
 1 Copyright © 2003 by ASME

Proceedings of ASME DETC’ 03
23

rd
 Computers and Information in Engineering (CIE) Conference

September 2-6, 2003, Chicago, Illinois

Put Paper Number Here

A RECONFIGURABLE 3D ENGINEERING SHAPE SEARCH SYSTEM PART II:

DATABASE INDEXING, RETRIEVAL AND CLUSTERING

Kuiyang Lou
Subramaniam Jayanti

Natraj Iyer
Yagnanarayanan Kalyanaraman

Sunil Prabhakar *

Karthik Ramani
Center for Information Systems in Engineering (CISE)

School of Mechanical Engineering
* Department of Computer Sciences

Purdue University, West Lafayette IN 47907-2024, USA

ABSTRACT

The paper introduces database and related techniques for a

reconfigurable, intelligent 3D engineering shape search system,

which retrieves similar 3D models based on their shape

content. Feature vectors, which are numeric “fingerprints” of

3D models, and skeletal graphs, which are the “minimal

representations of the major shape” of a 3D model, represent

the shape content. The Euclidean distance of the feature

vectors, as well as the distance between skeletal graphs,

provides indirect measures of shape similarity between the 3D

models. Critical database issues regarding 3D shape search

systems are discussed: (a) Database indexing, (b) Semantic

Gap, (c) Subjectivity of similarity, and (d) Database clustering.

An R-tree based multidimensional index is used to speed up the

feature-vector based search operation, while a decision tree-

based approach is used for efficiently indexing/searching

skeletal graphs. Interactions between users and the search

system, such as relevance feedback and feature vector

reconfiguration are used to bridge the semantic gap and to

customize the system for different users. Database clustering of

the R-tree index is compared with that generated by a self-

organizing map (SOM). Synthetic databases and real 3D model

databases were employed to investigate the efficiency of the

multidimensional index and the effectiveness of relevance

feedback.

1. INTRODUCTION
 Content-based search system uses characteristic properties

extracted from objects to represent their content. It searches

objects based on their overall similarity. Normal search systems

retrieve objects by some specific attributes of the objects; and

each attribute in a query can be used independently to filter-out

some data records from the candidate list. However, in content-

based systems, only the overall similarity is used to filter data

records. Content–based 3D model search is still an ongoing

research area, although content-based image retrieval systems

[1] have been studied for several years. Generally, two types of

content-based retrieval systems can be used for 3D model

retrieval: Keyword-based systems (KBS) and Feature-based

systems (FBS).

 KBS uses a set of descriptive words to describe 3D

models; retrieval is based on matching these keywords.

Although this method has strong expressive capacity, it is

difficult to automate because users have to manually assign

keywords they think are suitable to represent the objects. Users

with different backgrounds may submit very different queries

for the same model and a single word often has different

meaning to different users. Furthermore, although keywords are

good at qualitatively describing an object, they are not able to

do so quantitatively. The relationship between two words is

very difficult to quantify.

 On the other hand, FBS uses low-level features to

represent complex 3D models instead of keywords. Feature

vectors, which serve as numeric “fingerprints” for the models,

are obtained through a process called “feature extraction” [2-3].

Using the elements in feature vectors as coordinates, models

are further represented as points in “feature space”. The spatial

relationships among these points are used to quantify the

degree of similarity between models. Search for 3D models

from a database translates to searching in feature space, as

discussed in the later sections of the paper.

 2 Copyright © 2003 by ASME

 FBS is an objective approach, since all the features are

intrinsic values that are computed by the system objectively.

The feature-extraction algorithms determine the representation

of the models in the database; users do not bias these

representations. Thus, the system has a neutral version of

features for all users. It is easy to automate, since all of the

information is objective. It is more accurate compared to KBS,

and allows quantification of the degree of similarity.

Our system uses a feature-based retrieval approach for

searching 3D engineering parts. To search for similar parts, a

user submits the query using a rough 3D model. The

representation of this query model is automatically extracted

and compared with those stored in the database. The system

orders the models by the differences and presents the most

similar models to a user as search results.

In the accompanying paper [4], we summarize the various

approaches taken by past researchers, and describe our

approach to the problem. The system architecture and feature

extraction is also elaborated. Feature vectors are extracted from

the normalized, voxelized and skeletonized representations of

3D models. Figure 1 shows the various features extracted from

the 3D models and stored in our system.

Original 3D Model

Moment

Invariants

Normalized model Voxel model Skeletal model

Graph

Information

Adjacency

Matrix

Principal

Moments

Geometric

Parameters

Figure 1 Feature vectors extracted from 3D models

This paper focuses on the issue of searching a database of

engineering parts, effectively and efficiently. The critical issues

considered here are: (a) Database indexing, (b) Semantic Gap,

(c) Subjectivity of similarity, and (d) Database clustering.

