
S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA
9 2 1 0 8

www.s al f o r d -s ys t ems .c o m
6 1 9 .5 4 3 .8 8 8 0

Critical Features of High performance Decision Trees

Decision trees have justifiably become one of the most popular data mining tools. They are

relatively easy to use, the results can usually be displayed in an easy to read flow chart, and their
predictive accuracy can be good to excellent across a broad range of database types and
structures. Decision tree products can differ markedly, however, in their flexibility, predictive

accuracy, diagnostic feedback, and inherent ability to handle essential data mining tasks. If you
choose the wrong decision tree you could easily find yourself unable to conduct certain analyses,
or developing models far inferior to those produced by a state-of-the-art package. You could also

end up learning much less about your data and waiting longer than necessary for your results.
This document reviews some of key features of decision trees that any informed analyst should be
thinking about when choosing this kind of data mining tool for important data analyses.

Enforced Versus Optional Sampling

This topic is likely to be an unexpected one for most analysts. You would think that if you ask a
data mining product to conduct an analysis of a training database with 100,000 records that the tool
will actually train on this data. Unfortunately, this is not necessarily the case. Indeed, at least one

major “enterprise class” product will extract a rather small sample from your training data for
analysis purposes, with no clear warning that this is happening. The end result is that your core
analysis will actually be conducted on a tiny fraction of the data you were intending to analyze.

Here is how enforced sub-sampling works:

First, the training data base is identified and readied for analysis by the decision tree. At this stage

the training data may be of any size, although you might be required to have sufficient RAM to
store it in its entirety. Second, a random sample is quietly selected from this training database
without any indication to the analyst that this is happening. For the major product we are

describing the default sample size is 5,000 records. The analyst has the option of going into
advanced control settings and changing this mandatory sample size but the maximum allowable
sample is 32,768. Third, the small sample is searched to identify the best splitting variable and

split point. Finally, the entire training database is partitioned using the splitter found. It is this last
step that creates the illusion that all the data is being used for the analysis, because once a split
has been discovered from the small subsample it is applied to the entire training database. The

entire process is repeated at each node in the tree until node sample sizes become very small.
Every large node at the top of the tree will be split on the basis of a small subsample and only the

 S al f o r d S ys t emsS a l f o r d S ys t ems

Process without subsampling Process with subsampling

Step 2:
Identify random

subsample to
estimate split

(max. N=32,768)

Step 4:
Apply splitter to
step 1 node and

create child nodes

Step 1: Identify
records belonging in
node to be split next.

Step 3: Learn

optimal splitter
by searching

records in node.

R
e
p

e
a
t

Step 3:

Apply splitter to
step 1 node and

create child nodes

Step 1: Identify
records belonging in
node to be split next.

Step 2: Learn

optimal splitter
by searching

records in node.

R
e
p

e
a
t

Critical Features of High Performance Decision Trees

S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA
9 2 1 0 8

www.s al f o r d -s ys t ems .c o m
6 1 9 .5 4 3 .8 8 8 0

2

nodes at the bottom of tree will use all the available training data.

The key issues here are not whether you should be sampling from the training data set when
searching for a splitter. The issues are: who decides (you or the data mining tool) and are you kept

properly informed. In the CART® decision tree you always have full control and you will always
know the operational control settings. By default, CART will use all of your training data to search
for splitters. If you wish, you can opt to use node sub-sampling to run faster analyses or to

generate different trees based on different random node sub-samples. When you use CART the
choice will always be yours to make and the log will clearly report the control settings; with some
other tools you will not have the option of using all of your data.

In our opinion enforced node sub-sampling can seriously impair the quality of your analyses.
Suppose, for example, that you have a 1 million record data base and you wish to study a binary

response target with outcomes “Yes” and “No”. If your response is relatively rare, as it might very
well be in cases of fraud or drug discovery you could easily have as few as 5,000 “responders”. If
you work with a package which enforces random node sub-sampling you would be basing the top

of your tree on a random sample of at most 32,768 records containing about 168 responses.
Clearly, your ability to learn what is important from this data would be radically compromised.

