
 The Queen’s Communicator:

An Object-Oriented Dialogue Manager

Ian O’Neill*, Philip Hanna*, Xingkun Liu*, Michael McTear°

*School of Computer Science

Queen’s University, Belfast, N. Ireland
{i.oneill,p.hanna,xingkun.liu}@qub.ac.uk

°School of Computing and Mathematics

University of Ulster, Jordanstown, N. Ireland
mf.mctear@ulster.ac.uk

Abstract

This paper presents some of the main features of a prototype

spoken dialogue manager (DM) that has been incorporated

into the DARPA Communicator architecture. Developed in

Java, the object components that constitute the DM separate

generic from domain-specific dialogue behaviour in the

interests of maintainability and extensibility. Confirmation

strategies encapsulated in a high-level DiscourseManager

determine the system’s behaviour across transactional

domains, while rules of thumb encapsulated in a suite of

domain experts enable the system to guide the user towards

completion of particular transactions. We describe the nature

of the generic confirmation strategy and the domain experts’

specialised dialogue behaviour. We describe how rules of

thumb fire given certain combinations of user-supplied values

– or in the light of the system’s own interaction with its

database.

1. Introduction

The aim of the current research is to explore the manner in

which mainstream object-oriented development techniques

might be used to create a spoken dialogue manager (DM) that

encapsulates generic and domain-specific dialogue

management strategies. Implemented in Java, the DM

receives semantically tagged user input via the Phoenix

Semantic Frame Parser [1] and generates output using the

Festival speech synthesiser [2]. The DM communicates with

these and other service providers within the DARPA

Communicator architecture [3], based on the Galaxy hub, a

software router developed by the Spoken Language Systems

group at MIT [4] and subsequently released as an open source

package in collaboration with the MITRE Corporation [5].

Our working ‘testbed’ application is based on the components

supplied with the CU Communicator [6], from which we have

removed the dialogue management components and replaced

them with components of our own. At present the system

accepts keyed natural language input via the parser and

outputs key phrases rather than well-formed sentences to the

speech synthesiser: a fully implemented speech user interface

is planned.

The present Java implementation is based broadly on a

Prolog++ prototype [7, 8] which was used to explore the

relationship between generic confirmation strategies and

domain-specific heuristics for furthering transactions. By

using suites of domain-specific dialogue-furthering heuristics

– coded declaratively and then parsed – the Java

implementation has captured much of the intuitive

programming style of its Prolog predecessor. Moreover, these

heuristics or ‘rules of thumb’ have now been expanded to

encompass not only the interaction between the system and

the user, but also the interaction between the dialogue

manager and a database. Thus, there are two flavours of ‘rules

of thumb’. On the one hand user-focussed rules determine

the system’s response to particular combinations of data

supplied by the user: the system might attempt a database

lookup or ask the user for more information. On the other

hand database-focussed rules guide the system as to how it

should attempt an alternative database request when the user

has provided an invalid combination of data values. In each

case generic behaviour determines how the system’s domain-

specific determinations are conveyed to the user.

2. Architecture

2.1. Overview

Although some currently available dialogue systems use object

components in accordance with the latest software engineering

orthodoxy [9], little published research addresses the question

of how established techniques of object-oriented software

engineering [10, 11] can contribute to the dialogue

management task. It is hoped that our OO approach to spoken

dialogue management will provide a framework within which

generic confirmation strategies and rules-of-thumb specific to

particular business domains can be intuitively maintained and

extended. Figure1 shows some of the key components of the

Java DM, as well as the inheritance hierarchy.

2.1.1. DialogServer, DialogManager and DomainSpotter

DialogServer provides an interface to the hub. It contains a

DialogManager, which as well as co-ordinating dialogue turn-

taking, has a suite of business domain experts

(AccommodationExpert is one example). These domain

experts are grandchildren and great-granchildren of

DiscourseManager below.

DialogueManager also has a DomainSpotter that helps

select domain expertise, and a DiscourseHistory that

maintains a record of user-system interaction across domains.

