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Critical Features of High performance Decision Trees 
 
Decision trees have justifiably become one of the most popular data mining tools.  They are 

relatively easy to use, the results can usually be displayed in an easy to read flow chart, and their 
predictive accuracy can be good to excellent across a broad range of database types and 
structures.  Decision tree products can differ markedly, however, in their flexibility, predictive 

accuracy, diagnostic feedback, and inherent ability to handle essential data mining tasks.  If you 
choose the wrong decision tree you could easily find yourself unable to conduct certain analyses, 
or developing models far inferior to those produced by a state-of-the-art package.  You could also 

end up learning much less about your data and waiting longer than necessary for your results.  
This document reviews some of key features of decision trees that any informed analyst should be 
thinking about when choosing this kind of data mining tool for important data analyses. 

 
Enforced Versus Optional Sampling 
 

This topic is likely to be an unexpected one for most analysts.  You would think that if you ask a 
data mining product to conduct an analysis of a training database with 100,000 records that the tool 
will actually train on this data.  Unfortunately, this is not necessarily the case.  Indeed, at least one 

major “enterprise class” product will extract a rather small sample from your training data for 
analysis purposes, with no clear warning that this is happening.  The end result is that your core 
analysis will actually be conducted on a tiny fraction of the data you were intending to analyze. 

Here is how enforced sub-sampling works: 
 
First, the training data base is identified and readied for analysis by the decision tree.  At this stage 

the training data may be of any size, although you might be required to have sufficient RAM to 
store it in its entirety.  Second, a random sample is quietly selected from this training database 
without any indication to the analyst that this is happening.  For the major product we are 

describing the default sample size is 5,000 records.  The analyst has the option of going into 
advanced control settings and changing this mandatory sample size but the maximum allowable 
sample is 32,768.  Third, the small sample is searched to identify the best splitting variable and 

split point.  Finally, the entire training database is partitioned using the splitter found.  It is this last 
step that creates the illusion that all the data is being used for the analysis, because once a split 
has been discovered from the small subsample it is applied to the entire training database. The 

entire process is repeated at each node in the tree until node sample sizes become very small.  
Every large node at the top of the tree will be split on the basis of a small subsample and only the 
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nodes at the bottom of tree will use all the available training data. 

 
The key issues here are not whether you should be sampling from the training data set when 
searching for a splitter.  The issues are: who decides (you or the data mining tool) and are you kept 

properly informed.  In the CART® decision tree you always have full control and you will always 
know the operational control settings.  By default, CART will use all of your training data to search 
for splitters.  If you wish, you can opt to use node sub-sampling to run faster analyses or to 

generate different trees based on different random node sub-samples.  When you use CART the 
choice will always be yours to make and the log will clearly report the control settings; with some 
other tools you will not have the option of using all of your data.  

 
In our opinion enforced node sub-sampling can seriously impair the quality of your analyses.  
Suppose, for example, that you have a 1 million record data base and you wish to study a binary 

response target with outcomes “Yes” and “No”.  If your response is relatively rare, as it might very 
well be in cases of fraud or drug discovery you could easily have as few as 5,000 “responders”.  If 
you work with a package which enforces random node sub-sampling you would be basing the top 

of your tree on a random sample of at most 32,768 records containing about 168 responses.  
Clearly, your ability to learn what is important from this data would be radically compromised. 
 

 
Handling A Large Number of Columns 
 

This decision tree capability appears to be so basic that you would not expect it to appear in a 
discussion of high performance tools.  Nevertheless, this is a dimension you should test explicitly if 
you expect to need to work with many columns.  The CART decision tree is tuned to handle 8,000 

columns readily and this number can be increased substantially in special versions of the software.  
Competing products may well claim that they can handle as many columns as you have in your 
database but the key question is performance.  We know of real world data analysis problems 

where other decision tree products essentially collapsed under the weight of as few as 1,500 
columns.  You won’t know how a tool will perform under these heavy loads unless you conduct real 
world tests.  The size of the vendor is not a reliable guide to the capability of the software and 

neither are descriptive terms like ‘enterprise’ or ‘scalable’.  In our experience, the bolder the 
descriptive terminology the more underpowered the software actually is.  If database size is an 
issue for you, you should conduct serious capacity tests and make sure that the software is actually 

analyzing all the data you provide. 
 