 Database Indexing is a technique for speeding up search

operations in databases. Since the representation of a 3D model

has large dimensionality, common indexing techniques such as

B+ trees are not suitable for this application. Although use of a

multidimensional index for efficient database searches has been

researched in image database systems, there has been limited

work done on the performance of a high-dimensional index in

3D model retrieval systems.

 Semantic gap refers to the difference between the system-

perceived and user-perceived similarities of 3D shapes. The

user-perceived similarity is based on visual perception of

human beings. The system-perceived similarity is based on the

low-level features representing 3D shape. Because of the

semantic gap, a user may not regard models identified as

similar by the system as similar. This has resulted in a

challenging problem of mapping between low-level features

and high-level 3D models. Figure 2 explains the semantic gap

created as a result of mapping complex 3D engineering models

into low-level feature vectors. Feature vectors can also be

viewed as points in a hyperspace (also called feature space),

such that each point (represented as dots in the figure) in the

feature space corresponds to one of the 3D models. Points close

together in the feature space are regarded as ‘similar’. Circles

enclosing the dots represent clusters of similar models.

Figure 2 Illustration of Feature extraction, Semantic Gap and

Database Clustering

 Subjectivity of similarity definition pertains to the

subjectivity of human visual perception. Different users may

have different similarity criteria depending on the application

and prior knowledge. A predefined similarity measure is not

sufficient for different users.

 Database Clustering is useful in providing a natural, easy

to browse user interface (See section on User Interface in [4]).

Clusters of similar parts can also be used in conjunction with

an R-tree to improve the indexing ability.

 The paper is structured as follows. Section 2 is devoted to

database indexing and search techniques. Section 3 deals with

the semantic gap, subjectivity of similarity of 3D models and

relevance feedback. Sections 4 and 5 explain the experiments

and results. Finally, Section 6 concludes the paper.

2. DATABASE INDEXING AND SEARCH
2.1 Similarity measure

A similarity measure is a function to quantify the similarity

between two models. It takes the feature vectors of the query

model and that of a model in the database and outputs a real

number that reflects the degree of similarity between the two

 3 Copyright © 2003 by ASME

models. It is preferable that similarity measures satisfy the

metric axioms [5] as follows.

 Let S be a set of objects, a metric on S is a function d:

× →ℜS S , which satisfies three conditions, i.e., Eqs. (1)-(3),

for all , , ∈x y z S .

(,) 0=d x x (1)

(,) 0= ⇒ =d x y x y (2)

(,) (,) (,)+ ≥d x y d x z d y z (3)

(,) 0≥d x y (4)

(,) (,)=d x y d y x (5)

If a similarity measure satisfies metric axioms, then it can

be seen that:

(a) The similarity has the constancy of self-similarity. A

similarity measure always evaluates the degree of

similarity of two identical models as zero.

(b) If the similarity measure cannot tell the difference between

two models, then the two models are identical. This further

implies the quality of feature elements; and

(c) It has the triangle inequality that can derive other two

important properties as shown in Eqs. (4) and (5). Equation

(4) shows that the similarity measure is non-negative.

Together with axiom (1), it states that a model is most

similar to itself. Equation (5) states the symmetry of the

similarity measure.

We use the Euclidean distance between points in feature

space to indirectly represent the similarity measure. Clearly,

this similarity measure is a metric.

2.2 Indexing by Feature Similarity

Using index structures to speed up searching is a critical

issue for 3D shape search systems. The logarithmic query time

of B+ tree is in part responsible for the success of relational

databases [6]. However, the B+ tree index is basically a one-

dimensional index structure, which orders the data records by

one attribute at a time. This one-dimensional index structure is

not sufficient for 3D shape search systems. The fundamental

problem is that the feature vectors representing 3D models are

complex data types. Searching is usually based on overall

similarity (similarity query) rather than the similarity of

individual attributes (attribute query). We have to use all the

attributes simultaneously to determine the similarity. In other

words, we cannot discard a model from the candidate list only

because some attributes do not match the query model.

Thus, in order to search similar 3D models efficiently, we

need an index structure with properties such that:

(1) It is a multidimensional index. The multidimensional index

arranges the models using all the feature elements, and

(2) It groups similar models and puts them in the same node or

contiguous index nodes. This grouping can reduce the disk I/O

time during search operations.

