
Architecture-based Assessment and Planning
of Change Requests

Kiana Rostami
Karlsruhe Institute of

Technology (KIT)
Am Fasanengarten 5

76131 Karlsruhe, Germany
rostami@kit.edu

Johannes Stammel
andrena objects ag
Albert-Nestler-Str. 9

76131 Karlsruhe, Germany
johannes.stammel@

andrena.de

Robert Heinrich
Karlsruhe Institute of

Technology (KIT)
Am Fasanengarten 5

76131 Karlsruhe, Germany
heinrich@kit.edu

Ralf Reussner
Karlsruhe Institute of

Technology (KIT)
Am Fasanengarten 5

76131 Karlsruhe, Germany
reussner@kit.edu

ABSTRACT

Software architecture reflects important decisions on struc-
ture, used technology and resources. Architecture decisions
influence to a large extent requirements on software quality.
During software evolution change requests have to be imple-
mented in a way that the software maintains its quality, as
various potential implementations of a specific change request
influence the quality properties differently. Software develop-
ment processes involve various organisational and technical
roles. Thus, for sound decision making it is important to
understand the consequences of the decisions on the various
software engineering artefacts (e.g. architecture, code, test
cases, build, or deployments) when analysing the impact of
a change request. However, existing approaches do not use
sufficient architecture descriptions or are limited to software
development without taking management tasks into account.
In this paper, we present the tool-supported approach Karl-
sruhe Architectural Maintainability Prediction (KAMP) to
analyse the change propagation caused by a change request
in a software system based on the architecture model. Using
context information annotated on the architecture KAMP
enables project members to assess the effects of a change
request on various technical and organisational artefacts and
tasks during software life cycle. We evaluate KAMP in an
empirical study, which showed that it improves scalability of
analysis for information systems due to automatically gener-
ated task lists containing more complete and precise context
annotations than manually created ones.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

QoSA’15, May 04-08, 2015, Montreal, QC, Canada

Copyright c© 2015 ACM 978-1-4503-3470-9/15/05 ...$15.00

http://dx.doi.org/10.1145/2737182.2737198.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.9 [Software Engineering]: Management; D.2.11
[Software Engineering]: Software Architecture

General Terms

Software Architecture, Maintainability, Change Propagation

Keywords

Software Evolution; Change Request; Impact Analysis

1. INTRODUCTION
The architecture model is one of the main artefacts of a

software system and is central to many organisational tasks,
such as reuse decisions, staffing, and effort estimation. In
addition, the software architecture deals with entities such as
components and interfaces which also play a key role in other
software artefacts (e.g. object oriented designs, deployment
diagrams, or test cases). A software system has to change
during its life cycle to reflect the changes in its environment,
such as requirements, technology, and usage profile. This
process is known as software evolution [18]. The maintain-
ability of software refers to efforts to implement changes
during software evolution. We investigate maintainability
with regard to a set of anticipated change requests.

Coordinating and implementing change requests are dif-
ficult tasks, as the software development process involves
various organisational and technical roles. Usually a change
request can be implemented in various ways. In addition,
different ways of realising a change request lead to different
efforts in adapting code and other artefacts. Furthermore,
there are strong interdependencies between organisational
and technical issues. In a real-world software system different
people own knowledge and responsibility for various technical
and organisational work areas, such as design, implementa-
tion, configuration, building, testing, rollout, deployment,
and all tasks involving management and organisational oper-
ations. Considering artefacts from the perspective of various

21

roles, such as designer, implementer, tester, deployer, and
operator helps software architects to understand the impact
of changes. The main idea of the presented approaches is
based on two observations: 1) All these different roles use
artefacts, which are tightly related to the software architec-
ture. 2) Although the maintenance effort of the software
architecture alone is often rather small, reflecting changes
in software architecture models helps to identify tasks of
maintaining other artefacts.
Automation helps software architects to calculate change

requests by answering the following questions: 1) How can
a change request represented in the architecture model be
implemented with respect to various technical and organi-
sational work areas? 2) What are the technical and organ-
isational impacts of a change implementation? 3) Which
artefacts are affected by a change request during software life
cycle? 4) How can concurrent change requests be coordinated
and implemented?
Existing approaches often do not have sufficient archi-

tecture descriptions or are limited to software development
without taking management tasks into account. Work on
task-based project planning (e.g. [16, 7, 4]) uses the archi-
tecture only in a very coarse-grained manner, if at all. Also
approaches to architecture-based project planning (e.g. [20,
5]) and architecture-based software evolution (e.g. [12, 19])
neither offer automated change impact analysis nor support
derivation of change activities or change effort estimation
based on a given architecture. Scenario-based architecture
analysis approaches (e.g. [9, 3, 20]) that focus on software
development activities and artefacts, lack a formalized archi-
tecture model and seldom come along with tool-support.

This paper presents a tool-supported approach, Karlsruhe
Architectural Maintainability Prediction (KAMP), to anal-
yse the change propagation caused by a change request in
the software architecture model. A preliminary version of
KAMP’s idea was published in [21, 22]. In this paper, we
extend and refine KAMP, give a formal definition of the
approach and evaluate it in an empirical study. KAMP
is novel with respect to the fact, that it is not only con-
cerned with the design phase of software, but basically with
all software life-cycle phases, including testing, deployment
and operation. It enables project members to assess the ef-
fect of change requests on technical and organisational work
areas during software life cycle. KAMP enables software
architects to model the initial architecture with annotated
context information involving technical and organisational
tasks, called base architecture, and the architecture after the
change request is implemented, called target architecture.
Then, the tool calculates the differences between the base
and the target architecture model and generates task lists
by applying derivation and interpretation rules on the archi-
tecture model. In addition to the structural propagation of
changes in the architecture, KAMP computes impacts on all
major work areas involving tasks such as test development
and execution, build configuration, deployment and their
corresponding artefacts which need to be processed during
software life-cycle.
We conduct an empirical study to validate our approach.

