1. (3) The graph of $f(x)=x^{3}-3 x$ is shown in the following figure. Determine the open intervals on which $f(x)$ is increasing, decreasing, or constant.

2. (4) Find all real zeros of $f(x)=x^{3}-x^{2}-2 x$
3. (4) Divide $f(x)=6 x^{3}-19 x^{2}+16 x-4$ by $x-2$, and use the result to factor the function completely.
4. (4) Given the rational function $f(x)=\frac{1}{x+2}$; check for intercepts, symmetry, vertical asymptotes, horizontal asymptotes, and sketch its graph.
5. (4) a.) Find an angle θ that is coterminal to $\frac{11 \pi}{4}$ such that $0 \leq \theta \leq 2 \pi$.
b.) Find an angle θ that is coterminal to -423° such that $0 \leq \theta \leq 360^{\circ}$.
c.) What is the angle that is supplementary to $\theta=\frac{\pi}{15}$.
d.) Convert to radians: 330°. (Write your answer as a multiple of π.)
6. (4) Find the point (x, y) on the unit circle that corresponds to the real number $t=\frac{4 \pi}{3}$.
7. (4) Give the exact value of:
(a) $\cos \left[-\frac{\pi}{6}\right]$
(b) $\sin \frac{7 \pi}{6}$
(c) $\tan \left[-\frac{3 \pi}{4}\right]$
8. (4) In the triangle shown below, find the exact value of $\tan \theta$.

9. (3) Determine the exact value of $\cos \theta$, if θ is in standard position and its terminal side passes through the point $(-3,3)$.
10. (3) Find the reference angle for $\theta=-155^{\circ}$.

11. (4) Solve for $\theta,(0 \leq \theta<2 \pi)$:
(a) $\cos \theta=\frac{\sqrt{2}}{2}$
(b) $\sin \theta=-\frac{\sqrt{3}}{2}$
12. (4) Determine the period and amplitude of the following functions:
(a) $f(x)=-7 \cos 3 x$
(b) $f(x)=5 \cos \frac{x}{2}$
14.(4) Evaluate:
(a) $\arcsin \left[-\frac{\sqrt{2}}{2}\right]$
(b) $\arcsin \left[-\frac{\sqrt{3}}{2}\right]$
(c) $\arctan \frac{\sqrt{3}}{3}$

PART B
13. (4) Find the domain of each function.
(a) $f:\{(-3,0),(-1,4),(0,2),(2,2),(4,-1)\}$
(b) $h(x)=\frac{1}{x+5}$
(c) $k(x)=\sqrt{4-3 x}$
14. (4) For $f(x)=-2 x+4$, find $\frac{f(x+h)-f(x)}{h} \quad$ (A Difference Quotient)
15. (4) Given $f(x)=x+2$ and $g(x)=4-x^{2}$, evaluate $f(g(x))$ when $x=0,1$, and 2 .
16. (5) Find a polynomial function with integer coefficients that has the following four zeros. (There are many correct answers.) $\quad 0,0,4,1+\sqrt{2} i$
17. (4) A certain population decreases according to the equation $y=300-5 e^{0.2 t}$. Find the initial population and the population (to the nearest integer) when $t=10$.
18. (4) Write in logarithmic form: $3^{5}=243$.
19. (4) Write as the logarithm of a single quantity: $\frac{1}{5}[3 \log (x+1)+2 \log (x-1)-\log 7]$.
20. (4) Solve for $\mathrm{x}: \quad \log x+\log (x+3)=1$. Show work.
21. (5) A total of $\$ 12,000$ is invested at an annual rate of 9%. Find the balance after 6 years if it is compounded
(a) quarterly.
(b) monthly.
(c) continuously.
(Show formulas and calculations.)
22. (4) A central angle θ of a circle with radius 9 inches intercepts an arc 20 inches. Find θ in decimal degrees and in radians. Show the calculation.

23. (4) Use a calculator to find the value of $\cot 49^{\circ}$. Round your answer to four decimal places and show the calculation or function used on the calculator.
24. (4) Use a calculator to find θ such that $0 \leq \theta<\frac{\pi}{2}$ and $\csc \theta=1.4736$.
25. (4) Find x for the right triangle shown below. Show the calculation.

26. (4) A man that is 6 feet tall casts a shadow 14 feet long. Find the angle of elevation of the sun. Show the calculation used.
27. (5) An airplane leaves the runway climbing at 18° with a speed of 275 feet per second. Find the altitude of the plane after 1 minute. Show the calculation.
28. (4) Use a calculator to evaluate: $\arctan (-3)$. Round your answer to four decimal places.
29. (4) Use an inverse trigonometric function to write θ as a function of x .

30. (4) Simplify: $\sin ^{2} x \cdot \cot ^{2} x+\sin ^{2} x$. Show work; justify answer.
31. (4) Simplify the expression so that it is not in fractional form: $\frac{\cos ^{2} x}{1-\sin x}$. Use a graphing utility to verify your result. Sketch the graph.
32. (4) Find all solutions in the interval [$0,2 \pi$): $2 \sin ^{2} x=\sin x$.
33. (4) Given a triangle with $A=102^{\circ}, \quad B=23^{\circ}$, and $c=576.1$, find a.
34. (4) Given a triangle with $a=135, \quad b=71.6$, and $c=69$, find B.
35. (4) Find the determinant of $\left|\begin{array}{cc}x^{y} & 2 \\ 3 & x^{2 y}\end{array}\right|$