R-tree based multidimensional indexes [7] has been

extensively studied for content-based image retrieval. In such

an index, points in feature space are clustered in groups and a

group is represented by a bounding rectangle/hyper-rectangle

containing the points. The bounding hyper-rectangle is a tight

bounding box that is represented by the coordinates of its

vertices. To answer a query, the query point is compared with

the bounding box in order to prune the sub-tree rooted at this

hyper-rectangle. Therefore, the R-tree index satisfies the

requirements of the similarity index listed above. Figure 3

illustrates the R-tree structure. The leaf nodes contain pointers

to 3D models. The search starts at the root and is directed by

internal node to the leaf node. The tree structure is similar to a

B+ tree; however, the criterion to arrange the records is totally

different from that of B+ trees. In Section 5, we investigate the

efficiency and grouping abilities of the R-tree index for a

content-based 3D search system.

Internal

Data Entries

Leaf Data

Entry

Leaf Data

Entry

Leaf Data

Entry

Data

Record

Data

Record

Data

Record
Data

Record

Data

Record

Data

Record

...

...

Index File

Data

File

Figure 3 Tree structure of multidimensional index

2.3 Indexing by Skeletal-Graph similarity

 Apart from the similarities between feature vectors, we

also investigate similarity based on skeletal graphs. The

skeletal graph representation obtained from the server is

utilized for determining similarities between corresponding 3D

models.

 As described in the accompanying paper, we convert the

skeletons of 3D models into undirected entity-graphs and store

them in the database. A query model is also converted into a

skeletal graph and this graph is compared with graphs of all the

models in the database. The system then retrieves models based

on graph similarity.

 The goal of our search system is to retrieve all models that

are ‘similar’ and not only those that match exactly with the

query model. In graph similarity search, this translates to

finding models whose skeletons have isomorphism as well as

subgraph isomorphism with the query model. Traditional exact

approaches [8-10] for graph comparison lead to an NP-

complete problem. It is infeasible to efficiently find a solution

except for small graphs (typically 30-50 nodes). Therefore,

large graphs have to be preprocessed before comparison [9].

Since the skeletonization of 3D models produces graphs of

very small size, we are able to considerably reduce indexing

and search time for a large number of parts. More than 70 % of

 4 Copyright © 2003 by ASME

the 150 models in our database have skeletons with 8 entities or

less.

We incorporated domain knowledge into our graph data

structure, thereby enriching the graph structure and enhancing

search capabilities. The entities in a graph were classified into

two topological types: edges and loops. Loops in the skeletal

graph indicate holes in the original model while edges

represent solid portions in the 3D model. Classifying edges into

straight and curved edges, thereby representing straight and

curved portions in the solid model, can further enrich the graph

structure. Additional geometric properties such as geometric

curve equations and relative sizes of entities can also be

incorporated. The adjacency matrix is formulated to capture the

structural properties of the skeleton, such as loop-loop, edge-

loop connections, etc. This representation reflects the topology

and the high-level geometry of the skeletons.

In order to detect graph /subgraph isomorphism we utilize

a decision-tree based approach developed by Messmer and

Bunke [9]. This algorithm is a modification of the subgraph

detection algorithm developed by Ullman [8], which uses a

backtracking approach with refinement to prune the search

space. Ullman’s algorithm is treated as a benchmark to compare

new isomorphism detection algorithms. Messmer and Bunke

modified this algorithm to make it suitable for database

searching. The algorithm indexes all the graphs in a database in

the form of a decision tree using the various permutations of

the adjacency matrix. Although, the space requirements for this

system are exponential in the sizes of the graphs, the search

time is sub-polynomial in the number of query graph nodes.

Moreover, the search time does not depend on the size of the

database, but only on the size of the largest skeletal graph. The

small sizes of our skeletal graphs prove to be inexpensive in

terms of indexing time and space requirements for this

algorithm.

Figure 4 Skeletons for similar models

 Our system uses a rudimentary similarity measure (Eq. 6),

which is defined as ratio of the number of entities that match

between two graphs (say, GA and GB) to the size of the larger of

the two graphs.

#
(,) 100

(,)
A B

A B

of Matching Entities
Similarity G G x

Max G G

 
=  
 

 (6)

However, this measure does not take into account the relative

sizes of the skeletal entities in determining similarity. The idea

is illustrated in Fig. 4; Model 1 and Model 2 will be detected to

be isomorphic and the similarity will be predicted as 100%.

Likewise, the similarity between Model 1 and Model 3 will be

predicted as 66%, although Model 1 is more similar to Model 3

than Model 2. This is due to the fact that the skeletal graphs for

the first two models (shown below) are structurally isomorphic.