KAMP is implemented as an extension of the Palladio Com-
ponent Model (PCM) [1] in order to model the software
architecture. PCM enables meta-modelling a component-
based system with regard to performance relevant aspects.
We demonstrate how KAMP can help semi-automatically

derive task lists for a specified change request and thus im-
proves the scalability of analysis. KAMP produces higher
quality and more homogeneous task lists compared to man-
ual analysis. The study shows that the semi-automatically
generated task lists for the software architecture presented
in Fig. 1 are more complete and more precise than manual
ones. While the quality of manual task lists depends on the
experience of the user, the semi-automatically generated task
lists of various users are similar.
The reminder of this paper is organised as follows: In

Sec. 2, we introduce a running example to demonstrate our
approach throughout this paper. An overview of KAMP
is given in Sec. 3, the formalisation of KAMP is presented
in Sec. 4. Sec. 5 summarizes related work. We present the
evaluation of our approach using an empirical study in Sec. 6.
Sec. 7 concludes the paper and proposes future work.

2. RUNNING EXAMPLE
In this section, we introduce a user management system

which acts as a running example for demonstration and
validation purposes in the following sections. Whenever
we are referring to the running example, the paragraph is
marked with a black bar at the left hand side.

2.1 System Overview

UserService-
Tomcat

User-
Management

UserDAO
UserService-
ApacheProxy

Authentication

Reporting

DBAccess

User-
Database

JDBCDriver

ISession

ISessionFactory

IUserDAO

IUserManagementAdmin

IUserManagement

IAuthentification

IReporting

IUserServiceTomcat

IUserServiceTomcat

Figure 1: Component Diagram of User Management
System

Fig. 1 shows a component-based architecture model
of the system and the corresponding interfaces. User-

Database stores user data. DBAccess performs object-
relational mappings. UserDAO provides access to persisted
user data. UserManagement encapsulates the business
logic of user management. UserServiceTomcat repre-
sents a service which is deployed in a web server con-
tainer. It provides a REpresentational State Transfer
(REST) interface to users, which uses JavaScript Ob-
ject Notation (JSON) data format. UserServiceApache-
Proxy deals with port switches and forwards calls to
UserServiceTomcat. Reporting collects reports about
transactions. Authentication is a third-party service for
authentication. Additionally, there are seven data types
in the system: User, UserList, Report, SessionFactory,
Session, Token, and WebServiceResponse.

2.2 Change Scenario
In order to demonstrate KAMP we investigate a change

request involving the User data type. In our system
a User is represented by several attributes (e.g. first
name, surname). We extend User data type to include
an additional postalCode attribute.

22

3. KAMP ANALYSIS PROCESS
In this section, we present the phases of KAMP analysis

process and apply it to the running example and the change
scenario. As illustrated in Fig. 2, KAMP consists of the
Preparation Phase and the Change Request Analysis Phase.

Preparation Phase

Architecture Modeling

Architecture Model

Enhancement

Change Request

Analysis Phase

Change Requests

Real System

Architecture Model

Context

Annotation Model

Task Lists

Used Source Codes

Used Technology

Build Configuration

Test Cases

Allocation Context

Deployment

Personal

Context Information

Figure 2: Overview of KAMP

In the Preparation Phase, the user models the architecture
of an existing software using the extended PCM and then
annotates context information, involving source code files,
configuration files, technology stack, test cases, build config-
urations, release configurations, and deployed instances.

In the running example, a user applies the extended
PCM to create an architecture model, involving all data
types, interfaces and components in a repository, similar
to Fig. 1. Moreover, the user annotates the architec-
ture model with the following context information : 1)
Java Source Files for each data type, interface, and com-
ponent, 2) two Hibernate Configuration Files for object-
relational mapping component, 3) one Build Configuration
annotation, called “Eclipse project properties” attached
to the following components: UserServiceApacheProxy,
UserServiceTomcat, UserManagement, Reporting, User-
DAO, DatabaseAccess, and UserDatabase, 4) 7, 5, and 1
unit tests for provided interface of UserServiceTomcat,
UserManagement, and Authentification components, re-
spectively, which are annotated on the architecture model
using Test Case annotations, 5) one instance of each
component is deployed on a single server, 6) DBAccess

as a Third Party component, 7) Authentication as an
External component. The user models a pessimistic intra-
component dependency, which specifies, that every pro-
vided interface of each component depends on all required
interfaces of that component.

The Preparation Phase results in an architecture model
and a context annotation model, which serve as inputs for
the Change Request Analysis Phase. For each change request
this phase is done. In this phase the user modifies the
architecture model to reflect the target model and semi-
automatically calculates change propagation and derives the
corresponding work plan. The work plan contains required
tasks to implement the change request and the corresponding
software artefacts, which have to be altered. This phase
comprises the following six steps:

1) Creating target model: The KAMP creates a cloned
version of base architecture model and context annotation
model serving as the initial version of the target model.

In the running example, the user triggers the KAMP
tool to create a copy of the user management system
architecture and annotation models from previous phase.

2) Modelling the change request: As a change request
can be implemented in different ways, the user modifies the
cloned architecture model to reflect the change request. This
process results in a target architecture model. If the modi-
fications are not visible to the elements of the architecture
model, such as architectural structure or signature of inter-
face methods, the user can add special annotations to mark
modified elements.

In the running example, the user marks the user data
type of the UserDatabase as modified.

3)Calculating structural change propagation: KAMP
automatically calculates the expected structural change prop-
agation. We consider several kinds of structural propagations,
which can be summarized in propagation from data types
to interfaces, propagation from interfaces to components,
horizontal propagation, involving the inter-component and
intra-component propagation, and vertical propagation, in-
volving change propagation through composite-components.

The user triggers the tool to calculate the change prop-
agation which leads to insertion of modification marks
into the extended architecture model. KAMP iteratively
marks all components affected by a change request. In
the first sub-iteration of each iteration, it analyses the
inter-component propagation via the connectors to other
components (e.g. the change propagation from User-

Database to DBAccess). In the next sub-iteration, it con-
siders, how a change to a required interface propagates
through the component (e.g. the change propagation
through predefined dependencies in DBAccess).

4) Updating change-specific context annotations:
At this point, the user has to extend and refine the context
annotations, as automatically calculating change requests
can result in an inconsistent state. For example, if a change
request results in removing an element of the architecture
model, there could be context annotations without any cor-
responding architecture element. Furthermore, if a change
request causes adding a new architecture element, KAMP
automatically suggests the following context annotations:
1) the number and the types of test cases required based on
size of the interface and the new added element, 2) mapping
the new element to a build configuration, 3) technology stack
based on the level of hierarchy, 4) the roles and responsibilities
for the new added element. Otherwise, if context annotations
are incomplete or inconsistent, KAMP prompts the users
to manually correct information. If a change request causes
removing an architectural element, KAMP automatically
suggests the following steps: 1) removing the invalid context
annotations, 2) assigning the invalid context annotations to
other elements.

