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ABSTRACT 

The paper introduces database and related techniques for a 

reconfigurable, intelligent 3D engineering shape search system, 

which retrieves similar 3D models based on their shape 

content. Feature vectors, which are numeric “fingerprints” of 

3D models, and skeletal graphs, which are the “minimal 

representations of the major shape” of a 3D model, represent 

the shape content. The Euclidean distance of the feature 

vectors, as well as the distance between skeletal graphs, 

provides indirect measures of shape similarity between the 3D 

models. Critical database issues regarding 3D shape search 

systems are discussed: (a) Database indexing, (b) Semantic 

Gap, (c) Subjectivity of similarity, and (d) Database clustering. 

An R-tree based multidimensional index is used to speed up the 

feature-vector based search operation, while a decision tree-

based approach is used for efficiently indexing/searching 

skeletal graphs. Interactions between users and the search 

system, such as relevance feedback and feature vector 

reconfiguration are used to bridge the semantic gap and to 

customize the system for different users. Database clustering of 

the R-tree index is compared with that generated by a self-

organizing map (SOM). Synthetic databases and real 3D model 

databases were employed to investigate the efficiency of the 

multidimensional index and the effectiveness of relevance 

feedback. 

 

1. INTRODUCTION 
 Content-based search system uses characteristic properties 

extracted from objects to represent their content. It searches 

objects based on their overall similarity. Normal search systems 

retrieve objects by some specific attributes of the objects; and 

each attribute in a query can be used independently to filter-out 

some data records from the candidate list. However, in content-

based systems, only the overall similarity is used to filter data 

records. Content–based 3D model search is still an ongoing 

research area, although content-based image retrieval systems 

[1] have been studied for several years. Generally, two types of 

content-based retrieval systems can be used for 3D model 

retrieval: Keyword-based systems (KBS) and Feature-based 

systems (FBS).  

  KBS uses a set of descriptive words to describe 3D 

models; retrieval is based on matching these keywords. 

Although this method has strong expressive capacity, it is 

difficult to automate because users have to manually assign 

keywords they think are suitable to represent the objects. Users 

with different backgrounds may submit very different queries 

for the same model and a single word often has different 

meaning to different users. Furthermore, although keywords are 

good at qualitatively describing an object, they are not able to 

do so quantitatively. The relationship between two words is 

very difficult to quantify. 

 On the other hand, FBS uses low-level features to 

represent complex 3D models instead of keywords. Feature 

vectors, which serve as numeric “fingerprints” for the models, 

are obtained through a process called “feature extraction” [2-3]. 

Using the elements in feature vectors as coordinates, models 

are further represented as points in “feature space”. The spatial 

relationships among these points are used to quantify the 

degree of similarity between models. Search for 3D models 

from a database translates to searching in feature space, as 

discussed in the later sections of the paper.  
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 FBS is an objective approach, since all the features are 

intrinsic values that are computed by the system objectively. 

The feature-extraction algorithms determine the representation 

of the models in the database; users do not bias these 

representations. Thus, the system has a neutral version of 

features for all users. It is easy to automate, since all of the 

information is objective. It is more accurate compared to KBS, 

and allows quantification of the degree of similarity.  

Our system uses a feature-based retrieval approach for 

searching 3D engineering parts. To search for similar parts, a 

user submits the query using a rough 3D model. The 

representation of this query model is automatically extracted 

and compared with those stored in the database. The system 

orders the models by the differences and presents the most 

similar models to a user as search results. 

In the accompanying paper [4], we summarize the various 

approaches taken by past researchers, and describe our 

approach to the problem. The system architecture and feature 

extraction is also elaborated. Feature vectors are extracted from 

the normalized, voxelized and skeletonized representations of 

3D models. Figure 1 shows the various features extracted from 

the 3D models and stored in our system.  

 

Original 3D Model

Moment

Invariants

Normalized model Voxel model Skeletal model

Graph

Information

Adjacency

Matrix

Principal

Moments

Geometric

Parameters

 

Figure 1 Feature vectors extracted from 3D models 

 

This paper focuses on the issue of searching a database of 

engineering parts, effectively and efficiently. The critical issues 

considered here are: (a) Database indexing, (b) Semantic Gap, 

(c) Subjectivity of similarity, and (d) Database clustering.  

 Database Indexing is a technique for speeding up search 

operations in databases. Since the representation of a 3D model 

has large dimensionality, common indexing techniques such as 

B+ trees are not suitable for this application. Although use of a 

multidimensional index for efficient database searches has been 

researched in image database systems, there has been limited 

work done on the performance of a high-dimensional index in 

3D model retrieval systems. 

 Semantic gap refers to the difference between the system-

perceived and user-perceived similarities of 3D shapes. The 

user-perceived similarity is based on visual perception of 

human beings. The system-perceived similarity is based on the 

low-level features representing 3D shape. Because of the 

semantic gap, a user may not regard models identified as 

similar by the system as similar. This has resulted in a 

challenging problem of mapping between low-level features 

and high-level 3D models. Figure 2 explains the semantic gap 

created as a result of mapping complex 3D engineering models 

into low-level feature vectors. Feature vectors can also be 

viewed as points in a hyperspace (also called feature space), 

such that each point (represented as dots in the figure) in the 

feature space corresponds to one of the 3D models. Points close 

together in the feature space are regarded as ‘similar’. Circles 

enclosing the dots represent clusters of similar models. 

 

 
Figure 2 Illustration of Feature extraction, Semantic Gap and 

Database Clustering 

 

 Subjectivity of similarity definition pertains to the 

subjectivity of human visual perception. Different users may 

have different similarity criteria depending on the application 

and prior knowledge. A predefined similarity measure is not 

sufficient for different users. 