 Additional heuristics such as relative sizes, parametric

equations and local properties of the entities can be used to

arrive at more accurate similarity measures that better

distinguish models that are slightly dissimilar. This argument

brings us to the issue of hierarchical similarity in our system.

We can develop the system to give the user a control on the

level of graph comparison. If the user desires, matching may

stop at a higher level or continue to a lower level using local

properties. However, in this study we have restricted our

approach to a higher level of graph matching. Results of

isomorphism detection are presented in Section 5.1.2.

3. RELEVANCE FEEDBACK
3.1 Semantic Gap

The system-perceived similarity is defined with low-level

feature vectors in the database. However, a user cannot

envision a 3D model at such a low level. The user-perceived

similarity is defined by human visual perception. The

difference between the system-perceived similarity and the

user-perceived similarity is termed as the “Semantic gap of

similarity” [11] as explained earlier.

The ideal similarity measure needs to map a 3D model to a

unique feature vector, similar models to similar feature vectors,

and dissimilar models to dissimilar feature vectors. However,

the semantic gap poses an extreme difficulty to exactly

represent 3D models with feature vectors. Therefore, some

similar models can be mapped to very dissimilar feature vectors

and dissimilar models can be mapped to similar feature vectors.

Although psychologists have researched the area for almost 70

years, it is still difficult to quantitatively simulate the visual

perception of humans [12]. Effectiveness of 3D shape search

systems is greatly affected by the semantic gap.

Figure 5 Search result I to show semantic gap from a

database of 150 models

 5 Copyright © 2003 by ASME

Figure 5 is a search result obtained using second order

moment invariants as the feature vector. From the users

viewpoint it is obvious that the search engine retrieved some

significantly dissimilar models. However, after we checked the

feature vectors of all models, we found that these seven models

indeed had the largest similarity to the query model. In other

words, the search engine successfully identified the feature

vectors that were most similar to the query vector, based on the

system-perceived similarity. However, because of the semantic

gap, the system could not guarantee that system-perceived

similarities are the same as user-perceived similarities.

3.2 Subjectivity of Similarity Definitions
Besides the semantic gap, the subjectivity of similarity

definition is another factor that greatly influences the

effectiveness of 3D shape search systems. As described in

Section 1, we have extracted a set of feature elements to

represent 3D models. However, different users may value these

features differently. In other words, the similarity search of 3D

models is subjective. Using predefined universal similarity

measures cannot reflect preferences of different similarity

views. If the system is configured differently than the user’s

similarity definition, it is impossible that the retrieval system

will get satisfactory results. Our system uses the interface

between users and the system to reconfigure and customize the

system for different users.

Our system is initially tuned to a general (default)

similarity definition. The reconfiguration is implemented on

two levels. On a higher level, a user is allowed to choose the

feature elements to be used in similarity computations. In other

words, weights of the feature elements are either included or

discarded. For simplicity, we grouped the feature elements into

groups and users can choose groups of feature elements for

comparison. Our system currently has five groups: geometric

parameters, moment invariants, principal moments, skeletal

entities, and eigenvalues of the skeletal graph (see section on

User Interface in [4]). In the rest of this paper, we mainly use

the second order moment invariants. At a lower level, the

weight of each feature element can be reconfigured to reflect

user’s similarity definition. The higher-level reconfiguration is

coarse and is done before searching. The lower-level

reconfiguration is a fine-tuning, which is done by using

relevance feedback after presenting the search results to users.

Relevance feedback [13-14] is described in more detail in the

following section.

3.3 Query Reinterpretation and Reconfiguration
The semantic gap and subjectivity of similarity make it

difficult to correctly retrieve similar models for a user.

Relevance feedback is used to train the system to reconfigure

its similarity definition to reflect user’s preference so as to

bridge the “semantic gap of similarity” (see Fig. 6). This

reconfiguration is applied on the low-level feature vectors.

However, it is impossible for a user to directly adjust the

weights of low-level feature elements. The method to

circumvent this problem is to present search results graphically

to a user, ask the user to evaluate the search results, and give

feedback to the system. The system, in turn, identifies patterns

in the user’s feedback and adjusts the weights accordingly.

Thus a user just deals with the high-level models instead of

low-level features.

The procedure of relevance feedback is illustrated in Fig. 6

above. It consists of the following steps:

(a) Database query: When the system retrieves some

models based on the query example, it will order them

by similarity measure of feature vectors and presents

them to the user.

(b) Relevance Feedback: Users classify them into relevant

and irrelevant groups and inform the system.

(c) Query reinterpretation and reconfiguration: The

system, in turn, reconfigures itself to reflect the user’s

preference, reinterpret user’s intention and does the

search again.