The DomainSpotter supplies each domain expert with the

output of the semantic parse. Each expert scores that parse

against the semantic categories that it can process and returns

the score to the DomainSpotter. The domain expert that

EUROSPEECH 2003 - GENEVA

593

scores highest will be the one that the DialogManager will ask

to apply its domain-specific heuristics to the more detailed

processing of the enquiry. For example, an

AccommodationExpert might score highest and so become

handling expert if the user has been asking about hotels in

Belfast. The ‘enquiry focus’ will remain with this handling

expert, until the parsed input indicates that another domain

expert would make a more appropriate handling expert.

In a variation on this approach we are now implementing

functionality that will allow expert superclasses – e.g.

EnquiryExpert – to poll their subclasses and have them

supply a natural language phrase that conveys their area of

expertise, information that can be used to direct the user when

he or she has made a very vague or ambiguous enquiry that

could potentially fall to a number of handling experts. We

believe this will simplify the process of adding new expertise

to the system.

2.1.2. DiscourseManager, EnquiryExpert and subclasses

The DiscourseManager is responsible for the DM’s generic

discourse behaviour. It determines the system’s response to

new, modified or negated information from the user, and it

determines when the domain-specific rules of thumb,

encapsulated in the suite of domain experts, should be allowed

to fire. The system’s utterances typically take the form of an

implicit confirmation of new information supplied by the user

(in a fully generated form the system utterance might be “So,

I’ve got you staying at the Hilton in Belfast from June 20th -”)

followed immediately by the system’s next question (“- what

day will you be leaving?”). If the user has modified or negated

information that the system had previously recorded, the

system’s next utterance concentrates on correcting the

modified or negated information rather than seeking further

information. The DiscourseManager is at the top of the

inheritance hierarchy. Its behaviour therefore colours the

manner in which its grandchildren and great-granchildren

(EnquiryExpert subclasses like AccommodationExpert and

TheatreExpert) interact with the user in their own domains

(accommodation, events, etc.).

The DiscourseManager is able to work out what has been

repeated, modified or negated by the user by comparing a

frame of information relating to the user’s latest utterance,

with a corresponding frame representing the last discourse

state. This last discourse state indicates what information had

been provided by the user, the status of each piece of

information (repeated, modified, negated, etc.) and the

system’s previous intentions for confirming or repairing

supplied or missing information. Using the last discourse

state the system is therefore able to interpret the user’s latest

utterance in the light of the intention behind its own last

utterance (e.g. if the user does not attempt to modify the

information conveyed by the system’s implicit confirmation

“So, I’ve got you staying at the Hilton…”, then the Hilton can

(unless it is subsequently modified) be regarded as the

confirmed accommodation name.

The DiscourseManager makes use of a number of other

components. In order to let each of its domain-specific

EnquiryExpert subclasses update the record of the evolving

dialogue, it takes on the DialogManager’s DiscourseHistory

as an inheritable attribute of its own. DiscourseHistory

maintains a record of the evolving dialogue in the form of a

stack of DialogFrames, each of which in turn comprises a set

of Attribute objects relevant to the particular business

domain. EnquiryExpert and its subclasses represent the

domain-specific expertise that augment the behaviour of

DiscourseManager once the latter’s generic confirmation

strategies have been applied.

2.1.3. Discourse History, Dialogue Frame, Attribute

The DiscourseHistory is a stack of DialogFrames and contains

methods that assist the DiscourseManager in adding frames to

and retrieving frames from the stack

The DialogFrame is a set of attributes (of class Attribute –

more about this presently) that corresponds to the frame of

slots that must typically be filled to complete a transaction in

a particular domain - events or accommodation, say. The

generic DialogFrame has methods that are not domain-

specific and that enable calling objects to (among other

things) addAttribute and getAttribute. Specialisations of

DialogFrame are initialised with attributes relevant to a

particular enquiry type: for example a frame for an

accommodation booking (AccommodationDialogFrame)