Handling A Large Number of Columns

This decision tree capability appears to be so basic that you would not expect it to appear in a
discussion of high performance tools. Nevertheless, this is a dimension you should test explicitly if
you expect to need to work with many columns. The CART decision tree is tuned to handle 8,000

columns readily and this number can be increased substantially in special versions of the software.
Competing products may well claim that they can handle as many columns as you have in your
database but the key question is performance. We know of real world data analysis problems

where other decision tree products essentially collapsed under the weight of as few as 1,500
columns. You won’t know how a tool will perform under these heavy loads unless you conduct real
world tests. The size of the vendor is not a reliable guide to the capability of the software and

neither are descriptive terms like ‘enterprise’ or ‘scalable’. In our experience, the bolder the
descriptive terminology the more underpowered the software actually is. If database size is an
issue for you, you should conduct serious capacity tests and make sure that the software is actually

analyzing all the data you provide.

Set of Splitting Rules Available

Several decision tree packages offer a collection of methods or splitting rules, but a few offer only

one tree growing method such as entropy or a Chi-squared criterion. In our view it is essential to
have a wider menu of options. We would go further though. Rules such as gini and entropy are
quite similar to each other and share essentially the same strengths and weaknesses. To offer real

variety a decision tree should offer the “twoing” split criterion introduced by Breiman, Friedman,
Olshen, and Stone in their classic monograph, Classification and Regression trees (1984). The
twoing criterion will grow trees that are quite different from their gini and entropy (or chi-squared-

based) counterparts. In particular, the twoing tree tends to be far more balanced in the share of
data going to any part of the tree. In contrast, the gini and entropy criteria tend to produce trees
that break off a series of (sometimes small) subsets of the data. There will be many circumstances

when the twoing trees are far easier to understand and they will appear to tell an intelligible and
well-organized story about the data. A useful example is predicting the specific make of new
vehicle a consumer will buy from the full range of more than 400 choices available today. A gini

tree could well begin in the root node and separate out Ford Taurus buyers whereas a twoing tree
would be more likely to separate cars from trucks in the root node. Going further, the twoing tree
might continue by separating large vehicles from small ones within both cars and trucks whereas

the gini tree might continue by separating out Honda Accords. Which tree is better? From a

Critical Features of High Performance Decision Trees

S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA
9 2 1 0 8

www.s al f o r d -s ys t ems .c o m
6 1 9 .5 4 3 .8 8 8 0

3

predictive accuracy perspective they might have very similar performance. But most market

researchers would clearly prefer the twoing tree.

How many tree growing rules do you need? Certainly more than one and certainly you need the

twoing rule in the tool kit. We offer seven tree growing rules for classification trees: (1) gini (2)
symmetric gini (3) twoing (4) power modified twoing (5) ordered twoing (6) entropy and (7) class
probability. For regression trees we also offer the least squares and least absolute deviation rules

that are discussed further below. The operating characteristics and their strengths and
weaknesses are discussed in our extensive 300 page technical manual and briefly described in the
on-line help.

You may have observed that we do not offer the CHAID (chi-square automatic interaction
detection) splitting rule in spite of the fact that it is one of the simplest trees to implement. We

believe that CHAID is a flawed technology that should be approached with great caution. Its
biggest flaw is that it is much too capable of growing “false positive trees” – trees that report non-
existent data structure. To confirm this for yourself, add some random data columns to a data set

you know well and then use one of these random columns as your target variable. You will likely
see a disturbingly frequent set of trees generated. By contrast, CART will reject the data and
report that it was not possible to grow a defensible tree. This topic will be further discussed in

another white paper devoted exclusively to CHAID.

Handling Categorical Variables With Many Levels

Categorical variables (also called nominal variables) are ubiquitous in databases and they are

increasingly found with very large numbers of levels. There are over 32,000 distinct zip codes in
the United States, there are more than 400 different makes and models of new motor vehicles for
sale in the US, and there are over one million web sites live on the internet. It is becoming far

more common for researchers to want to make use of such data in data mining models but for the
most part decision trees are unable to accommodate the demand. Major decision trees routinely
limit the number of levels a categorical variable may take. Some packages limit you to about 36

levels; one “enterprise” class product allows only 128 levels. At Salford Systems we have found
such limits to be far too constraining so we have relaxed them entirely. There are no fixed limits on

A typical towing style tree

Mid-Size Large

Passenger

Vehicles

Trucks &

Vans

400 MAKES, MODELS,
& VEHICAL TYPES

Luxury Economy Trucks Vans

Light Heavy

�
�
� �

�
� �

�
� �

�
�

A typical gini style tree

Honda
Accord

Other makes
and models

400 MAKES, MODELS,
& VEHICAL TYPES

Ford
Taurus

Other makes
and models

F150
Truck

�
�
�

Critical Features of High Performance Decision Trees

S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA
9 2 1 0 8

www.s al f o r d -s ys t ems .c o m
6 1 9 .5 4 3 .8 8 8 0

4

the number of levels a target or predictor variable may take in the CART decision tree. Our own

consulting practice has required us to use predictors with 4,000 levels and target variables with
more than 400. If you need to work with such data, then to the best of our knowledge, Salford
Systems is the only provider of data mining software that can help you.