(d) Repeat Query: This process iterates until either the

user is satisfied or the system cannot improve the

results further.

Query Vector

Database

Query

Query

Reinterpretation

Repeat Query

(new query & database)

Relevance

Feedback

End

Query

Reconfiguration

No

Yes

Figure 6 Procedure of relevance feedback

We utilize user’s relevance feedback in two ways: query

reinterpretation and weight reconfiguration. Query

reinterpretation is done in order to update the query point. Our

system is designed to learn from the relevance feedback and

update the query to represent user’s query intention. After

being presented the search results, the user is given an option to

identify the relevant and irrelevant models. In query

reinterpretation, the query neighborhood is moved to the

centroid of the relevant models, as shown in Fig. 7. The left

rectangle represents the original query and database. The “+”

represent relevant models; the “-” represents irrelevant models

and “o” represents undetermined models. The new query better

represents the user’s search intention. The search based on the

 6 Copyright © 2003 by ASME

new query can find some relevant models that were not

identified by the previous one.

++++
++++

++++

+- -+

- - - ++++

- - - -

- + - -
- + - -

++++
++++

++++

+- -+

- - - ++++

- - - -

- + - -
- + - -

+: relevant models, -: irrelevant models, undetermined models

a) Search with original query b) Search with updated query

Figure 7 Query reinterpretation using relevance feedback

Weight reconfiguration [12] reassigns weights to feature

vector elements. The weights reflect the importance of the

elements to the user. By relevance feedback and

reconfiguration, the database can be customized for different

users. Figure 8 illustrates the weight reassignments using two

feature elements. It can be seen that the user has assigned more

importance to feature element A than B; because the relevant

models have closer values for feature element A. Therefore, the

system adjusts the weights and assigns higher weights for

element A than B. With these adjusted weights, the search

system recomputes the similarity and presents the new search

results to the user. Figure 8b shows that the models with similar

values of feature element A stay closer. Thus, the search system

will retrieve them as similar models.

In our system, the weights are stored in the user profile

independent of the database. It is located one layer above the

database. Thus the database is neutral to all users and the server

needs to keep just a single copy of the database. The user

profile is used to customize the database to reflect user’s

preferences. We are also investigating the use of Artificial

Intelligence techniques such as Neural Networks to learn from

the relevance feedback and combine the distance in each

element to arrive at an overall similarity measure. This is more

complicated but it allows a nonlinear combination of distances

in each dimension.

Figure 8 Weight reconfiguration using relevance feedback

4. EXPERIMENTS
We designed and implemented experiments to test our

approaches to deal with challenges for 3D shape search

systems, i.e. subjectivity of shape similarity, semantic gap and

efficiency. The tests were conducted on a DELL Pentium 2.66

GHz PC with 1.0 GB RAM. The whole system was

implemented in Java. We tested the ability of the

multidimensional index to cluster similar models with a real 3D

model database, while the efficiency of search operations was

tested using both synthetic and real datasets. The database of

the real 3D models currently consists of about 150 models.

Although our real database is being expanded, the size is still

relatively small as compared to typical design repositories. The

sizes of synthetic datasets vary from 50 to 1,000,000 data

records. The effects of database size, dimensionality of feature

vector, and node volume to the efficiency of the search system

were studied with the synthetic datasets. The synthetic database

was created using a random number generator.

The utility of relevance feedback to enable a customizable

similarity definition and bridge the semantic gap was tested

with the real 3D database. Both mechanisms for relevance

feedback described in Section 3 were implemented.

5. RESULTS AND DISCUSSION
5.1 Database Indexing

Figure 9 shows the tree structure of the index with 40

models. This is only a sample index structure to illustrate the

multidimensional index structure and its clustering abilities.

Moment invariants were used as the feature vector. The index

organizes the models into 14 nodes and 3 levels. For the

complete real 3D database of 150 models, the index has 62

nodes and 4 levels. For a synthetic database with 1,000,000

records, the R-tree has 386,829 nodes and 11 levels.

An ideal tree-based index retrieves the corresponding

model by traversing each level only once. For an ideal tree-

based index, the height of this balanced tree determines the cost

of search operation. However, the multidimensional index

based on R-tree does not have this property. Because the R-tree

represents the nodes in hyper-rectangles and there are overlaps

among the hyper-rectangles, more than one node on each level

has to be visited while searching.