Figure 1: High level UML class diagram for the Java dialogue manager

*

1

1

1
1

*

Create

*1

111*

1

1

1

*

DialogFrame

-- provide generic
dialog frame
functionality

Attribute

-- individual dialog
frame attribute,
e.g. Price, Date

EventDialogFrame

-- frame containing
event related
attributes

AccoDialogFrame

-- frame containing
accommodation
related attributes

DiscourseHistory

-- store previous
dialog frames for
all experts

DialogServer

-- provide Galaxy
hub interface

DialogManager

-- contains a number of
EnquiryExpert subclass
instances

-- contains a DiscourseHistory
instance shared between the
instantiated experts

-- contains a DomainSpotter
instance to exercise high-
level control over
instantiated experts

DomainSpotter

-- determine and
maintain enquiry
focus

TheatreExpert

-- domain-specific
theatre enquiry
expertise

CinemaExpert

-- domain-specific
cinema enquiry
expertise

EventExpert

-- domain-specific
processing for
events

AccommodationExpert

-- domain-specific
processing for
accommodation

EnquiryExpert

-- generic
processing for
domain-experts

DiscourseManager

-- implement generic
confirmation
strategy

DB_Request

-- encapsulate
expert initiated DB
request

ExpertRuleSequence

-- collection of
related, expert-
provided, rules

ExpertRule

-- individual
database- or user-
focussed rule

EUROSPEECH 2003 - GENEVA

594

might include the attributes accommodation type, date from,

date to, etc. We tag all instances of a frame of a particular

type with a distinctive identifier – e.g. “Accommodation” for

an AccommodationDialogFrame. This gives us the option of

using DiscourseHistory’s method getLastMatchingFrame to

retrieve a frame that furthers a particular discourse strand (an

accommodation enquiry, say), from among other types of

frames in the DiscourseHistory’s stack. These other frames

may be generated if, for example, the user enquires about

going to a show in the course of an accommodation enquiry.

Each object of class Attribute within a DialogFrame

comprises a number of data values – attributeName,

attributeValue, confirmationStatus (modified_by_user, etc),

discoursePeg (incremented as the value is repeatedly

confirmed by the user, reset to zero when modified etc.)

systemIntention (repair_confirm, etc.) – which collectively

inform the system of the status of each piece of information

that will be used to complete the transaction. Here object-

orientation is being used to create a multi-facetted view of

each piece of information being considered by the system.

2.2. The domain experts’ heuristics

Terminating the inheritance hierarchy are the domain experts:

AccommodationExpert, EventExpert, CinemaExpert,

TheatreExpert, etc. (CimemaExpert and TheatreExpert are

children of EventExpert and represent further specialisations

of their parent’s event-handling expertise.) These experts

contain a battery of domain-specific rules that enable them to

respond appropriately to the user, given that the user has

supplied a particular combination of confirmed attribute

values. The behaviour inherited from the DiscourseManager

ensures that domain experts confirm or query information

appropriately, before assuming that it has been supplied and

recognised correctly. Only when information has been (at

least implicitly) confirmed is it used to trigger the handling

domain expert’s heuristics, expressed as sets of transaction

rules. Provision has been made within the object hierarchy to

allow rules that are more domain-specific to fire first and

rules that are more generic to be tried next in the case where

the object hierarchy is extended below the first level of

domain experts.

The transaction rules encapsulated in the domain experts

fall into two main sequences:

• user-focussed rules: rules that are used to trigger the

system’s immediate response to specific confirmed

combinations of information supplied by the user and

recorded in the evolving dialogue frame – the rules may

cause the system to ask for more information, or may

initiate a database search.

e.g. IF (the user has not given

 accommodation name [e.g. ‘Hilton’]

 or accommodation type [e.g. ‘Hotel’])

THEN ask for accommodation type (1)

• database-focussed rules: rules that are applied in the

light of the system’s failed attempts to retrieve

information from or validate information against the

database. These failed searches may result from a

particular combination of search constraints, whether

these are supplied by the user, or by the system when it

attempts to retrieve information to assist the user. The

database-focussed rules may therefore recommend that a

constraint (e.g. the class of hotel) be relaxed in order to

get a database match for other user requirements (e.g. the

hotel location that the user has requested).

e.g. IF (failed search was to find accommodation name

 [e.g. Hilton, Holiday Inn, etc.]