Active Versus Passive Cost Matrices

Major commercial decision trees allow the user to specify varying costs of misclassification. These
costs are used to represent the seriousness of different mistakes. For example, if failing to detect a

fraudulent transaction is 10 times more costly than stopping a good transaction we want to reflect
this in our analyses. Growing a standard decision tree and then reporting results incorporating
costs is quite easy; you could even cut and paste a table of classification results into a

spreadsheet, multiply each mistake by its cost and produce a total cost for the tree. Indeed, this is
just what the major packages automate for you, and the results are quite informative. But what
differentiates a good decision tree from a mediocre one is the ability to use the costs actively while

growing the tree. When costs are used actively the decision tree adapts to avoiding the most
serious costs in every split. A tree grown with an active cost matrix is likely to be completely
different from a tree grown without the costs. When costs are employed passively they do not have

any impact on the tree structure at all. Passive costs come into play only after the tree is grown
and simply reflect the consequences of the standard tree; they do not influence the structure of the
tree in any way.

A tree that does not use cost information while it is being grown is at a serious disadvantage
compared to a tree that does use cost information actively. By attempting to avoid serious

mistakes throughout the tree growing process the end result will be a better performing tree. So
why aren’t all decision trees capable of using active cost matrices? There appear to be several
reasons. First, working out the mathematical details can be difficult to impossible, depending on

the splitting rule involved. Second, it appears that some data mining developers have simply failed
to appreciate this subtlety.

How can you tell whether the tree you are evaluating uses active or passive costs? The best way
is to set up a multi-class target with 3 or more levels and grow a tree with and without costs. If the
splits in the tree are the same in both sets of runs it is incapable of using cost information in the

tree growing process.

A major automobile company in the US has been making effective use of active cost matrices by

trying to predict the crashworthiness of potential new cars. The company collected all the crash
test data produced by the National Highway Traffic Safety Administration (NHTSA) which rates
each vehicle with between 1 and 5 stars (5 is best). They augmented the data with detailed

engineering specifications describing each car and then developed a CART model to predict the
outcome (1,2,3,4, or 5 stars). The company wanted a model that would only make innocuous
mistakes and never mistake an unsafe car for a safe one. They first built quite accurate trees

without using cost matrices but were troubled by the fact that occasionally a 3-star vehicle would be
misclassified as being 4-star. Other mistakes, such as misclassifying a 5-star vehicle as 4-star, or
misclassifying a 3-star vehicle as 2-star were considered innocuous. They then rebuilt their trees

using a cost matrix to reflect the seriousness of every possible mistake. The end result was a tree
that never made unacceptable mistakes and the model is now in use to evaluate the crash
worthiness of every potential new car before any engineering work is undertaken. This kind of

result is only possible with an active cost matrix technology such as found in the Salford Systems
CART decision tree.

A plausible cost matrix for this problem is displayed below. It reflects the fact that if an unsafe car
(3 stars or fewer) is chosen for development the downstream costs of reengineering the vehicle
once this is discovered can be very substantial. If a safe vehicle is misclassified as unsafe it might

not be considered further for development or it might receive additional unnecessary safety

Critical Features of High Performance Decision Trees

S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA
9 2 1 0 8

www.s al f o r d -s ys t ems .c o m
6 1 9 .5 4 3 .8 8 8 0

5

engineering. The most important point is that the tree grown with this matrix will quite different than

a tree grown without the matrix.

