5.8 Trig Review	Name
	Date

1. Solving trig equations

Use your knowledge of inverse trig functions, special angles and the unit circle to solve the following equations. Give exact answers (those that involve π or $\sqrt{2}$) whenever possible.

a. $\sin(\beta) = -.7568$, $0 \le \beta < 2\pi$. **b.** $\cos 2\theta = -1/2$, $-2\pi \le \theta < 2\pi$.

c.
$$\tan(x) = -1$$
 on $[-4\pi, 4\pi]$
d. $\sec(x^2) = 2$ on $[0, 2\pi]$

e.
$$(\csc(x))^2 - 2 = 0$$
 on $(-\infty, \infty)$
f. $4\cos(x) + 2\cot(x) = 2\sec(x)$ on $[-2\pi, 2\pi]$

2. Starting from the fact that $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$, find an identity for $\sin(\frac{\theta}{2})$. In other words, derive the "half-angle" identity for sine. Hint: $\theta = \frac{\theta}{2} + \frac{\theta}{2}$

3. Either prove the statement or use a counter-example to show it is false. Hint: don't waste time proving things that are not true.

$$a. \quad \frac{\cos x}{1+\sin x} - \frac{\cos x}{1-\sin x} = -2\cot x$$

b. $\csc^2(\theta) + \sec^2(\theta) = \csc^2(\theta) \sec^2(\theta)$

- **4.** Interpret the following calculator scenarios. Do not use your calculator to solve these problems as it defeats the purpose. Use them to check after you have arrived at a solution that you believe to be correct.
 - **a.** If possible, determine the mode setting (degree or radian) of the calculator for each calculation.

b. Explain why the inputs on the first screen cause the error messages on the second screen.

i.	tan(π/2)	ERR:DOMAIN ∎Quit 2:Goto
ü.	sin (tan(π/3))	ERR∶DOMAIN I∎Quit 2:Goto

- **c.** You forget your graphing calculator and are given a loaner. Unfortunately, the SIN button is the only one of the three trig buttons that works. How could you use this calculator to evaluate the following expressions?
 - *i.* $tan(37^{\circ})$
 - *ii.* $\tan^{-1}(2.5)$

- 5. The grid shows graphs of $f(x) = \underline{\qquad} \sin(\underline{\qquad} x)$ and $g(x) = \underline{\qquad} \cos(\underline{\qquad} x)$
 - **a.** Fill in the blanks in the equations above.
 - **b.** Use the given graphs to sketch a reasonable graph of h(x) = f(x) + g(x).

c. Find values of A and ϕ such that $h(x) = A\cos(\phi)\sin(\frac{\pi}{2}x) + A\sin(\phi)\cos(\frac{\pi}{2}x)$

d. Use an identity to rewrite you equation for h(x) in terms of a single *transformed* sine function.

- 6. The graph below shows the *continuous*, *differentiable* function $f(x) = \begin{cases} A \ln(2x) & x < 1 \\ 3 \sin(x + \phi) & x \ge 1 \end{cases}$
 - **a.** Find the appropriate values of A and ϕ

b. Find an additional function q(x) such that the function $f(x) = \begin{cases} A \ln(2x) + q(x)x < 1 \\ 3\sin(x+\phi) & x \ge 1 \end{cases}$ is *continuous and twice differentiable*. Think about how Taylor polynomials work to get started (and you can't use $q(x) = 3\sin(x+\phi) - A\ln(2x)$).

- 7. Consider this simplified diagram of a bicycle drive train. Assume the drive wheel has a diameter of 30 inches, the rear sprocket has a diameter of 5 inches, the front sprocket has a diameter of 7 inches and the crank arms are 12 inches long.
 - **a.** If the rider is pedaling and moving at a constant speed of 16 miles per hour, how long does it take her foot to make one revolution? Try to solve the problem without ever converting to degrees.

b. At t = 0 her left crank arm makes an angle of $\frac{\pi}{3}$ with respect to the horizontal direction of travel. Write down an equation for the function h(t) that gives the height *h* of her left foot off the ground at time *t*.

c. What are the vertical and horizontal components of the velocity of her foot at t = 1?

8. Find an infinite polynomial for $f(x) = \frac{1}{\sqrt{1+x}}$ centered at x = 0. First write your expression

as $f(x) = 0^{\text{th}} \text{ term} + 1^{\text{st}} \text{ term} + 2^{\text{nd}} \text{ term} + 3^{\text{rd}} \text{ term} + 4^{\text{th}} \text{ term} + 5\text{th} \text{ term} + \dots$. After you get this written out, go ahead and try to get f(x) in terms of a sigma notation expression.

Hint: $9 \cdot 7 \cdot 5 \cdot 3 \cdot 1 = \frac{10!}{2^5 \cdot 5!}$.

9. The figure below shows a graph of the relation $y^2 + 3y = -4\sin(x)$. It also shows a quadratic function that approximates this curve near $x = \frac{\pi}{6}$. Find the equation for this quadratic function.