7 138

4 113 10651 1292

13

12

11

10

21

30

0

18

33

25

15

28

2

38

32

20

1

5

39

9

34

31

16

17

36 3

35

23

19

4

24

26

6

14

22

7

8

17

27

29

Page 0

Page 7 Page 8 Page 13

Numbers

are

pointer to

models

Numbers

are

pointers

child

pages

Figure 9 An R-tree index structure for 40 3D models

QQ

o o o o

o o o o

++

++++

++

+++

++

+

+

++

++++

o o

o o o o

o

+

-

- -

- -

- -

- - - - -

-

-

- -

-

- -

o

+

 -

- -

- -

- -

- - - - -

-

+

+

oooo

o ooo

++

++++

++

+++

++

+

+

++

++++

o o

oooo

+

+: relevant models -: irrelevant models o: undetermined models

a) Before weight reconfiguration b) After weight reconfiguration

Feature element A

F
e

a
tu

re
 E

le
m

e
n

t
B

 7 Copyright © 2003 by ASME

Figure 10 Models clustered in the nodes of R-tree

The efficiency of the R-tree index is determined by the

pruning ability. The search basically proceeds through all the

nodes at a level and prunes the nodes based on some criterion.

In [15], there is a detailed description about pruning the nodes

using MinDist and MinMax of the node to a query model. The

pruning ability is in turn determined by the distribution of

similarity models. If similar models are grouped in the same

node or similar nodes, the R-tree has better pruning ability.

Figure 10 illustrates the contents of three nodes in this tree.

It can be seen that the index nodes grouped similar models to

some extent. However, since the grouping of similar models in

the R-tree depends on the sequence of insertion, similar models

are not always grouped in the same node. In other words, R-

tree is not optimized for clustering.

5.1.1 Efficiency of the multidimensional index

The primary indicators of the search efficiency are the

number of visited nodes and ratio of visited nodes during a

search operation. The visited nodes are loaded into the

temporary memory (RAM) from the database during search

operations. The query model is compared with the models in

the retrieved node to determine the search direction or to

compute similarity. The ratio of visited nodes is the ratio of the

total number of nodes to the number of visited nodes. Since

disk I/O is the bottleneck for current computer systems, the

number of nodes visited directly translates to the number of

disk I/O operations, which directly impacts overall

performance. The ratio of visited nodes indicates the

improvement that R-tree achieves compared to an exhaustive

search.

Figures 11 and 12 show the required visiting and ratio of

visited nodes in synthetic data sets with different sizes and

dimensionality, respectively, when the node volume is 5.

Dimensionality is the number of feature elements that describe

a 3D model. Figures 13 and 14 illustrate the required visiting

and the ratio of visited nodes at different node volumes and

database sizes when the dimensionality is 5.

It is seen from these figures that the multidimensional

index prunes a large number of nodes, especially at lower

dimensionalities and node volumes. In the case where the

dimensionality of records is 3 and node volume is 5, the ratio of

visited is about 0.00125. In other words, for every 800 nodes,

there is only one loaded in temporary memory for similarity

computation. In all the above tests, the longest time for a

similarity query is less than 1 second. It can be seen from the

figures that the required visiting increases when the database

size, dimensionality of record, and the node volume increase.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200000 400000 600000 800000 1000000

Number of Records

N
u

m
b

e
r

o
f

V
is

it
e

d
 N

o
d

e
s

Dim 3

Dim 5

Dim 9

Dim 20

Figure 11 Numbers of visited nodes v.s. dimensionality and

database size

0

100

200

300

400

500

600

700

800

900

0 200000 400000 600000 800000 1000000

Number of Records

R
a

ti
o

 o
f

a
ll
 i
n

d
e

x
 n

o
d

e
s

 t
o

 V
is

it
e

d

N
o

d
e

s
Dim 3

Dim 5

Dim 9

Dim 20

Figure 12 Ratios of visited nodes at different dimensionality

and database size

0

200

400

600

800

1000

1200

0 200000 400000 600000 800000 1000000

Number of Records

N
u

m
b

e
r

o
f

V
is

it
e

d
 N

o
d

e
s

Node volume 10

Node volume 20
Node volume 60

Node volume 100

Figure 13 Numbers of Visited nodes with different database size

and node volumes (dimensionality = 5)

 8 Copyright © 2003 by ASME

0

20

40

60

80

100

120

140

160

0 200000 400000 600000 800000 1000000

Number of Records

R
a

ti
o

 o
f

D
B

 n
o

d
e

s
 t

o
 V

is
it

e
d

 N
o

d
e

s

Node volume 10

Node volume 20

Node volume 60

Node volume 100

Figure 14 Ratio of visiting nodes with different database

size and node volumes

We also performed tests with real databases of 40 and 150

models, respectively. Each node in the index contains the

information of at most 5 models. The average number of visited

nodes, for 1000 queries, was 3.62 for the tree of 40 models and

6.01 for that of 150 models. This number is close to the height

of the R-tree, which is the optimal visiting number for tree-

based indexing structures. Nevertheless, we expect the

efficiency to degrade with an increase in database size, node

volume and dimensionality of data records.