 Model Classification (Safety Rating)

1-Star
«

2-Stars
««

3-Stars
«««

4-Stars
««««

5-Stars
«««««

1-Star
«

 ½ 1 5 10

2-Stars
««

½ 1 4 9

3-Stars
«««

1 ½ 4 8

4-Stars
««««

2 2 2 ½

A
c
tu

a
l

C
la

s
s
if

ic
a
ti

o
n

(S
a

fe
ty

 R
a

ti
n

g
)

5-Stars
«««««

2 2 2 ½

Class Weights and Prior Probabilities

Priors, also known as class weights, are a key control parameter in sophisticated decision tree
products. They are central to any decision tree analysis and you will be using priors whether or not
you are aware of it. In brief, priors are used to specify the overall weight placed on a level of the

target variable. In the simplest decision tree products, which do not offer explicit priors controls or
case weights, the weight of a target variable class is proportional to the number of records in that
class. Thus, if you have a file containing 100,000 records, breaking down into 4,000 responders

and 96,000 non-responders, most decision trees will automatically apply priors (class weights) of
4% to the responders and 96% to the non-responders. In the CART decision tree terminology
these class weights are called “data priors” because they are taken directly from the data. Since a

naïve decision tree is trying to maximize the number of cases it classifies correctly such a tree will
devote most of its effort to classifying the non-responders. Because the responders make up only
4% of the data they might not receive very much attention. After all, even if you misclassify every

responder you would only be wrong 4% of the time! Indeed, a model that is correct 96% of the time
can be guaranteed by simply classifying every record as a non-responder. Such a model would be
literally accurate but practically worthless.

Various strategies have been taken by decision tree developers to deal with such situations. The
most primitive decision trees are unable to do anything internally and the analyst is asked to add

clone copies of the responder records to the training data. This is just a low technology way of up-
weighting the rare class (or classes). For example, if you copied each responder record 23 times
and added these copies to the training data you would have 96,000 records for each class

(responders and nonresponders). Some packages may instead recommend that you throw away
92,000 of your nonresponder records so that you would be left with a balanced sample of 4,000
responders and 4,000 non-responders. Neither of these primitive strategies is very appealing. The

first requires added data preparation for every analysis and may be infeasible for very large training
data bases. The second requires throwing away potentially valuable and informative data.

Very few decision trees follow the CART practice of balancing your data automatically and allowing
you to use all of your training data in its original proportions. In the default (but optional) approach
pioneered by CART each class, regardless of size, is treated as if it were of the same size as

every other class. This “equal weights/equal priors” option is a considerable convenience,
allowing any data to be profitably analyzed without special handling, regardless of how unbalanced
the target variable might be. Equal priors ensures that a serious attempt to classify all classes

correctly will be made.

Critical Features of High Performance Decision Trees

S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA
9 2 1 0 8

www.s al f o r d -s ys t ems .c o m
6 1 9 .5 4 3 .8 8 8 0

6

Every decision tree we are aware of allows you to select “data priors” and for several trees this is

your only choice. A few more sophisticated trees also offer the ‘equal priors” option, which is an
important feature. But a high performance tree should also allow you to specify any prior class
weights you choose. For example, in our example with 4% of the data being fraud, you should be

able to give the fraud class a weight of 8% or 22% or 3% or 55%. Experienced CART modelers
know that varying the prior class weights systematically can be used to uncover hot spots
consisting of very high concentrations of fraud. Varying the priors can also yield new insight by

generating alternative trees with a different slant on the data. But even decision trees that offer
equal and data priors may not allow you to specify explicit priors and thus do not allow you to
exploit the full power of decision tree technology. It is important to test the software you are

considering to ensure that it has actually all the technology that it appears to be delivering. If you
cannot set priors freely you will be missing an important decision tree control. The size of the
vendor, and the use of ‘scalable’ and ‘enterprise’ in the product literature are especially poor guides

to the true capabilities of the products.

Growing, pruning, and stopping rules

In the late 1970’s and early 1980’s CART researchers Leo Breiman, Jerome Friedman, Richard

Olshen, and Charles Stone spent several years testing stopping rules for decision trees. They
were finally able to establish that it is impossible to specify a reliable stopping rule; there is always
the risk that important data structure might be left undiscovered due to premature termination of the

analysis. They suggested instead a revolutionary new two-stage approach to finding the optimal
sized tree. In the first stage a very large tree is grown containing hundreds or even thousands of
nodes. In the second stage the tree is pruned back and the portions of the tree that are not

supported by test data are eliminated. This grow and prune strategy is the only reliable method for
arriving at the right sized tree. A decision tree product that does not offer automatic growing and
pruning is seriously deficient and is unlikely to consistently deliver high performance results.

Unfortunately, some decision tree products, and particularly those based on the CHAID algorithm,
are inherently dependent on a stopping rule, and are thus perpetually at risk of missing important
data structure.