AND constraints were location Belfast and class

four-star and accommodation type hotel)

THEN relax constraint class four-star and re-do

 search (2)

The database-focussed rules represent recovery strategies

that enable the system to offer viable alternatives when an

enquiry might otherwise reach an impasse. The user remains

free to reformulate the enquiry in a way that differs from the

system’s suggestion; indeed, in circumstances where the

system has no specific recommendation to make, the system

will simply explain why the database search has failed and

pass the initiative back to the user.

The user-focussed and database-focussed rules that are

encapsulated in the domain experts are representative of the

kinds of decision making that characterise a human expert in

the particular domain – a booking clerk at a theatre, or a desk

clerk at an hotel. We intend to refine the rules in the light of

more detailed studies of interactions between human

enquirers and human agents. For example, in (2) above, it

might on occasion be preferable to search for a different hotel

location, while maintaining the class constraint.

Within each domain expert, each rule is specified

declaratively. For example, (1) above appears as

String userFocussedRule1 = "

[RULE]

{ AccoName UNSPECIFIED }

{ AccoType UNSPECIFIED }

[ACTION]

{ INTENTION AccoType SPECIFY }

[RULE-END]"; (3)

while (2) above appears as

String dbFocussedRule1 = "

[RULE]

{ AccoName TARGET }

{ AccoType CONSTRAINING }

{ Location CONSTRAINING }

{ AccoClass CONSTRAINING }

[ACTION]

{ RELAX \" AccoClass \" }

[RULE-END]"; (4)

Specifying rules declaratively in this manner recreates

some of the intuitiveness of rule-based programming – the

suite of rules can be easily extended or reduced to capture the

subtlety of human behaviour. In creating the rules the

developer is not so much concerned with how the behaviour

will be implemented as with what the behaviour should be.

 However, implementing the behaviour needs to be

addressed somewhere. The rule specifications are used as

parameters for building ExpertRule objects, which contain

methods for extracting and analysing the contents of the rule,

and these rule objects are in turn built into

ExpertRuleSequence objects (typically, for each domain

expert, there will be a sequence for user-focussed rules and

another for database-focussed rules). Each instance of

EnquiryExpert (whether an AccommodationExpert, an

EUROSPEECH 2003 - GENEVA

595

EventExpert or a still more specialised subclass) is permitted

by the generic confirmation strategy to test its rule sequences

when there are no user-initiated modifications or negations to

be addressed. A user-focussed rule may thus cause a

SPECIFY intention to be set against an attribute in a dialogue

frame, or it may initiate a database search, and if this search

fails to return the value(s) sought, the query may be

resubmitted in amended form in accordance with the expert’s

database-focussed rules. System output is currently in the

form of key phrases – so an implicit confirmation followed by

a SPECIFY intention might be output as: “Implicit_Confirm

AccoType = Hotel; Specify Location.” We intend to develop

a natural language generation module that will accept this or

similar semantic output and generate a well-formed utterance.

2.3. Some new generic behaviour

In order to deal with the novel situation of the domain expert

using its database-focussed rules to reformulate database

queries that were originally composed on the basis of the

user’s confirmed utterances, we have had to create two new

generic confirmation statuses to extend the set originally

proposed by Heisterkamp and McGlashan [12]. Thus,

alongside new for system, inferred by system, repeated by

user, modified by user and negated by user, we have added

modified by system and negated by system – to deal with

situations where the system, after running a modified or

‘relaxed’ database query, has found, respectively, one or

several alternative values to the failed constraint supplied by

the user. The generic confirmation strategy encapsulated in

the DiscourseManager uses an enhanced set of evolve rules,

extended from the original set described in [7], to set these

statuses. The system’s response to the user must now address

the possibility that a domain expert may have negated a user

value but found no alternatives, negated a value and found

several alternatives or modified an invalid constraint to a

valid one. Accordingly system intentions now include

requests for the user to reformulate the enquiry, choose one of

the suggested alternative constraints, or explicitly confirm a

constraint value that the system has modified.