 

Set of Splitting Rules Available 
 
Several decision tree packages offer a collection of methods or splitting rules, but a few offer only 

one tree growing method such as entropy or a Chi-squared criterion.  In our view it is essential to 
have a wider menu of options.  We would go further though.  Rules such as gini and entropy are 
quite similar to each other and share essentially the same strengths and weaknesses.  To offer real 

variety a decision tree should offer the “twoing” split criterion introduced by Breiman, Friedman, 
Olshen, and Stone in their classic monograph, Classification and Regression trees (1984).  The 
twoing criterion will grow trees that are quite different from their gini and entropy (or chi-squared-

based) counterparts.  In particular, the twoing tree tends to be far more balanced in the share of 
data going to any part of the tree.  In contrast, the gini and entropy criteria tend to produce trees 
that break off a series of (sometimes small) subsets of the data.  There will be many circumstances 

when the twoing trees are far easier to understand and they will appear to tell an intelligible and 
well-organized story about the data.  A useful example is predicting the specific make of new 
vehicle a consumer will buy from the full range of more than 400 choices available today.  A gini 

tree could well begin in the root node and separate out Ford Taurus buyers whereas a twoing tree 
would be more likely to separate cars from trucks in the root node.  Going further, the twoing tree 
might continue by separating large vehicles from small ones within both cars and trucks whereas 

the gini tree might continue by separating out Honda Accords.  Which tree is better?  From a 
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predictive accuracy perspective they might have very similar performance.  But most market 

researchers would clearly prefer the twoing tree. 
 
 

 

 
 

 
 
How many tree growing rules do you need?  Certainly more than one and certainly you need the 

twoing rule in the tool kit. We offer seven tree growing rules for classification trees: (1) gini (2) 
symmetric gini (3) twoing (4) power modified twoing (5) ordered twoing  (6) entropy and (7) class 
probability.  For regression trees we also offer the least squares and least absolute deviation rules 

that are discussed further below.  The operating characteristics and their strengths and 
weaknesses are discussed in our extensive 300 page technical manual and briefly described in the 
on-line help. 

 
You may have observed that we do not offer the CHAID (chi-square automatic interaction 
detection) splitting rule in spite of the fact that it is one of the simplest trees to implement.  We 

believe that CHAID is a flawed technology that should be approached with great caution.  Its 
biggest flaw is that it is much too capable of growing “false positive trees” – trees that report non-
existent data structure.  To confirm this for yourself, add some random data columns to a data set 

you know well and then use one of these random columns as your target variable.  You will likely 
see a disturbingly frequent set of trees generated.  By contrast, CART will reject the data and 
report that it was not possible to grow a defensible tree.  This topic will be further discussed in 

another white paper devoted exclusively to CHAID. 
 
 

Handling Categorical Variables With Many Levels 
 
Categorical variables (also called nominal variables) are ubiquitous in databases and they are 

increasingly found with very large numbers of levels.  There are over 32,000 distinct zip codes in 
the United States, there are more than 400 different makes and models of new motor vehicles for 
sale in the US, and there are over one million web sites live on the internet.   It is becoming far 

more common for researchers to want to make use of such data in data mining models but for the 
most part decision trees are unable to accommodate the demand.  Major decision trees routinely 
limit the number of levels a categorical variable may take.  Some packages limit you to about 36 

levels; one “enterprise” class product allows only 128 levels.  At Salford Systems we have found 
such limits to be far too constraining so we have relaxed them entirely.  There are no fixed limits on 
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the number of levels a target or predictor variable may take in the CART decision tree.  Our own 

consulting practice has required us to use predictors with 4,000 levels and target variables with 
more than 400.  If you need to work with such data, then to the best of our knowledge, Salford 
Systems is the only provider of data mining software that can help you. 

