region on the Willamette, and the observed 

(black line) and predicted (red line) empirical distribution function of lightning caused 

fires as a function of elevation (m) on the Gallatin National Forest. 

 

Lightning-caused fires are not random. The Cramér-von Mises goodness-of-fit statistic 

also indicated non-randomness in the spatial distribution of lightning caused fires (Table 

3). The p-value associated with this test was < 0.01 for all distances greater than 0.5 km.  

The transformed empirical k-function for the inhomogeneous point process model that 

describes the spatial distribution of lightning caused fires with elevation accounts for a 

significant proportion of the clustering of fires on the forest (78%) (Table 3). The 

empirical k-function was within the simulation envelope across nearly every distance. 

When examining the model encompassing elevation and clustering, the k-function is 

contained nearly perfectly within the simulation envelope, suggesting a good fit to the 

data for both elevation and clustering. Parameter estimates used to model the clustering  

included a probability of aggregation of .024, with an average of 10.51fires per cluster 

and a cluster radius of 5.0 km (Table1). The model explained 87% of the spatial 

distribution of lighting caused fires (Table 3).  

 

 

 
 
 
 



 46 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: Plot of the transformed k-function, L(h)={K(h)/!}1/2 to model the spatial 
distribution of lightning-caused fires in the southern rectangular sub-region on the 
Willamette National Forest.  The stair-step line represents the empirical k-function, 
calculated from the data. Continuous lines represent the upper and lower 99% simulation 
envelopes for 150 realizations of a point process model while the dashed lines represent 
the average value.  
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Gallatin 

Figure 21 depicts the transformed k-function used to test the goodness-of-fit of the 

various models in the modeling region on the Gallatin. The observed (black line) and 

predicted (red line) empirical distribution function of lightning-caused fires are shown as 

a function of elevation (m) on the Gallatin National Forest.  

 

Lightning-caused fires on the Gallatin, like on the Willamette, are also not random as the 

Cramér-von Mises goodness-of-fit statistic indicates (Table 3). The p-value associated 

with this test was < 0.01 for all distances greater than 0.5 km. The transformed empirical 

k-function for the model describing the spatial distribution of lightning fires with 

elevation does not account for the distribution of fires until a distance of approximately 

12,500 (h) is reached, as the empirical k-function extends above the upper simulation 

envelope. Elevation alone accounted for only 52% of the clustering of fires (Table 3). 

When the model was run with elevation and clustering, the k-function is contained nearly 

perfectly within the simulation envelope, suggesting a good fit. The clustering was 

modeled assuming a probability of aggregation .213, with an average of 10.51fires per 

cluster and a cluster radius of 5.0 km (Table 2). The final model described 86% of the 

spatial distribution of lightning fires (Table 3).  

 

Clustering of Fires 

To describe the spatial distribution of lightning-caused fires it was necessary to assume 

some type of clustering. On the Willamette National Forest the probability of aggregation 

was 0.024, while on the Gallatin National Forest this probability was 0.21. Clusters were 
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randomly distributed. It was not possible to determine the exact nature of this clustering. 

Some clustering was due to multiple fires during a single storm event, while others were 

due to chance. The closest distance between any two fires was 8 m, however the time 

period between events was 10 years. The size of the fires may also influence this 

clustering. Since the majority of fires are less than 5 ha in size, there are adequate fuels 

available in close proximity for another fire to start. If the fires were larger, this would 

increase the minimum distance between fires, thus reducing the degree of clustering 

observed on the forests. No information was available on the forest types or fuel loading 

over time to evaluate the influence they may have had on the clustering.  
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Figure 21: Plot of the transformed k-function, L(h)={K(h)/!}1/2 to model the spatial 
distribution of lightning-caused fires in the rectangular sub-region on the Gallatin 
National Forest.  The stair-step line represents the empirical k-function, calculated from 
the data. Continuous lines represent the upper and lower 99% simulation envelopes for 
150 realizations of a point process while the dashed lines represent the average value.     
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DISCUSSION 

 

The question fire and forest managers often ask is: “Where will the next ‘big one’ be?”  

We have demonstrated that lightning fires in two divergent ecosystems share a unique 

spatial pattern, and can be modeled utilizing elevation as a predictor of fire distribution. 

On the wetter, mixed-conifer dominated Willamette National Forest, elevations most 

susceptible to ignition by lightning are from 700m to 1600m. On the Gallatin, the range 

from 2300m to 2600m is the region in which it is most probable for a fire to ignite. High 

fire frequencies at mid-level elevations on each forest are commonly reported in the 

literature (Marsden, 1982; Granstrom 1993; Barton ,1994).  