In the example, the user does not need to add or update
any elements, as only one data type is modified.

5) Deriving architecture-based task list: At this
point, KAMP compares base and target architecture mod-
els and finds differences between them. Then, it derives a
set of architecture-based tasks with respect to added, re-
moved or modified elements and then automatically derives
an architecture-based task list.

23

In the example, the derived task list is similar to the
tasks marked with (5) in Tab. 1. The table contains tasks
resulting from fifth and sixth step. In the current step,
only tasks indicated by (5) are produced which indicate
architecture-level tasks. Furthermore, Tab. 1 exemplarily
shows 2 of 5 iterations of the change propagation analysis
phase. Sub-tasks are marked with ≡. This step is based
on the earlier phases. Thus, each iteration comprises
two sub-iteration involving the inter-component and the
intra-component change propagation.

6) Deriving task list with respect to work areas:
Based on the architectural tasks, KAMP derives work-area-
oriented tasks (i.e. editing source code files, editing meta-
data such as database schema, and follow-up tasks involving
all tasks needed in order to have a running system).

Tab. 1 shows derived tasks required to implement the
change request, which are indicated by (6). These tasks
are work-area specific.

Modify Data Type User (5)
Modify Interface JDBCDriver (5)
Modify Component UserDatabase (5)
≡ Modify Provided Interface JDBCDriver (5)
→ Rebuild UserDatabase (6)
→ Redeploy UserDatabase (6)
1. Iteration: Inter Component Propagation (5)
Modify Connector DBAccess → UserDatabase (5)
Intra Component Propagation (5)
Modify Component DBAccess (5)

→ Modify configuration files (6)
≡ Modify Required Interface JDBCDriver (5)
≡ Modify Provided Interface ISession (5)
≡ Modify Provided Interface ISessionFactory (5)
→ Rebuild DBAccess (6)
→ Redeploy DBAccess (6)
. . .
5. Iteration: Inter Component Propagation (5)
Modify Connector UserServiceApache
→ UserServiceTomcat (5)
≡ Modify Required Interface IUserServiceTomcat (5)
Intra Component Propagation (5)
Modify Component UserServiceApache (5)

→ Modify Source Files (6)
→ Modify Test Cases (6)
→ Execute Test Cases (6)

≡ Modify Provided Interface IUserServiceTomcat (5)
→ Rebuild UserServiceApache (6)
→ Redeploy UserServiceApache (6)

Table 1: Task list for the change scenario

4. FORMALISATION
In this section, we present a formalisation of our approach.

Using meta-models and graph representations we define in-
puts and results of KAMP. Furthermore, we describe our
approach as a combination of graph algorithms and model
transformations. KAMP uses two input data models involv-
ing both architecture model and context annotated model and
one result data model specifying task lists in an task model.
An overview of meta-models and graph definitions required
are given in Sec. 4.1. In Sec. 4.2, we describe meta-model
transformations and graph operations needed in the prepara-
tion phase. Finally, we present in Sec. 4.3 the change request
analysis phase and characterize some graph operations.

4.1 Meta-models and Graph Definitions
Following we describe the meta-model and graph definition

of the architecture model in Sec. 4.1.1, the context annotated
model in Sec. 4.1.2, and the task model in Sec. 4.1.3.

4.1.1 Architecture Model

In the first sub-phase of the preparation phase, the user
provides a component-based model of the software architec-
ture as described hereafter.
Meta-model : To model the architecture we use the PCM

meta-model, which is described in detail in [1]. In the follow-
ing we discuss a couple of extensions to PCM meta-model re-
quired for KAMP. In order to analyse the change propagation
through a component, knowledge about the component intra-
dependencies is required. Thus, we extend PCM to include
a dependency model element, known as ComponentIntraDe-
pendency, which defines the dependency between provided
and required interfaces of a component. To enable users to
indicate changes, which are invisible to an architecture model,
we extend PCM to include the meta-class ModificationMark.
Thus, the model supports modification annotation for data
types, interfaces, components, required interfaces, provided
interfaces and assembly connectors.
Graph: From the above meta-model extension, we define

the architecture graph Garchitecture to represent the static
software architecture. A GraphGarchitecture = (Varchitecture,

Earchitecture) comprises a set of vertices, which represent the
static elements of an architecture, and a set of edges, which
represent links connecting the architecture elements. In the
following we give an overview of properties of Varchitecture

and Earchitecture:

• Properties of Vertices: The vertices have a type v.type,
a unique identifier v.id, and a name v.name. They sat-
isfy ∀v ∈ Varchitecture : v.type ∈ V Tarchitecture, where
V Tarchitecture is the set of vertex types in the architec-
ture graph, containing primitiveDataType, compos-

iteDataType, operation, interface, providedInter-
face, system, basicComponent, compositeComponent,
and other types of vertices.

• Properties of Edges: In contrast to vertices, the edges
have only a type e.type and satisfy ∀e ∈ Earchitecture :
e.type ∈ ETarchitecture, where ETarchitecture is the set
of edge types in the architecture graph, containing oper-
ationDefinition, parameterDataTypeDefinition, pro-
videdInterface, interfaceDefinitionForProvided-

Interface, and other types of edges. For example,
providedInterface as a type of edge, that connects a
component vertex with a required interface vertex, is
formally defined as:
∀e : (vL, vR) ∈ Earchitecture:
e.type = providedInterface ⇒ vL.type ∈
{basicComponent, compositeComponent, system}∧

vR.type = providedInterface

4.1.2 Context Annotated Model

In the second sub-phase of the preparation phase the user
annotates the architecture model with additional information,
as presented hereafter.

Meta-model : In order to meta-model the annotation, we ex-
tend PCM to include the meta-class ArchitectureModelEn-
hancement, which has the following subclasses: SourceCode-
File, SourceCodeFileAggregation, MetaDataFile, Meta-

24

DataFileAggregation, BuildConfiguration, TestCase, Test-
CaseAggregation, DeliveryConfiguration, DeploymentCon-
figuration, RuntimeInstance, RuntimeInstanceAggrega-

tion, and TechnologySpecification. Each subclass defines
a specific technical or organisational work area to be con-
sidered when analysing change propagation. This extension
enables annotating either a component or a provided interface.