 
 
Active Versus Passive Cost Matrices 

 
Major commercial decision trees allow the user to specify varying costs of misclassification.  These 
costs are used to represent the seriousness of different mistakes.  For example, if failing to detect a 

fraudulent transaction is 10 times more costly than stopping a good transaction we want to reflect 
this in our analyses.  Growing a standard decision tree and then reporting results incorporating 
costs is quite easy; you could even cut and paste a table of classification results into a 

spreadsheet, multiply each mistake by its cost and produce a total cost for the tree. Indeed, this is 
just what the major packages automate for you, and the results are quite informative. But what 
differentiates a good decision tree from a mediocre one is the ability to use the costs actively while 

growing the tree.  When costs are used actively the decision tree adapts to avoiding the most 
serious costs in every split.  A tree grown with an active cost matrix is likely to be completely 
different from a tree grown without the costs.  When costs are employed passively they do not have 

any impact on the tree structure at all.  Passive costs come into play only after the tree is grown 
and simply reflect the consequences of the standard tree; they do not influence the structure of the 
tree in any way. 

 
A tree that does not use cost information while it is being grown is at a serious disadvantage 
compared to a tree that does use cost information actively.  By attempting to avoid serious 

mistakes throughout the tree growing process the end result will be a better performing tree.  So 
why aren’t all decision trees capable of using active cost matrices?  There appear to be several 
reasons.  First, working out the mathematical details can be difficult to impossible, depending on 

the splitting rule involved.  Second, it appears that some data mining developers have simply failed 
to appreciate this subtlety.   
 

How can you tell whether the tree you are evaluating uses active or passive costs?  The best way 
is to set up a multi-class target with 3 or more levels and grow a tree with and without costs.  If the 
splits in the tree are the same in both sets of runs it is incapable of using cost information in the 

tree growing process. 
 
A major automobile company in the US has been making effective use of active cost matrices by 

trying to predict the crashworthiness of potential new cars.  The company collected all the crash 
test data produced by the National Highway Traffic Safety Administration (NHTSA) which rates 
each vehicle with between 1 and 5 stars (5 is best).  They augmented the data with detailed 

engineering specifications describing each car and then developed a CART model to predict the 
outcome (1,2,3,4, or 5 stars).  The company wanted a model that would only make innocuous 
mistakes and never mistake an unsafe car for a safe one.  They first built quite accurate trees 

without using cost matrices but were troubled by the fact that occasionally a 3-star vehicle would be 
misclassified as being 4-star.  Other mistakes, such as misclassifying a 5-star vehicle as 4-star, or 
misclassifying a 3-star vehicle as 2-star were considered innocuous.  They then rebuilt their trees 

using a cost matrix to reflect the seriousness of every possible mistake.  The end result was a tree 
that never made unacceptable mistakes and the model is now in use to evaluate the crash 
worthiness of every potential new car before any engineering work is undertaken.  This kind of 

result is only possible with an active cost matrix technology such as found in the Salford Systems 
CART decision tree.   
 

A plausible cost matrix for this problem is displayed below.  It reflects the fact that if an unsafe car 
(3 stars or fewer) is chosen for development the downstream costs of reengineering the vehicle 
once this is discovered can be very substantial.  If a safe vehicle is misclassified as unsafe it might 

not be considered further for development or it might receive additional unnecessary safety 
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engineering.  The most important point is that the tree grown with this matrix will quite different than 

a tree grown without the matrix. 
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Class Weights and Prior Probabilities 
 

Priors, also known as class weights, are a key control parameter in sophisticated decision tree 
products. They are central to any decision tree analysis and you will be using priors whether or not 
you are aware of it.  In brief,  priors are used to specify the overall weight placed on a level of the 

target variable.  In the simplest decision tree products, which do not offer explicit priors controls or 
case weights, the weight of a target variable class is proportional to the number of records in that 
class.  Thus, if you have a file containing 100,000 records, breaking down into 4,000 responders 

and 96,000 non-responders, most decision trees will automatically apply priors (class weights) of 
4% to the responders and 96% to the non-responders.  In the CART decision tree terminology 
these class weights are called “data priors” because they are taken directly from the data. Since a 

naïve decision tree is trying to maximize the number of cases it classifies correctly such a tree will 
devote most of its effort to classifying the non-responders.  Because the responders make up only 
4% of the data they might not receive very much attention.  After all, even if you misclassify every 

responder you would only be wrong 4% of the time! Indeed, a model that is correct 96% of the time 
can be guaranteed by simply classifying every record as a non-responder.  Such a model would be 
literally accurate but practically worthless. 