5.1.2 Skeletal Graph Index

 For indexing the skeletal graphs in our database, we have

utilized the decision-tree based algorithm developed by

Messmer and Bunke. We populated our database with skeleton

graphs of 150 models. Figures 15 (a) and (b) show results for

two queries on the database, respectively. The search results are

presented with the rank and similarity values for each retrieved

model. Although, the system retrieves all the relevant models in

the database, it also retrieves irrelevant parts, since we do not

have any filtering mechanism to reduce the search space.

Enriching the skeletal graph structure with more information

such as local properties (volume, parametric equations and

moments) and classification of edges into straight and curved

will increase the precision of our system. Noise during

skeletonization also leads to similar models having different

skeletons, resulting in different graphs. Including a smoothing

operation before graph generation and a fuzziness factor in the

graph matching process can avoid these problems.

(a)

(b)

Figure 15(a) and (b) Two Graph matching results using

skeletal graphs

5.2 Relevance Feedback Results

5.2.1 Query Reconstruction

Figures 16 (a) and (b) are the models retrieved by the

search system before and after query reconstruction based on

relevance feedback. The top-left model is the query model. The

feature vector used in 5.2.1 and 5.2.2 is second order moment

invariants. It can be seen that the similarity is recomputed and

more number of similar models are retrieved after relevance

feedback.

(a)

(b)

Figure 16 Search results (a) before, and (b) after query

reconstruction

 (Top-left model is the query model)

5.2.2 Weight reconfiguration

Figures 17 (a) and (b) are the results before and after

weight reconfiguration for a query model. It can be seen that

more number of similar models are retrieved after weight

reconfiguration.

 9 Copyright © 2003 by ASME

(a)

(b)

Figure 17 Search results (a) before weight reconfiguration (b)

after weight reconfiguration

5.3 Database Clustering
In order to enable a user to quickly search a model, our

system is designed to provide an easy to browse hierarchical

Cluster Map Interface as described earlier. This interface will

use unsupervised clustering algorithms to form hierarchical

similarity-based clusters. Traditionally, there are three major

types of clustering algorithms: 1) Hierarchical 2) K-means
clustering and 3) Self-Organizing Maps (SOMs). We have used

SOMs for forming the cluster maps because they: 1) are

amenable to visualization, 2) allow easy interpretation, 3) allow

dynamic updating, and 4) are simple to implement. A self-

organizing map (SOM) is a clustering algorithm based on a

competitive learning approach [16-17]. It consists of a number

of interconnected computational units called neurons, which

are laid in either a hexagonal or rectangular topology. As new

instances of 3D models are presented to the network, the

positions of neurons are updated such that similar neurons

move closer while dissimilar neurons move away from each

other. Also, similar models are grouped in neighboring neurons,

and dissimilar models are indexed in far away neurons. The

SOM has properties of both vector quantization and vector

projection algorithms. This allows projection of data in higher

dimensions to lower dimensions, typically two dimensions

(2D). In this research, self-organizing maps were studied for

clustering 3D engineering parts based on the second-order

moment invariants. The architecture of the SOM consists of 64

nodes in an 8 x 8 hexagonal topology, while training was

continued until 800 iterations.

Although R-trees are capable of forming clusters, which

appear as data pages in the R-tree index, they are not optimized

for clustering. Recall from our discussion on R-trees in Section

5.1 that Page 4 and Page 10 in the R-tree separate some very

similar models (clamps). Figure 18 illustrates two clusters that

were generated by the Self-Organizing Map (SOM). It can be

seen that these models are grouped in the same node (Node 51)

by the SOM. Likewise, the models grouped by the SOM in

Node 64 are similar. Due to space constraints we are unable to

present all the results from the two methods for comparison. In

the future, we will use data clustering algorithms to group

similar models into clusters prior to insertion in the R-tree. This

will improve the performance of the multidimensional index.

We will also explore methods to cluster models based on the

skeletal graph representations.

Figure 18 Models clustered in nodes of the SOM

6. CONCLUSION AND FUTURE WORK
The paper has introduced the database and related

techniques to support a 3D engineering shape search system.

An R-tree based multidimensional indexing technique was used

to speed up the content-based 3D shape retrieval effectively.

The efficiency of this index was investigated for both synthetic

and real databases. The results on synthetic database showed

the scalability of the system. To improve the similarity indexing

ability of the R-tree, we investigated the use of clustering

algorithms to pre-classify the models. Preliminary results show

that the clustering algorithms perform better than the R-tree in

grouping similar models.