Graph: Based on the meta-model, we define a context an-
notated graph Genhancement = (Venhancement, Eenhancement)
comprising a set Vertices Venhancement and a set of edges
Eenhancement. In the following we give an overview of prop-
erties of Venhancement and Eenhancement:

• Properties of Vertices: The vertices of a Genhancement

have two properties: a type v.type and an optional name
v.name. They satisfy ∀v ∈ Venhancement : v.type ∈
V Tenhancement, where V Tenhancement is a set of all pos-
sible types of vertices in a context annotated graph.
Each type of vertices has a corresponding subclass of
architectureModelEnhancement.

• Properties of Edges: Since the context annotated graph
would be used to annotate the architecture graph, the
set of edges has to be defined generically:
∀e : (vL, vR) ∈ Eenhancement : e.vL ∈ Venhancement∧

e.vR ∈ Varchitecture∧
e.vR.type ∈ { basicComponent, compositeComponent,

system, providedInterface }

4.1.3 Task Model

The Change Request Analysis Phase returns work plans
in terms of tasks to realise a certain change request.

Meta-model : The root meta-class of model is the WorkPlan,
containing abstract class Task. The tasks can be ordered and
can be nested within each other. Its subclasses are Archi-

tectureOrientedTask and WorkAreaOrientedTask. Archi-

tectureOrientedTask states the modification of the static
elements of the architecture, such as data types, components,
interfaces, provided and required interfaces and their oper-
ations, and connectors. We define further operations for
each class of tasks. For example, ProvidedInterface has
the following subclasses: AddingProvidedInterface, Remov-
ingProvidedInterface, and ModifyingProvidedInterface.
WorkAreaOrientedTask states sequences in each work area,
such as coding, building, testing, and deploying. Each meta-
class has further subclasses. For example, Testing consists
of DevelopingTests and ExecutingTests.
Graph: Based on the meta-model of task, we define the

task graph Gtask = (Vtask, Etask) comprising a set of ver-
tices Vtask and a set of edges Etask. The nodes of this graph
have a type, v.type, and a name, v.name. They satisfy:
∀v ∈ Vtask : v.type ∈
V TarchitectureOrientedTask

∨
v.type ∈ V TworkAreaOrientedTask,

where V TarchitectureOrientedTask

and V TworkAreaOrientedTask are the set of vertex types of
the task graph. V TarchitectureOrientedTask involves adding-

Datatype, addingInterface, removingInterface, adding-
ProvidedInterface, and other architecture-oriented tasks,
whereas V TworkAreaOrientedTask involves editingSourceCode,
developingTestCases, deploymentConfiguration and other
task-oriented tasks.

4.2 Preparation Phase
From graph definition in the previous section we describe

the graph operations for each sub-phase of preparation phase:

4.2.1 Architecture Modelling

In the first sub-phase we identify graph operations to create
an architecture graph Garchitecture. Examples of operations
on graphs are adding a new basic component, removing a
data type parameter from a composite data type, adding a
provided interface delegation to a composite component, and
adding a new provided interface to an existing component.
The latter is described in Algorithm 1.

Algorithm 1 Adding a Provided Interface to a Component

1: create node vnew

2: set vnew.type = providedInterface

3: add vnew to Varchitecture

4: create a new providedInterface edge between the provided-

Interface node and the component node.
5: create a new interfaceDefinitionForProvidedInterface

edge between the providedInterface node and the inter-

face node.
6: return updated Varchitecture and Earchitecture

4.2.2 Architecture Model Enhancement

In the second sub-phase we identify graph operations to
enhance the architecture graph. The operations required for
the resulting graph Genhancement include specifying meta-
data, build configuration, test cases, and source code. For
example, Algorithm 2 describes the latter operation, which
enables users to create source code nodes to represent the
source code files of a component.

Algorithm 2 Specifying Source Code Files

1: create node vsourceCodeFile

2: set vsourceCodeFile.type = sourceCodeFile

3: set vsourceCodeFile.name = α
4: add vsourceCodeFile to Venhancement

5: create edge eannotation

6: set eannotation.vL = vsourceCodeFile

7: set eannotation.vR = vcomponent

8: add eannotation to Eenhancement

9: return updated Venhancement and Eenhancement

4.3 Change Request Analysis Phase
We describe the operations needed for the analysis phase

of KAMP, comprising the following sub-phases:
Versioning Initial Architecture: A copy of both the ar-

chitecture model Garchitecture and context annotated model
Genhancement is set up, referred to G′

architecture and
G′

enhancement respectively.
Modelling the Changes: The user changes G′

architecture to
model the architecture, after all changes are implemented.

Analysing Change Propagation: KAMP considers the struc-
tural propagation of changes within each component and
between components, as shown in Algorithm 3. In KAMP,
components, interfaces, and data types are characterized as
first class entities, which can thus be marked as modified.
Extending and updating additional information: After

G′

architecture is modified, the additional information may not
be valid. Thus, the additional information must be extended
and updated to reflect the changes.

Comparing the architectures to consider architecture-oriented
tasks: In this step, KAMP compares Garchitecture and
G′

architecture and find differences between the architectures,
since the nodes and edges in Garchitecture and correspond-
ing elements in G′

architecture have the same identifier. For
example, tasks to add a new provided interface AddingPro-

videdInterface are given by the following set:

25

Algorithm 3 Change Propagation Analysis Algorithm

1: Require: modified G′

architecture

1: Calculate change propagation from data types to in-
terfaces

2: Identify modified data types
3: Determine interfaces invoking modified data types in calling

parameters or in return types. Mark them as modified.
4: Get temporary results. Allow users to correct them (optional)

2: Calculate change propagation from interfaces to re-
quired and provided interfaces

5: Identify modified interfaces
6: Determine the corresponding required and provided interfaces

to the modified interface. Mark them as modified.
7: Get temporary results. Allow users to correct them (optional)

3: Calculate the inter- and intra-component propagation

8: while There is at least one new modification do
9: Calculate the inter-component propagation
10: Identify modified provided interfaces, involving any

provided interfaces, considered as modified and any
provided interfaces with modified operations.