 
Various strategies have been taken by decision tree developers to deal with such situations.  The 
most primitive decision trees are unable to do anything internally and the analyst is asked to add 

clone copies of the responder records to the training data.  This is just a low technology way of up-
weighting the rare class (or classes).  For example, if you copied each responder record 23 times 
and added these copies to the training data you would have 96,000 records for each class 

(responders and nonresponders).   Some packages may instead recommend that you throw away 
92,000 of your nonresponder records so that you would be left with a balanced sample of 4,000 
responders and 4,000 non-responders. Neither of these primitive strategies is very appealing.  The 

first requires added data preparation for every analysis and may be infeasible for very large training 
data bases.  The second requires throwing away potentially valuable and informative data. 
 

Very few decision trees follow the CART practice of balancing your data automatically and allowing 
you to use all of your training data in its original proportions. In the default (but optional) approach 
pioneered by CART each class, regardless of size,  is treated as if it were of the same size as 

every other class.  This  “equal weights/equal priors” option is a considerable convenience, 
allowing any data to be profitably analyzed without special handling, regardless of how unbalanced 
the target variable might be. Equal priors ensures that a serious attempt to classify all classes 

correctly will be made. 
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Every decision tree we are aware of allows you to select “data priors” and for several trees this is 

your only choice.  A few more sophisticated trees also offer the ‘equal priors” option, which is an 
important feature.  But a high performance tree should also allow you to specify any prior class 
weights you choose.  For example, in our example with 4% of the data being fraud, you should be 

able to give the fraud class a weight of 8% or 22% or 3% or 55%.  Experienced CART modelers 
know that varying the prior class weights systematically can be used to uncover hot spots 
consisting of very high concentrations of fraud.  Varying the priors can also yield new insight by 

generating alternative trees with a different slant on the data.  But even decision trees that offer 
equal and data priors may not allow you to specify explicit priors and thus do not allow you to 
exploit the full power of decision tree technology.  It is important to test the software you are 

considering to ensure that it has actually all the technology that it appears to be delivering.  If you 
cannot set priors freely you will be missing an important decision tree control.  The size of the 
vendor, and the use of ‘scalable’ and ‘enterprise’ in the product literature are especially poor guides 

to the true capabilities of the products.  
 
 

Growing, pruning, and stopping rules 
 
In the late 1970’s and early 1980’s CART researchers Leo Breiman, Jerome Friedman, Richard 

Olshen, and Charles Stone spent several years testing stopping rules for decision trees.  They 
were finally able to establish that it is impossible to specify a reliable stopping rule; there is always 
the risk that important data structure might be left undiscovered due to premature termination of the 

analysis.  They suggested instead a revolutionary new two-stage approach to finding the optimal 
sized tree.  In the first stage a very large tree is grown containing hundreds or even thousands of 
nodes.  In the second stage the tree is pruned back and the portions of the tree that are not 

supported by test data are eliminated.  This grow and prune strategy is the only reliable method for 
arriving at the right sized tree.  A decision tree product that does not offer automatic growing and 
pruning is seriously deficient and is unlikely to consistently deliver high performance results.  

Unfortunately, some decision tree products, and particularly those based on the CHAID algorithm, 
are inherently dependent on a stopping rule, and are thus perpetually at risk of missing important 
data structure. 

 
The critical feature here is the automated growing of a too large tree followed by automated 
pruning to find the ‘right-sized tree”.  This disciplined process should not be confused with the 

option to manually prune splits, which is a post-final tree tweaking option found in many decision 
trees.  The rationale for the growing/pruning process is illustrated in the error curve graph below. 
 

CART Decision Tree Error Curve 
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Note the flat portion of the curve between four and twelve nodes for example.  A stopping rule 

might have concluded that the tree was not capable of making further progress and thus stop too 
early.  Another flat portion of the error curve is observed between fifteen and twenty one nodes and 
again a stopping rule could be fooled into stopping the tree growth too soon.  The CART strategy of 

growing the tree to a large size and then pruning back is the only way to determine the right sized 
tree. 
 