Two relevance feedback mechanisms, namely, query

reconstruction and weight reconfiguration, were used to

improve the effectiveness of the search system. It was shown

that relevance feedback indeed reduces the “semantic gap”.

Search performance was improved after query reconstruction

and weight reconfiguration.

Skeletal graphs, which capture topological properties of

3D models, were used for searching 3D models utilizing graph-

matching algorithms. Parts retrieved from various queries were

ranked based on a similarity measure developed in the study.

Results show the feasibility of using skeletal graphs for 3D

engineering shape search. To the best of our knowledge, this

paper is the first to demonstrate the feasibility of using skeletal

graphs for 3D shape search. The system performance will be

tested against other available approaches in the 3D shape

search domain.

ACKNOWLEGEMENTS
Initial funding for this project came from the 21st Century

Research and Technology Fund award from the state of

Indiana. We also acknowledge the support from Innovation

Realization Lab at Purdue University and the University

Faculty Scholar Award from Purdue University for Professor

Karthik Ramani, which seeded this project.

 10 Copyright © 2003 by ASME

REFERENCES
[1] Ashley, J., Barber, R., Flickner, M.D., Hafner, J.L., Lee,

D., Niblack, W., and Petkovic, D., 1995, “Automatic and

Semiautomatic Methods for Image Annotation and

Retrieval in Query by Image Content (QBIC),”

Proceedings of SPIE - The International Society for

Optical Engineering, Vol. 2420, WA, USA, pp. 24-35

[2] Cohen, D.K, “Feature Extraction and Pattern Analysis of

Three-Dimensional Objects”, Master Thesis, Thayer

School of Engineering, Dartmouth College

[3] Mehrotra, R., and Gary, J.E., 1993, “Feature-based

retrieval of Similar Shapes,” IEEE 9th International

Conference on Data Engineering Proceedings, Los

Alamitos, CA, USA, pp.108-115

[4] Iyer, N., Kalyanaraman, Y., Lou, K., Jayanti, S., and

Ramani, K., “A Reconfigurable 3D Engineering Shape

Search System Part I: Shape Representation”, ASME

DETC 2003, Submitted along with this paper.

[5] Santini, S., and Jain, R., 1999, “Similarity Measures,”

IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol.21, No.9, pp.871-880.

[6] Hellerstein, J.M., Koutsoupias, E., Papadimitriou, C.H.,

1997, “On the Analysis of Indexing Schemes,” SIGMOD-

SIGART Symposim on Principles of Database Systems,

pp 249-256

[7] Guttman, R-trees: a dynamic index structure for spatial

searching, Proceedings of the SIGMOD Conference,

Boston, MA, June 1984, pages 47-57.

[8] Ullman, J.R., 1976, “An algorithm for subgraph

isomorphism”, Journal of the Association for Computing

Machinery Vol. 23, pp. 31-42

[9] Messmer, B., and Bunke, H., 1995, “Subgraph

isomorphism in polynomial time”, Technical Report TR-

IAM-95-003

[10] Ambler, A. P., Barrow, H. G., Brown, C. M., Burstall, R.

M., and Popplestone, R. J., 1973, “A versatile computer-

controlled assembly system”, In Proceedings of

International Joint Conference on Artificial Intelligence,

pp. 298-307

[11] Brocker, L. Bogen, M. Cremers, A B. 2001, “Bridging the

Semantic Gap in Content-based Image Retrieval

Systems,” Proceedings of SPIE, v 4519, p 54-62

[12] Santini, S., 2001, Exploratory Image Databases: Content-

Based Retrieval, Academic Presses.

[13] Efthimiadis, E.N., 2000, “Interactive Query Expansion: A

User-based Evaluation in a Relevance Feedback

Environment,” Journal of the American Society for

Information Science, Vol. 51 No. 11, pp.989-1003

[14 Schettini, R., Ciocca, G., and Gagliardi, I., 1999,

“Content-based Color Image Retrieval with Relevance

Feedback,” IEEE International Conference on Image

Processing, Vol. 3, pp.75-79.

[15] Roussopoulos, N., Kelley, S., and Vincent, F., 1995,

“Nearest neighbor Queries,” SIGMOD Conference, pp71-

79.

[16] Kohonen, T., 1995, “Self-Organizing Maps”, Springer

Series in Information Sciences, Springer Verlag, Berlin

[17] Vesanto, J., 2000, “Using SOM in data-mining”,

Licentiate’s thesis, Helsinki University of Technology,

Espoo, Finland, April 17th