11: Determine their assembly connector. Mark them as
modified.

12: Get temporary results. Allow users to correct them
(optional).

13: Calculate the intra-component propagation
14: Identify modified required interfaces, involving any

required interfaces, which is linked to an assembly
connector, considered as modified.

15: Basic components: Determine component intra-
dependency. Mark connected provided interfaces as
modified.

16: Composite component: Follow the delegation connec-
tor to determine the affected sub-components. Mark
them as modified.

17: Get temporary results. Allow users to correct them
(optional)

18: end while

VAddingProvidedInterface =
{v′|v′ ∈ Vadded ∧ v′.type = providedInterface}
Determining work-area-oriented tasks: In order to derive

task lists in each technical and organisational work area from
the architecture-oriented tasks we use model transformation.
To this end, the deriving rules can be considered in terms
of triple graph grammars [15]. For example, a transforma-
tion rule considers, how component tasks for a component,
which is annotated with source code files result in a task list
involving editing source code files.

5. RELATED WORK
Work related to KAMP comprises task-based project plan-

ning (Sec. 5.1), architecture-based project planning (Sec. 5.2),
architecture-based software evolution (Sec. 5.3), and scenario-
based architecture analysis (Sec. 5.4), as discussed hereafter.

5.1 Task-based Project Planning
Hierarchical Task Analysis (HTA) [16] is a method to de-

compose a high-level task into a hierarchy of subtasks in
a systematic and structured fashion. A similar goal is ad-
dressed by the Goals, Operators, Methods, and Selection
rules model (GOMS) [7]. The Keystroke level method [6]
calculates execution time for an entire task by summing up
the estimated times of the individual actions. Function Point
Analysis (FPA) [11] estimates the size of a system by adding

up the number and weights of all transaction and data ele-
ments. The Comprehensive Cost Model (COCOMO) II [4]
includes different approaches for cost estimation during re-
quirements phase and architectural design phase by applying
the abstract measure of function points (applications points
in COCOMO) based on an informal requirements description.
However, if used at all, these techniques use the software
architecture only in a very coarse-grained manner. Thus,
it is hard to make accurate predictions using task-based
approaches.

5.2 Architecture-based Project Planning
Conway’s Law [10] links software design to project organi-

sation by stating that the software architecture must reflect
an organisation’s communication structures. Architecture-
Centered Software Project Planning (ACSPP) [20] considers
a software architecture as an artefact in project planning.
The goal of ACSPP is to estimate realistic schedules by com-
bining top-down and bottom-up effort estimation techniques.
Based on experience in mechanical engineering, Carbon [5]
proposes a procedure to align product design and production
planning in a software development context. The procedure
allows for 1) early identification of potential problems in
production and 2) assessing the software architecture for
completeness. Work on architecture-based project planning,
however, does not support estimating change efforts based
on a given architecture and does not offer automated change
impact analysis and derivation of change activities.

5.3 Architecture-based Software Evolution
Based on the assumption that software evolution follows

certain common patterns, Garlan et al. [12] proposed an
approach to assist for expressing architectural evolution and
for reasoning about the correctness and quality of evolution
paths. Naab [19] presents an approach to flexibility analysis
and thus the maintainability of a software architecture at
design-time, however, neglects operation and management
tasks related to the architecture. Again, work on architecture-
based software evolution does not support change efforts
estimation and automated change impact analysis.

5.4 Scenario-based Architecture Analysis
Changes to requirements are triggers for changes in the

system but drawing inference from the extent of changes in
requirements about efforts for implementing the changes is
not possible without considering the system’s architecture.
Some existing approaches target at scenario-based software
architecture analysis but lack a formalised architecture de-
scription or are limited to software development without tak-
ing management tasks into account. Software Architecture
Analysis Method (SAAM) [9] evaluates software architectures
regarding modifiability by using an informal architecture de-
scription (mainly the structural view). SAAM gathers change
scenarios and tries to find interrelated scenarios. Components
affected by interrelated scenarios are identified and costs are
estimated. In contrast to SAAM, the Architecture Trade-Off
Analysis Method (ATAM) [9] aims at identifying trade-offs
between various quality aspects by considering the effect of
architectural decisions. Architecture-Level Prediction of Soft-
ware Maintenance (ALPSM) [2] defines and weights scenarios
to evaluate their impact of the overall maintenance effort
based on component size estimations (LOC). ALPSM heavily
depends on the expertise of the architects and provides little

26

guidance through tool support. Architecture-Level Modi-
fiability Analysis (ALMA) [3] is a combination of ALPSM
and the approach by Lassing et al. [17] to consider ripple
effects by taking into account expert knowledge. A disad-
vantage is that ALMA does not take into account software
management activities. Architecture-Centric Project Man-
agement (ACPM) [20] applies software architecture as the
central artefact for planning and management activities. For
architecture-based cost estimation, the architecture is used
to decompose planned software changes into various tasks to
realise the changes. For each task the assigned developer is
asked to estimate the effort of realising the change. KAMP
goes beyond ACPM by using formalised architectural models
where ACPM uses only the structural view of architecture
and therefore does not consider management costs. KAMP
combines several strengths of existing approaches. It makes
explicit use of formal software architecture models, provides
guidance and automation via tool support, and considers
management as well as development effort. Applications of
KAMP for deriving work plans to solve performance issues
[13] and for automated software project planning [14] has
already been proposed.

6. EVALUATION
KAMP enables users to describe how a change request can

be implemented in a software system. To this end, the user
alters the base architecture model into a target architecture
model to reflect the change implementation. Then, KAMP
automatically calculates modifications, determines structural
change propagation and mines annotated context information
in order to derive task lists with respect to multiple technical
and organisational work areas, which are represented by
context information.
The main contribution of our approach is the automatic

evaluation of context information and identification of tasks
required to implement a change request. The expected bene-
fits of automation are high scalability and high quality of anal-
ysis results. In other words, we expect that a tool-supported
approach provides precise and complete task lists. Further-
more, we expect, that KAMP reduces analysis overhead, as
the number of potential implementation of a specific change
request is increased or as software systems and models grow.
Moreover, we expect that using KAMP can help users to
derive task list regardless of their skill and experience.