Testing And Self-Testing 
 
Every data mining tool should self-test automatically.  By this we mean that at the beginning of an 

analysis you should be specifying both train and test samples and your performance summary 
should automatically display test results.  Modern data mining tools are capable of generating 
models that perform brilliantly on training data while failing miserably on test data.  (Data miners 

call such models overfit or overtrained and say that the models fail to generalize). At the very least, 
if this is happening with your models your tool needs to let you know loudly and clearly.  You 
should not have to go through any cumbersome process to honestly evaluate your models. 

 
Fortunately, the CART decision tree has a self-testing procedure built into its core and every one of 
our performance summaries provides both train and test data results.   

 
Penalties on Variables 
 

Penalties on specific types of variables were pioneered by Jerome Friedman in MARS and Salford 
Systems extended and broadened the concept in the CART decision tree.  A penalty works by 
reducing the goodness-of-split score credited to a variable thus making that variable less likely to 

appear as the splitter in any node. An analyst may wish to impose a penalty on a variable to reflect 
the fact that the variable is costly to acquire or because of a preference to allow other variables to 
take precedence in the evolution of a tree.  Recent releases of CART also allow penalties to be 

placed on variables with a high percentage of missing values and categorical variables with many 
levels. Penalties offer the analyst an added lever use to shape a tree without having to manually 
dictate the specifics of certain splits.  Although penalties are new to decision trees we feel that they 

should be considered a key feature when comparing different algorithms and implementations of 
trees. 
 

Case Weights 
 
Case weights are record specific weights and can be unique to each record.  Case weights are 

separate form class weights and priors and both kinds of weights may be active in an analysis.  
There will be circumstances in which having the flexibility of case specific weights can be very 
helpful in an analysis. If the distribution of the predictors is expected to be different between the 

training and scoring samples case specific weights can allow the analyst to tune the tree to the 
future data. For example, if we knew that the age, education, and income mix of the prospects we 
intended to target were somewhat different than that found in the available training data then case 

weights could be used to adapt the tree to the expected target population.  Here the important point 
is that quite a few major decision trees do not support case weights thereby limiting the analyst. 
 

See the next pages for a summary table of the points made here
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CART®  Other Major Trees Notes 

 Data use (rows) 

♦  Uses ALL data to split every node 
unless sampling is explicitly 
requested 

♦  Some data mining packages will not use 
all of your data regardless of the settings 
you choose 

♦  In one major package a sample of no 
more than 32,768 records is used to split 
node without warning the user  

♦  There is no option to use more data 
regardless of the data set size 

♦  Some major decision tree packages are unable to 
use all the rows of data available, regardless of 
what the vendor claims.  The major limitation 
occurs when a tree always uses sub-sampling 
when searching for the best splitter of a node. 

 

♦  With node subsampling, a sample is used to 
determine the best split and then ALL data is 
partitioned using this split.  This creates the 
illusion that all data is being used but splits are 
potentially being determined by small fractions of 
the data 

 Data use (columns) 

♦  CART is capable of handling very 
large numbers of columns 

♦  Some major packages are very limited in 
practice.  Limits appear as low as 500 
and 1,500 columns depending on the 
package. 

♦  Some decision tree packages are unable to 
effectively handle problems with more than 1,500 
columns.  This is manifested in exceedingly long 
run times and crashes. 

♦  CART easily handles problems with up to 8,000 
columns and custom adaptations to 1 million 
columns can be obtained. 

 Splitting Rules 

♦  CART has a rich set of splitting 
rules available including: 
v Gini 
v Entropy 
v Twoing 
v Symgini 
v Ordered twoing 
v Power-modified 
v Linear combinations 

♦  Chi-square (CHAID) 

♦  Entropy 
♦  Gini 

♦  The CART splitting rules include a broad range of 
options and span very different tree growing 
strategies.  This allows an analyst to conduct 
substantially different analyses and select the tree 
that is truly best for the problem.  In our extensive 
consulting experience we have found the broad 
range of rules to be essential in getting the best 
results. 