The critical feature here is the automated growing of a too large tree followed by automated
pruning to find the ‘right-sized tree”. This disciplined process should not be confused with the

option to manually prune splits, which is a post-final tree tweaking option found in many decision
trees. The rationale for the growing/pruning process is illustrated in the error curve graph below.

CART Decision Tree Error Curve

Critical Features of High Performance Decision Trees

S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA
9 2 1 0 8

www.s al f o r d -s ys t ems .c o m
6 1 9 .5 4 3 .8 8 8 0

7

Note the flat portion of the curve between four and twelve nodes for example. A stopping rule

might have concluded that the tree was not capable of making further progress and thus stop too
early. Another flat portion of the error curve is observed between fifteen and twenty one nodes and
again a stopping rule could be fooled into stopping the tree growth too soon. The CART strategy of

growing the tree to a large size and then pruning back is the only way to determine the right sized
tree.

Testing And Self-Testing

Every data mining tool should self-test automatically. By this we mean that at the beginning of an

analysis you should be specifying both train and test samples and your performance summary
should automatically display test results. Modern data mining tools are capable of generating
models that perform brilliantly on training data while failing miserably on test data. (Data miners

call such models overfit or overtrained and say that the models fail to generalize). At the very least,
if this is happening with your models your tool needs to let you know loudly and clearly. You
should not have to go through any cumbersome process to honestly evaluate your models.

Fortunately, the CART decision tree has a self-testing procedure built into its core and every one of
our performance summaries provides both train and test data results.

Penalties on Variables

Penalties on specific types of variables were pioneered by Jerome Friedman in MARS and Salford
Systems extended and broadened the concept in the CART decision tree. A penalty works by
reducing the goodness-of-split score credited to a variable thus making that variable less likely to

appear as the splitter in any node. An analyst may wish to impose a penalty on a variable to reflect
the fact that the variable is costly to acquire or because of a preference to allow other variables to
take precedence in the evolution of a tree. Recent releases of CART also allow penalties to be

placed on variables with a high percentage of missing values and categorical variables with many
levels. Penalties offer the analyst an added lever use to shape a tree without having to manually
dictate the specifics of certain splits. Although penalties are new to decision trees we feel that they

should be considered a key feature when comparing different algorithms and implementations of
trees.

Case Weights

Case weights are record specific weights and can be unique to each record. Case weights are

separate form class weights and priors and both kinds of weights may be active in an analysis.
There will be circumstances in which having the flexibility of case specific weights can be very
helpful in an analysis. If the distribution of the predictors is expected to be different between the

training and scoring samples case specific weights can allow the analyst to tune the tree to the
future data. For example, if we knew that the age, education, and income mix of the prospects we
intended to target were somewhat different than that found in the available training data then case

weights could be used to adapt the tree to the expected target population. Here the important point
is that quite a few major decision trees do not support case weights thereby limiting the analyst.

See the next pages for a summary table of the points made here

S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA 9 2 1 0 8
www.s al f o r d -s ys t ems .c o m

6 1 9 .5 4 3 .8 8 8 0

CART® Other Major Trees Notes

 Data use (rows)

♦ Uses ALL data to split every node
unless sampling is explicitly
requested

♦ Some data mining packages will not use
all of your data regardless of the settings
you choose

♦ In one major package a sample of no
more than 32,768 records is used to split
node without warning the user

♦ There is no option to use more data
regardless of the data set size

♦ Some major decision tree packages are unable to
use all the rows of data available, regardless of
what the vendor claims. The major limitation
occurs when a tree always uses sub-sampling
when searching for the best splitter of a node.

♦ With node subsampling, a sample is used to
determine the best split and then ALL data is
partitioned using this split. This creates the
illusion that all data is being used but splits are
potentially being determined by small fractions of
the data

 Data use (columns)

♦ CART is capable of handling very
large numbers of columns

♦ Some major packages are very limited in
practice. Limits appear as low as 500
and 1,500 columns depending on the
package.

♦ Some decision tree packages are unable to
effectively handle problems with more than 1,500
columns. This is manifested in exceedingly long
run times and crashes.

♦ CART easily handles problems with up to 8,000
columns and custom adaptations to 1 million
columns can be obtained.