Scalability is a generally accepted property of automation
approaches. However, our main focus of validation lies on the
quality of analysis results. By quality we regard precision and
completeness of task types and the corresponding artefacts.
We investigate scalability implicitly by comparing the amount
of time required for tool-supported analysis with manual
analysis.

We validated the quality of analysis results in an empirical
study. We compared analysis results obtained from our tool-
supported approach with manually created task lists. We are
especially interested in results determined by less-experienced
users. Therefore, we integrate our empirical study into a
study course at university.

6.1 Experiment Design
In the empirical study, we use the user management sys-

tem introduced in Sec. 2. The participants comprise both
less-experienced users and experienced users. While the less-
experienced users are divided into a Treatment Group (TG)

and a Control Group (CG), the EXpert Group (EXG) com-
prises experienced users. The treatment group applies the
tool-supported KAMP approach, whereas the control group
and expert group analyse the change propagation manually.
Following, we describe the experiment’s goals, questions,
metrics and hypothesis using the GQM plan in Tab. 2.

Goal Empirically evaluate the differences
between automatically derived task
lists and manually created ones

Question 1 How precise and complete are the
treatment group’s (TG’s) task
lists compared with control group’s
(CG’s) task lists?

Question 1.1 . . . with regard to task types (TT)?
Metric 1.1.1 F1 score for TG F1(TT, TG)
Metric 1.1.2 F1 score for CG F1(TT, CG)
Hypothesis Automatic results F1(TT, TG)≥

are as good or better F1(TT, CG)
Question 1.2 . . . with regard to task annotations

(TA)?
Metric 1.2.1 F1 score for TG F1(TA, TG)
Metric 1.2.2 F1 score for CG F1(TA, CG)
Hypothesis Automatic results F1(TA, TG)≥

are as good or better F1(TA, CG)
Question 2 How precise and complete are the

TG’s task lists compared with expert
group’s (EXG’s) task lists?

Question 2.1 . . . with regard to task types (TT)?
Metric 2.1.1 F1 score for TG F1(TT, TG)
Metric 2.1.2 F1 score for EXG F1(TT, EXG)
Hypothesis Automatic results F1(TT, TG)≥

are as good or better F1(TT, EXG)
Question 2.2 . . . with regard to task annotations

(TA)?
Metric 2.2.1 F1 score for TG F1(TA, TG)
Metric 2.2.2 F1 score for EXG F1(TA, EXG)
Hypothesis Automatic results F1(TA, TG)≥

are as good or better F1(TA, EXG)

Table 2: GQM plan overview

The overall goal is to compare tool-derived results with
manually determined results. We investigate this by asking
two research questions. The higher level questions (i.e. Ques-
tion 1 and Question 2) are concerned with user experience.
While Question 1 compares two groups of less-experienced
users (i.e. TG and CG), Question 2 compares the less-
experienced user group with the experienced group (i.e. TG
and EXG).
Each of these questions comprises two sub-questions (i.e.

Question 1.1, 1.2, 2.1, 2.2) concerning information details
regarding task types vs. detailed task annotations. Questions
1.1 and 2.1 look at the task types which the participants iden-
tify (e.g. editing source file or test development). Questions
1.2 and 2.2 determine, whether the participants correctly
consider all task annotations for each task (e.g. the number
of test cases).

The questions are quantified by metrics. In our experiment
we use F1 score (i.e. harmonic mean) to aggregate recall
and precision of task types and task annotations. We com-
pare results of all participants with a reference solution (i.e.
benchmark). This comparison leads to two types of errors:
1) False negative is when the participant misses an element
of the reference solution. 2) False positive is when an el-
ement is considered, which is not element of the reference
solution. Given the number of correctly considered elements,

27

tp, the number of false negatives, fn, and the number of
false positives, fp, precision and recall can be calculated as

follows: precision =
tp

tp+fp
, recall =

tp
tp+fn

. F1 score is the

harmonic mean of the both metrics: F1 = 2 precision×recall

precision+recall
.

In short, the GQM plan covers the following metrics. Ques-
tions 1.1 and 2.1: F1-score for recall and precision of task
types. Questions 1.2 and 2.2: F1-score for recall and precision
of task annotations.

Group Setup

We compare the results of a treatment group, comprising
6 computer science students, a control group, comprising 8
computer science students, and an expert group, comprising
5 researchers with master or PhD degree in computer science.
While the treatment group used KAMP to derive the task
lists and identify affected artefacts, the control and the expert
group realised the same analysis manually. The 14 computer
science students were participants of a practical course, in
which they had to develop a distributed software system
for mobile devices and servers. They learned all stages
of a software development process. During the practical
course we observed different student progresses. In order
to divide the participants into two homogeneous groups, we
used a stratified sampling method. The better students were
assigned to the first stratum, whereas the other students
were assigned to the second group. In the next step, we
distributed each stratum randomly and equally to treatment
group and control group.

Preparations

In order to prepare student participants for the experiment
and establish equal conditions they were trained in software
architecture knowledge and modelling. We assumed expert
participants to be familiar with software architecture knowl-
edge and modelling. Moreover, we trained the treatment
group in KAMP tool application.

Experiment Material

Tab. 3 summarizes the experiment materials. As seen,
all groups received a textual system specification with ad-
ditional information and a PCM architecture model, while
the treatment group was given the KAMP analysis tool and
the architecture model together with the context annotation
model. The context annotation model covered annotations
as described in third paragraph of Section 3. The tool was
accompanied by a usage guide. All participants got four task
descriptions with detailed work instructions. This included
an overview of task types and task list examples. The exper-
iment consisted of three stages: the warm-up stage, the anal-
ysis stage with the analysis tasks, and the after-glow stage.
Each stage was accompanied by a questionnaire: 1) The
warm-up questionnaire helped participants get familiar
with the software system and its environment. 2) Analysis
questionnaires, either for tool results or for manual results.
3) Post-experimental questionnaires provides us with
participant feedback on the experiment and a self-assessment.

Experiment Tasks – Change Requests

The experiment comprises four change requests in the user
management system, referred to tasks:

Change Request 1 (CR1): User data type should be
extended by an additional postal code field. This is the
change request already presented in Sec. 2.2.