♦  Most other decision tree packages cover a very 
limited number of splitting rules and several major 
packages include only one splitting method.  No 
single splitting method is best for all problems 
even within the same subject matter and 
database. 

 Categorical or Nominal Predictors 

♦  Allows thousands of levels  Limited to very few levels (examples:100, 
128) 

♦  Web mining and bioinformatics require handling 
thousands of levels 

♦   
 Priors 

♦  Priors allow automatic re-weighting 
of the data to balance very unequal 
sample sizes 

♦  Priors in CART can also be used to 
focus on a class, or to down-weight 
its significance 

♦  Most data mining packages do not 
permit any automatic re-weighting of 
class sizes.  Instead they suggest that 
you manually ensure that the number of 
non-responders be kept similar to the 
number of responders. 

♦  A select few decision trees allow 
automatic balancing but do not allow 
intentional re-weighting to favor or 
disfavor a class 

♦  Sophisticated analysis is impossible without 
having complete control over PRIORS.  By 
varying priors one can improve tree performance 
and conduct HotSpot analyses to identify highly 
concentrated groups of records (responders, 
bankrupts, effective compounds). 

 Weights 

v Individual records can be given 
case specific weights 

♦  Many data mining trees are incapable of 
using case weights . 

♦  Case weights are especially helpful  if  the 
distribution of predictors is expected to differ 
between the training and scoring data sets.   
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 Costs 

♦  If some mistakes are worse than 
others this information can be 
actively used by CART to tune the 
tree and ensure that inevitable 
errors are as innocuous as possible 
v Costs used to grow and prune 

tree 
v Option to grow without costs but 

prune using costs  

♦  Most data mining packages are 
incapable of making effective use of 
costs of misclassification during the 
building of the tree. 

♦  Instead costs are used passively after 
tree is grown to report results 

♦  Incorporating costs of misclassification into the 
growing of a tree is vital to properly reflect the 
costs and generate an optimal tree.  A tree 
actively grown using costs will almost always  be 
quite different than a tree which ignores those 
costs during growing 

♦  Data mining packages that are not capable of 
using the costs to grow the tree are able only to 
report costs of a standard tree. 

 Testing 

♦  CART is based on a mandatory self-
test methodology and offers several 
means of testing.  CART trees 
automatically report performance on 
test data 
v Cross-validation 
v Separate test data identified by 

flag, randomly selected on the fly 
or resident in a separate file 

♦  Many decision tree packages do not 
offer cross-validation as a test method 

♦  Some decision trees do not offer any 
automated self-testing and are very 
difficult to test manually 

♦  Data mining methods are often capable of 
developing models that are nearly perfect on the 
training data.  Such models are entirely useless 
as their performance on new or test data can be 
dreadful.  Reliable data mining requires testing to 
certify models built and CART provides such test 
results automatically.  

♦  Cross-validation for decision trees is a major 
CART innovation making it possible to conduct 
reliable tests even in the face of sparse data.  
Cross-validation is vital when working with small 
data sets or small numbers of records of interest.  
If there only a few hundred cases of interest (e.g. 
examples of fraud) cross-validation may be the 
only way to test regardless of the overall 
database size 

 Visualization: Tree Display 

♦  CART uses an innovative display to 
give access to the tree at several 
levels 
v A high level overview of the tree 

displays its size, shape, accuracy, 
and location of interesting nodes 
v The first level drill down displays 

all splitters on the tree diagram 

♦  Other data mining packages have less 
effective decision tree visualization 

`  
 Overall tree summary reports 

♦  CART offers several overall 
summaries of the tree including: 

♦  Gains Charts 
♦  Variable Importance Lists 

♦  Summaries of all trees developed in 
an analysis session, including 
accuracy, size of tree, growing 
method, etc. 

♦  Variable importance is a unique CART 
innovation which does not appear in 
several major tree packages 

♦  Some packages do not include a gains 
chart 

♦  Some packages do not summarize the 
analysis session 

♦  Summary reports are essential for assessing a 
tree 

♦  Session summaries help the analyst organize 
work 

 