2.4. Working with the Galaxy hub

A further element of the object-oriented solution is the means

by which the DialogueManager communicates with the

database server via the Galaxy hub. Whenever an

EnquiryExpert subclass needs to make a database search, it

creates a DB_Request object whose attributes record which

values are sought, which search constraints are to be used for

the database search, and which constraints have been relaxed

(i.e. require new values). The object must pass between two

servers (going from the DialogServer to the DatabaseServer

and back again) via the Galaxy hub. The DB_Request class

therefore includes the encoding and decoding functionality

that allows its instances to be encapsulated at the

DialogServer as a bitstream within a Galaxy hubframe and

reconstituted at a receiving DatabaseServer as an object. The

contents of the DB_Request object are then used to formulate

an SQL database query. The DB_Request object is populated

with the results of the database search. It is encoded again

and sent back via the Galaxy hub to the dialog manager

where it is reconstituted and passed back to the domain expert

that initiated the search. The domain expert can then apply its

rules of thumb to the data in the DB_Request object.

3. Conclusions

In creating our prototype dialogue manager in Java we have

continued to explore the possibility of separating generic from

domain-specific dialogue behaviour. A range of dialogue

components are now represented as objects, with data content

and methods to manipulate those data. The objects within our

system include data items supplied by a user and tagged with

confirmation status and system intention; enquiry-specific

frames of information in an evolving discourse history;

domain experts with their own agent-like behaviours; and

high level, inheritable confirmation strategies. As well as

extending our range of domain experts to cover other areas of

expertise (e.g. travel enquiries), we will be expanding our

parser grammars to support the more comprehensive phrase-

spotting required for free-form spoken input. For spoken

output we will be exploring means of converting the system’s

current output concepts into well-formed natural language

utterances.

4. Acknowledgements

This research is supported by the EPSRC under grant number

GR/R91632/01.

5. References

[1] Ward, W., “Understanding Spontaneous Speech: the

Phoenix System”, Proceedings of the International

Conference on Audio, Speech and Signal Processing

(ICASSP), 365-367, 1991.

[2] http://www.cstr.ed.ac.uk/projects/festival/

[3] http://www.darpa.mil/iao/communicator.htm

[4] http://www.sls.lcs.mit.edu/sls/technologies/galaxy.shtml

[5] http://fofoca.mitre.org/

[6] http://communicator.colorado.edu

[7] O’Neill, I.M., McTear, M.F., “A Pragmatic Confirmation

Mechanism for an Object-Based Spoken Dialogue

Manager”, Proceedings of ICSLP-2002, Vol. 3, 2045-

2048. Denver, September 2002.

[8] O’Neill, I.M., McTear, M.F., “Object-Oriented

Modelling of Spoken Language Dialogue Systems”,

Natural Language Engineering 6 (3-4), 341-362,

Cambridge University Press, 2000.

[9] Allen, J., Byron, D. Dzikovska, M., Ferguson, F.,

Galescu, L. and Stent, A., “An Architecture for a Generic

Dialogue Shell”, Natural Language Engineering 6 (3-4),

1-16, Cambridge University Press, 2000.

[10] Booch, G., Object-Oriented Analysis and Design with

Applications (2nd Edition). Benjamin/Cummings,

Redwood City, CA, 1994.

[11] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified

Modeling Language User Guide, Addison Wesley

Longman, Reading, MA, 1998.

[12] Heisterkamp, P. and McGlashan, S. “Units of Dialogue

Management: An Example”, Proceedings of ICSLP96,

200-203, Philadelphia, 1996.

EUROSPEECH 2003 - GENEVA

596