 Splitting Rules

♦ CART has a rich set of splitting
rules available including:
v Gini
v Entropy
v Twoing
v Symgini
v Ordered twoing
v Power-modified
v Linear combinations

♦ Chi-square (CHAID)

♦ Entropy
♦ Gini

♦ The CART splitting rules include a broad range of
options and span very different tree growing
strategies. This allows an analyst to conduct
substantially different analyses and select the tree
that is truly best for the problem. In our extensive
consulting experience we have found the broad
range of rules to be essential in getting the best
results.

♦ Most other decision tree packages cover a very
limited number of splitting rules and several major
packages include only one splitting method. No
single splitting method is best for all problems
even within the same subject matter and
database.

 Categorical or Nominal Predictors

♦ Allows thousands of levels Limited to very few levels (examples:100,
128)

♦ Web mining and bioinformatics require handling
thousands of levels

♦
 Priors

♦ Priors allow automatic re-weighting
of the data to balance very unequal
sample sizes

♦ Priors in CART can also be used to
focus on a class, or to down-weight
its significance

♦ Most data mining packages do not
permit any automatic re-weighting of
class sizes. Instead they suggest that
you manually ensure that the number of
non-responders be kept similar to the
number of responders.

♦ A select few decision trees allow
automatic balancing but do not allow
intentional re-weighting to favor or
disfavor a class

♦ Sophisticated analysis is impossible without
having complete control over PRIORS. By
varying priors one can improve tree performance
and conduct HotSpot analyses to identify highly
concentrated groups of records (responders,
bankrupts, effective compounds).

 Weights

v Individual records can be given
case specific weights

♦ Many data mining trees are incapable of
using case weights .

♦ Case weights are especially helpful if the
distribution of predictors is expected to differ
between the training and scoring data sets.

Critical Features of High Performance Decision Trees

S al f o r d S ys t ems 8 8 8 0 Rio S an D iego Dr ive, S t e. 1 0 4 5 , S an D iego , CA 9 2 1 0 8
www.s al f o r d -s ys t ems .c o m

6 1 9 .5 4 3 .8 8 8 0

9

 Costs

♦ If some mistakes are worse than
others this information can be
actively used by CART to tune the
tree and ensure that inevitable
errors are as innocuous as possible
v Costs used to grow and prune

tree
v Option to grow without costs but

prune using costs

♦ Most data mining packages are
incapable of making effective use of
costs of misclassification during the
building of the tree.

♦ Instead costs are used passively after
tree is grown to report results

♦ Incorporating costs of misclassification into the
growing of a tree is vital to properly reflect the
costs and generate an optimal tree. A tree
actively grown using costs will almost always be
quite different than a tree which ignores those
costs during growing

♦ Data mining packages that are not capable of
using the costs to grow the tree are able only to
report costs of a standard tree.

 Testing

♦ CART is based on a mandatory self-
test methodology and offers several
means of testing. CART trees
automatically report performance on
test data
v Cross-validation
v Separate test data identified by

flag, randomly selected on the fly
or resident in a separate file

♦ Many decision tree packages do not
offer cross-validation as a test method

♦ Some decision trees do not offer any
automated self-testing and are very
difficult to test manually

♦ Data mining methods are often capable of
developing models that are nearly perfect on the
training data. Such models are entirely useless
as their performance on new or test data can be
dreadful. Reliable data mining requires testing to
certify models built and CART provides such test
results automatically.

♦ Cross-validation for decision trees is a major
CART innovation making it possible to conduct
reliable tests even in the face of sparse data.
Cross-validation is vital when working with small
data sets or small numbers of records of interest.
If there only a few hundred cases of interest (e.g.
examples of fraud) cross-validation may be the
only way to test regardless of the overall
database size

 Visualization: Tree Display

♦ CART uses an innovative display to
give access to the tree at several
levels
v A high level overview of the tree

displays its size, shape, accuracy,
and location of interesting nodes
v The first level drill down displays

all splitters on the tree diagram

♦ Other data mining packages have less
effective decision tree visualization

`
 Overall tree summary reports

♦ CART offers several overall
summaries of the tree including:

♦ Gains Charts
♦ Variable Importance Lists

♦ Summaries of all trees developed in
an analysis session, including
accuracy, size of tree, growing
method, etc.

♦ Variable importance is a unique CART
innovation which does not appear in
several major tree packages

♦ Some packages do not include a gains
chart

♦ Some packages do not summarize the
analysis session

♦ Summary reports are essential for assessing a
tree

♦ Session summaries help the analyst organize
work