Change Request 2 (CR2): The interface of the external
authentication service evolves. A provided method of this
REST-interface is extended by an additional parameter. In
particular, IAuthentification provides checkUser method,

Materials Treatment Control Expert
Group Group Group

Textual System x x x
Specification with
Context Information
Architecture Model x x x
Using PCM
Context Annotation x
Model Using KAMP
KAMP Tool x
KAMP Usage Guide x
Task Description x x x
Task Types Overview x x
Task Lists Examples x x
Warm-up quest. x x x
KAMP analysis quest. x
Manual Analysis quest. x x
Post-experimental quest. x x x

Table 3: Overview of materials for various groups

which includes nickname and password parameter. This
method is extended by parameter dateOfBirth.

Change Request 3 (CR3): The data format of the
REST-interface IUserServiceTomcat should be changed from
JSON to XML.

Change Request 4 (CR4): In order to map object/re-
lational, the user management system uses Hibernate. Due
to licensing restrictions the Hibernate component should be
replaced by an in-house developed component.

6.2 Results Summary
Tab. 4 shows average results of F1 metrics. Highest results

are represented in bold. For task types (TT), over all change
requests, the treatment group’s average F1 score is higher
than control group’s but lower than expert group’s. Treat-
ment group is better than control group but slightly worse
than expert group. This is caused by lower results for CR1
and CR4. In these cases the tool results were missing some
task types compared to expert group. The root cause for this
is a missing annotation in the annotation model, which was
given to participants upfront. For task annotations (TA),
over all change requests, the treatment group’s average F1
score is higher than control group’s and expert group’s. For
task annotations the average F1 score of treatment group is
in all cases higher than control group’s and expert group’s
values, either for average over all change requests and for
individual change requests.

F1 score Treatment Control Expert
Group Group Group

F1(TT, all CRs) 0.914 0.850 0.941

F1(TA, all CRs) 0.839 0.416 0.598
F1(TT, CR1) 0.857 0.907 0.958

F1(TA, CR1) 0.852 0.620 0.736
F1(TT, CR2) 1.000 0.894 0.951
F1(TA, CR2) 0.790 0.389 0.488
F1(TT, CR3) 1.000 0.824 0.969
F1(TA, CR3) 1.000 0.352 0.758
F1(TT, CR4) 0.800 0.775 0.887

F1(TA, CR4) 0.712 0.306 0.409

Table 4: Average F1 score over all participants in
each group and for each task

Using boxplots we compare the experiment result of the
groups regarding task annotations, shown in Fig. 3 and
Fig. 4. We observe that the treatment group achieved better

28

F1 scores compared to the other two groups. This can be
seen for F1 scores for individual change requests in Fig. 3 and
for all change requests in Fig. 4. Overall the study indicates
that less-experienced users, who uses our approach identifies
more affected artefacts compared with less-experienced users,
who does not use KAMP. Thus, KAMP improves traceabil-
ity of modifications in the software architecture model and
facilitates impact analysis.

TG CG EXG

0
.0

0
.4

0
.8

a) Task annotations for CR1

Group

F
1

 s
c
o

re

TG CG EXG

0
.0

0
.4

0
.8

b) Task annotations for CR2

Group

F
1

 s
c
o

re

TG CG EXG

0
.0

0
.4

0
.8

c) Task annotations for CR3

Group

F
1

 s
c
o

re

TG CG EXG

0
.0

0
.4

0
.8

d) Task annotations for CR4

Group

F
1

 s
c
o

re

Figure 3: F1 score for task annotations for individ-
ual change requests

TG CG EXP

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F1 score for task annotations for all change requests

Group

F
1
 s

c
o
re

Figure 4: F1 score for task annotations for all change
requests

As illustrated in Table 5, the treatment group spent less
time for analysis compared with control group and expert
group. Tool support reduced manual writing overhead and
lookup time for task annotations. Within the same time
users can analyse more change requests by using our tool.
Hence, our approach improves scalability.

❳
❳
❳
❳
❳
❳
❳❳

Groups
Time

CR1 CR2 CR3 CR4 Total

EXP 27.8 13.4 10.4 10.8 62.4
KG 19 10.75 10.38 8.43 48
BG 10.33 7.17 6.83 5 24.25

Table 5: Average time in minutes to realise the
change requests by each participant group

6.3 Validity discussions
Following we discuss the internal and external validity of

our empirical study and the potential threats to validity.
Internal Validity

The Internal validity indicates whether the changes in
the dependent variables caused the observed changes in the

independent variable [23]. In other words, we have to en-
sure, that our treatment leads to resulting observations, and
no side effects have influences on results. To improve the
quality of our experiment we followed guidelines on empiri-
cal studies with students described in [8]. Experiment was
properly integrated in student course. Experiment timeline
was aligned with course schedule. Data and results were
collected anonymously. Study goals are formulated to fit
student involvement. External validity issues were consid-
ered early and also reflected in experiment goals. We divide
the students based on their experience and skills into ho-
mogenous groups. All participants were trained to gain the
same level of knowledge and received the same information
and materials. Filling the orientation questionnaire helped
the participants to get familiar with the system, tools, and
information. The only explicit difference between groups was
the treatment of the treatment group. This consists of the
usage of analysis tool instead of manual analysis and addi-
tional trainings in tool application for the treatment group.
The results of the treatment group comprise the tool-derived
task lists. We took several means to avoid side effects. All
analysis tasks were done individually by participants without
any communication. Thus, the results were independently
evaluated. The size of groups is limited. Differences in group
sizes are due to participant drop-out after the treatment
group was already trained. Thus, we could not re-balance
groups. Missing annotations in the context model lead to
reduced results for treatment group.
External Validity

The External validity indicates whether the results ob-
served in the experiment can be applied to other groups,
systems, or configurations [23]. In our experiment the stu-
dents had to apply our tool to semi-automatically analyse
the changes and to derive the task lists, as the students are a
representative group of less-experienced users. On the other
hand the researchers represent the experienced users.

We provided the participants with architecture model and
context information in a textual manner, since building the
architecture model and gathering the context information are
not analysed in our experiment. In a real project, however,
context information is widely dispersed. In our experiment,
a set of all potential task types was provided, which does not
exist in a real software development project. This approach
assumes that the user models the structure of the system
and the context information as complete as possible. A
general limitation of model driven approaches is to find
trade-offs between modelling effort und the applicability of
the approach.