 

These two forest types fall into unique fire regime categories. The Willamette typically 

undergoes more frequent, stand-replacing fires, while the Gallatin sees fewer, but often 

larger, stand-replacing events (Shoennagle et.al, 2004). The number and size of fires over 

the 65 year study period further demonstrates these differing fire regimes (Figures 7, 

9,10, 12). This difference in forest type and fire regime does not detour from successfully 

modeling the spatial distribution of lightning fires using a parsimonious inhomogeneous 

Poisson cluster process.  The modeling we have used is an easily repeatable standardized 

process for developing ignition probability surfaces with relatively easily obtainable 

geospatial, lightning fire, and topographic data.  

 
 

Our modeled results suggest that elevation is indeed key in determining fire ignition 

probability. Elevations where fire frequencies are highest are often characterized by dry 

conditions and have fuels continuous enough to facilitate fire ignition and spread.  
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Forest fuel distributions also may partially explain why fires ignite in spatially clustered 

patterns. Areas located at a high probability elevation, and having fuel densities that are 

appropriate for a fire ignition, will certainly receive more fires overall, thus possibly 

explaining the clustering effect of many fire starts in one geographical location. Another 

potential explanation for the clustering of fires could be lighting storms. Topography 

often influences where cloud formation takes place, thus creating areas with higher 

probabilities of a lightning strike. When fuel, topography, and elevation all align on a 

landscape clustering of fire ignitions is possible.   

 

Utilizing the probability surface for each forest (Figures 17, 18) managers may be able to 

combine this data with preexisting forest fuel maps to provide an even more robust set of 

high fire probability areas. Fuel mapping provides information about fuel types, and fuel 

density. Coupling the spatial distribution data with fuel mapping could provide target 

areas for fuel reduction projects, fire suppression staging, and urban interface fire 

protection.  

 

These results ultimately provide a spatial tool helpful in focusing limited fuel treatment 

funds.  Treatments are often prescribed in areas of high fire probability and intensity, in 

hopes of reducing the potential for catastrophic fire. Fire suppression resources often 

benefit from these reduction projects, as they can more effectively contain unwanted high 

intensity fire events when fuel breaks are in place.   
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Suppression crews must make the decision of where to stage themselves prior to a 

lightning event. When combined with other information such as live-time lightning maps, 

the analysis derived in this paper has the potential to enable managers to more effectively 

position personnel for quick suppression of fire starts. By suppressing fires quickly, while 

they are small, crews can often eliminate large catastrophic fires.    

 

These data could also be useful in creating more accurate Wild Fire Use (WFU) maps in 

areas devoid of urban interface challenges. By knowing the estimated probability of a 

lightning fire igniting in a given area, managers may feel comfortable enough to let 

certain fires burn with minimal suppression. This technique not only restores natural fire 

to the landscape, but can also be useful in eliminating parasite infections or outbreaks in 

some forest types.  

  

The most costly, and perhaps most publicized, fires are those burning in the urban 

interface. Millions of dollars are spent each year protecting structures (NIFC, 2008). By 

strategically positioning fuels reduction projects and fire suppression crews, urban 

interface issues can be drastically reduced. In combination with other mapping, tactical 

fire tools, models, and informed management decisions, these data and resources provide 

a platform for better forest and fire management. Ultimately, knowledge about where a 

fire is likely to start will save federal dollars spent on fuel reduction and suppression.       
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SUMMARY 

 

By understanding the spatial distribution of lightning fires, fire and timber managers can 

gain a better understanding of how to spatially locate, and manage fuel treatments on 

these two forests. Elevation plays a significant role in the probability of a lightning strike 

igniting a forest fire given acceptable climatic and fuel conditions. The results of this 

study provide suggested ranges in elevation in which managers of these two forests, as 

well as managers of similar forest types, can focus attention for both fuel reduction 

efforts as well as urban interface fire suppression efforts.  
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APPENDIX 

 
Appendix A: Logit models for creation of cdf ‘s 

 
Willamette logit model is:  
 
y = -10.042 + 0.0196*E - 1.435x10

-5
*E

2
 + 4.149x10

-9
*E

3
 

 

(0.10) (2.88x10
-4
)   (2.56x10

-7
)    (7.12x10

-11
) 

 

  = 0.161,    n=679,      = 0.992 

*The numbers in parentheses are the standard errors of the regression coefficients.  
 
Gallatin logit model is  
 
y = -88.342 + 0.126*E - 8.841814x10

-05
*E

2
 + 3.837x10

-8
*E

3
 

    (20.14)  (4.64x10
-2
)  (4.22x10

-5
)      (1.90x10

-7
) 

 

- 9.527x10
-12

*E
4
 + 1.007845x10

-15
*E

5
 

   (4.21x10
-12

)    (3.69x10
-16

) 

 

  = 0.144,    n=798,      = 0.997 

 
*The numbers in parentheses are the standard errors of the regression coefficients.  
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Appendix B: Goodness-of-fit equation:  

 

 

where  is the empirical k-function (observed), and !" (#; h) is the hypothesized k-

function with parameters $. 

 
Proportion change in the goodness-of-fit statistics 

 
"D=(DR -Dj)/DR 
DR = D for CSR         

Dj  = D for elevation or spatial model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 


