

- 2.(4) Find all real zeros of $f(x) = x^3 x^2 2x$
- 3. (4) Divide $f(x) = 6x^3 19x^2 + 16x 4$ by x 2, and use the result to factor the function completely.
- 4. (4) Given the rational function $f(x) = \frac{1}{x+2}$; check for intercepts, symmetry, vertical asymptotes, horizontal asymptotes, and sketch its graph.

6.(4) a.) Find an angle θ that is coterminal to $\frac{11\pi}{4}$ such that $0 \le \theta \le 2\pi$.

b.) Find an angle θ that is coterminal to -423° such that $0 \le \theta \le 360^\circ$.

c.) What is the angle that is supplementary to $\theta = \frac{\pi}{15}$.

d.) Convert to radians: 330° . (Write your answer as a multiple of π .)

7. (4) Find the point (x, y) on the unit circle that corresponds to the real number $t = \frac{4\pi}{3}$.

Name

8. (4) Give the exact value of:
(a)
$$\cos\left[-\frac{\pi}{6}\right]$$
 (b) $\sin\frac{7\pi}{6}$ (c) $\tan\left[-\frac{3\pi}{4}\right]$

9. (4) In the triangle shown below, find the exact value of $\tan \theta$.

Box Answers!

- 10.(3) Determine the exact value of $\cos\theta$, if θ is in standard position and its terminal side passes through the point (-3, 3).
- 11. (3) Find the reference angle for $\theta = -155^{\circ}$.

Box Answers!

12.(4) Solve for
$$\theta$$
, $(0 \le \theta < 2\pi)$:
(a) $\cos \theta = \frac{\sqrt{2}}{2}$ (b) $\sin \theta = -\frac{\sqrt{3}}{2}$

13. (4) Determine the period and amplitude of the following functions:

(a)
$$f(x) = -7\cos 3x$$
 (b) $f(x) = 5\cos \frac{x}{2}$

14.(4) Evaluate:

(a)
$$\arcsin\left[-\frac{\sqrt{2}}{2}\right]$$
 (b) $\arcsin\left[-\frac{\sqrt{3}}{2}\right]$ (c) $\arctan\frac{\sqrt{3}}{3}$

Name

PART B	
1. (4) Find the domain of each function.	
(a) $f: \{(-3,0), (-1,4), (0,2), (2,2), (4,-1)\}$	(b) $h(x) = \frac{1}{x+5}$ (c) $k(x) = \sqrt{4-3x}$

2.(4) For f(x) = -2x + 4, find $\frac{f(x+h) - f(x)}{h}$ (A Difference Quotient)

3. (4) Given f(x) = x + 2 and $g(x) = 4 - x^2$, evaluate f(g(x)) when x = 0, 1, and 2.

- 4. (5) Find a polynomial function with integer coefficients that has the following four zeros. (There are many correct answers.) $0, 0, 4, 1 + \sqrt{2} i$
- 5. (4) A certain population decreases according to the equation $y = 300 5e^{0.2t}$. Find the initial population and the population (to the nearest integer) when t = 10.
- 6. (4) Write in logarithmic form: $3^5 = 243$.
- 7. (4) Write as the logarithm of a single quantity: $\frac{1}{5} \left[3 \log(x+1) + 2 \log(x-1) \log 7 \right]$.
- 8. (4) Solve for x: $\log x + \log(x+3) = 1$. Show work.
- 9. (5) A total of \$12,000 is invested at an annual rate of 9%. Find the balance after 6 years if it is compounded
 - (a) quarterly. (b) monthly. (c) continuously.

(Show formulas and calculations.)

Name

10. (4) A central angle θ of a circle with radius 9 inches intercepts an arc 20 inches. Find θ in decimal degrees and in radians. Show the calculation.

Box Answers!

- 11. (4) Use a calculator to find the value of $\cot 49^\circ$. Round your answer to four decimal places and show the calculation or function used on the calculator.
- 12.(4) Use a calculator to find θ such that $0 \le \theta < \frac{\pi}{2}$ and $\csc \theta = 1.4736$.
- 13. (4) Find x for the right triangle shown below. Show the calculation.

- 14. (4) A man that is 6 feet tall casts a shadow 14 feet long. Find the angle of elevation of the sun. Show the calculation used.
- 15. (5) An airplane leaves the runway climbing at 18° with a speed of 275 feet per second. Find the altitude of the plane after 1 minute. Show the calculation.
- 16. (4) Use a calculator to evaluate: $\arctan(-3)$. Round your answer to four decimal places.
- 17. (4) Use an inverse trigonometric function to write θ as a function of x.

23. (4) Simplify: $\sin^2 x \cdot \cot^2 x + \sin^2 x$. Show work; justify answer.

24. (4) Simplify the expression so that it is not in fractional form: $\frac{\cos^2 x}{1-\sin x}$. Use a graphing utility to verify your result. Sketch the graph.

25. (4) Find all solutions in the interval
$$[0, 2\pi)$$
: $2\sin^2 x = \sin x$.

26. (4) Given a triangle with $A = 102^{\circ}$, $B = 23^{\circ}$, and c = 576.1, find a.

27.(4) Given a triangle with a = 135, b = 71.6, and c = 69, find B.

28. (4) Find the determinant of
$$\begin{vmatrix} x^y & 2 \\ 3 & x^{2y} \end{vmatrix}$$