As described in group setup we used the number of partic-
ipants was rather small. However, the empirical study used
in the paper is appropriate to show the capability of KAMP,
as the subject sample consists of both experienced and less-
experienced user groups. Furthermore, we used stratified
sampling methods to divide the participants in homogeneous
groups. Therefore, we expect that a larger sample size does
not significantly change the results of the study.
In conclusion the validation showed that the tool-based

KAMP analysis by less-experienced users for the software
architecture presented in Fig. 1 resulted in a better quality of
task lists compared with manual analysis of less-experienced
users and in task lists of similar quality compared to experts.
According to task annotations KAMP’s results were even
better than less-experienced users and experts.

29

7. CONCLUSIONS
In this paper, we presented the scenario-based approach

KAMP, which enables users to semi-automatically derive
task lists from architecture models, which were manually
annotated with context information involving necessary in-
formation to realise change requests. This task lists consider
the changes to be made in all kinds of software artefacts (e.g.
source code, test cases, or deployed instances). In addition,
we described a running example illustrating each phase of
KAMP: 1) In the preparation phase the software architect
models and annotates the software architecture. 2) In the
change request analysis phase the user models the change
request by modifying the architecture model and triggers
the tool to automatically calculate the work plan comprising
the task lists. Furthermore, we presented a formalisation of
KAMP by extending PCM and meta-model transformation.
In order to evaluate KAMP, we conducted an empirical study
with 14 computer science students and 5 researchers divided
into three groups: an experiment group, a control group and
an expert group. We analyse a real user management system.
The study indicates, that KAMP improves the scalability of
change propagation analysis due to automation and provides
more homogenous and precise results.
Using an architecture model with context information,

KAMP enables project members to semi-automatically gen-
erate a task list regarding various technical and organisational
work areas during each phase of software life cycle. It con-
siders not only stages in the development process, but also
further aspects of a software product, such as test cases,
deployment, build configurations. Furthermore, we consider
both architecture modelling tasks and project management
tasks. We assess the evolution of software using change re-
quests as a special case of change scenarios and analyse the
structural propagation of changes using an initial change
request. Additionally, an automatically generated task list
improves the scalability of change propagation analysis.
We aim to extend KAMP to include the meta-models of

other domains, such as manufacturing automated system and
their associated processes. To this end, KAMP’s idea can be
combined with existing cost estimation approaches, such as
function point analysis and CoCoMO II. Furthermore, using
KAMP an architecture maintainability simulator can be
developed to calculate the maintainability of an architecture
based on a set of change requests with certain probabilities.
Moreover, KAMP could be extended to automatically derive
change scenarios from recurring requirements to improve
traceability.

Acknowledgments

This work was supported by the DFG (German Research
Foundation) under the Priority Program SPP 1593: Design
For Future – Managed Software Evolution (grant RE 1674/7-
1). We thank Thomas Knapp for inspiring discussions and
support during conception and tool development.

8. REFERENCES

[1] S. Becker et al. The palladio component model for
model-driven performance prediction. J. Syst. Softw.,
82(1):3–22, 2009.

[2] P. Bengtsson and J. Bosch. Architecture level
prediction of software maintenance. In Proc. of 3rd
CSMR, pages 139–147, 1999.

[3] P. Bengtsson et al. Architecture-level modifiability
analysis (ALMA). J. Syst. Softw., 69(1-2):129–147,
2004.

[4] B. W. Boehm et al. Software Cost Estimation with
Cocomo II with Cdrom. Prentice Hall, 2000.

[5] R. Carbon et al. Architecture-Centric Software
Producibility Analysis. Fraunhofer IRB Verlag, 2012.

[6] S. K. Card et al. The keystroke-level model for user
performance time with interactive systems. CACM,
23(7):396–410, 1980.

[7] S. K. Card et al. The Psychology of Human-Computer
Interaction. L. Erlbaum Associates Inc., 1983.

[8] J. C. Carver et al. A checklist for integrating student
empirical studies with research and teaching goals.
ESEJ, 15(1):35–59, 2010.

[9] P. Clements et al. Evaluating Software Architectures:
Methods and Case Studies. AW, 2002.

[10] M. Conway. How do committees invent? Datamation,
14:28–31, 1968.

[11] J. B. Dreger. Function Point Analysis. Prentice-Hall,
Inc., 1989.

[12] D. Garlan et al. Evolution styles: Foundations and tool
support for software architecture evolution. In Software
Architecture, WICSA/ECSA, pages 131–140. IEEE,
2009.

[13] C. Heger and R. Heinrich. Deriving work plans for
solving performance and scalability problems. In
EPEW, pages 104–118, 2014.

[14] O. Hummel and R. Heinrich. Towards automated
software project planning - extending palladio for the
simulation of software processes. In KPDAYS, pages
20–29, 2013.

[15] E. Kindler and R. Wagner. Triple graph grammars:
Concepts, extensions, implementations, and application
scenarios. Technical report, University of Paderborn,
Department of Computer Science, 2007.

[16] B. Kirwan and L. Ainsworth. A Guide To Task
Analysis: The Task Analysis Working Group. Taylor &
Francis, 2003.

[17] N. Lassing et al. Towards a broader view on software
architecture analysis of flexibility. In Proc. of APSEC,
pages 238–245, 1999.

[18] M. M. Lehman et al. Metrics and laws of software
evolution - the nineties view. In Proc. of 4th Intern.
METRICS, pages 20–, 1997.

[19] M. Naab. Enhancing architecture design methods for
improved flexibility in long-living information systems.
PhD thesis, Fraunhofer IESE, 2012.

[20] D. J. Paulish. Architecture-centric Software Project
Management: A Practical Guide. AW, 2002.

[21] J. Stammel and R. Reussner. Kamp: Karlsruhe
architectural maintainability prediction. In Proc. of 1st.
L2S2 Workshop, pages 87–98, 2009.

[22] J. Stammel and M. Trifu. Tool-supported estimation of
software evolution effort in service-oriented systems. In
Proc. 5th Intern. (MDSM) and 5th Intern. (SQM)
Workshop, volume 708, pages 56–63. CEUR-WS, 2011.

[23] C. Wohlin et al. Experimentation in Software
Engineering: An Introduction. Kluwer Academic
Publishers, 2000.

30