 Database Clustering is useful in providing a natural, easy 

to browse user interface (See section on User Interface in [4]). 

Clusters of similar parts can also be used in conjunction with 

an R-tree to improve the indexing ability. 

 The paper is structured as follows. Section 2 is devoted to 

database indexing and search techniques. Section 3 deals with 

the semantic gap, subjectivity of similarity of 3D models and 

relevance feedback. Sections 4 and 5 explain the experiments 

and results. Finally, Section 6 concludes the paper. 

2. DATABASE INDEXING AND SEARCH 
2.1 Similarity measure 

A similarity measure is a function to quantify the similarity 

between two models. It takes the feature vectors of the query 

model and that of a model in the database and outputs a real 

number that reflects the degree of similarity between the two 
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models. It is preferable that similarity measures satisfy the 

metric axioms [5] as follows. 

 Let S be a set of objects, a metric on S is a function d: 

× →ℜS S , which satisfies three conditions, i.e., Eqs. (1)-(3), 

for all , , ∈x y z S . 

( , ) 0=d x x     (1) 

( , ) 0= ⇒ =d x y x y    (2) 

( , ) ( , ) ( , )+ ≥d x y d x z d y z      (3) 

( , ) 0≥d x y     (4) 

( , ) ( , )=d x y d y x     (5) 

If a similarity measure satisfies metric axioms, then it can 

be seen that:  

(a) The similarity has the constancy of self-similarity. A 

similarity measure always evaluates the degree of 

similarity of two identical models as zero.  

(b) If the similarity measure cannot tell the difference between 

two models, then the two models are identical. This further 

implies the quality of feature elements; and  

(c) It has the triangle inequality that can derive other two 

important properties as shown in Eqs. (4) and (5). Equation 

(4) shows that the similarity measure is non-negative. 

Together with axiom (1), it states that a model is most 

similar to itself. Equation (5) states the symmetry of the 

similarity measure. 

We use the Euclidean distance between points in feature 

space to indirectly represent the similarity measure. Clearly, 

this similarity measure is a metric. 

 

2.2 Indexing by Feature Similarity 

Using index structures to speed up searching is a critical 

issue for 3D shape search systems. The logarithmic query time 

of B+ tree is in part responsible for the success of relational 

databases [6]. However, the B+ tree index is basically a one-

dimensional index structure, which orders the data records by 

one attribute at a time. This one-dimensional index structure is 

not sufficient for 3D shape search systems. The fundamental 

problem is that the feature vectors representing 3D models are 

complex data types. Searching is usually based on overall 

similarity (similarity query) rather than the similarity of 

individual attributes (attribute query). We have to use all the 

attributes simultaneously to determine the similarity. In other 

words, we cannot discard a model from the candidate list only 

because some attributes do not match the query model.  

Thus, in order to search similar 3D models efficiently, we 

need an index structure with properties such that:  

(1) It is a multidimensional index. The multidimensional index 

arranges the models using all the feature elements, and  

(2) It groups similar models and puts them in the same node or 

contiguous index nodes. This grouping can reduce the disk I/O 

time during search operations.  

R-tree based multidimensional indexes [7] has been 

extensively studied for content-based image retrieval. In such 

an index, points in feature space are clustered in groups and a 

group is represented by a bounding rectangle/hyper-rectangle 

containing the points. The bounding hyper-rectangle is a tight 

bounding box that is represented by the coordinates of its 

vertices. To answer a query, the query point is compared with 

the bounding box in order to prune the sub-tree rooted at this 

hyper-rectangle. Therefore, the R-tree index satisfies the 

requirements of the similarity index listed above. Figure 3 

illustrates the R-tree structure. The leaf nodes contain pointers 

to 3D models. The search starts at the root and is directed by 

internal node to the leaf node. The tree structure is similar to a 

B+ tree; however, the criterion to arrange the records is totally 

different from that of B+ trees. In Section 5, we investigate the 

efficiency and grouping abilities of the R-tree index for a 

content-based 3D search system. 
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Figure 3 Tree structure of multidimensional index 

 

2.3 Indexing by Skeletal-Graph similarity 

 Apart from the similarities between feature vectors, we 

also investigate similarity based on skeletal graphs. The 

skeletal graph representation obtained from the server is 

utilized for determining similarities between corresponding 3D 

models. 

 As described in the accompanying paper, we convert the 

skeletons of 3D models into undirected entity-graphs and store 

them in the database. A query model is also converted into a 

skeletal graph and this graph is compared with graphs of all the 

models in the database. The system then retrieves models based 

on graph similarity. 

 The goal of our search system is to retrieve all models that 

are ‘similar’ and not only those that match exactly with the 

query model. In graph similarity search, this translates to 

finding models whose skeletons have isomorphism as well as 

subgraph isomorphism with the query model. Traditional exact 

approaches [8-10] for graph comparison lead to an NP-

complete problem. It is infeasible to efficiently find a solution 

except for small graphs (typically 30-50 nodes). Therefore, 

large graphs have to be preprocessed before comparison [9]. 

Since the skeletonization of 3D models produces graphs of 

very small size, we are able to considerably reduce indexing 

and search time for a large number of parts. More than 70 % of 



 4 Copyright © 2003 by ASME 

the 150 models in our database have skeletons with 8 entities or 

less.  

We incorporated domain knowledge into our graph data 

structure, thereby enriching the graph structure and enhancing 

search capabilities. The entities in a graph were classified into 

two topological types: edges and loops. Loops in the skeletal 

graph indicate holes in the original model while edges 

represent solid portions in the 3D model. Classifying edges into 

straight and curved edges, thereby representing straight and 

curved portions in the solid model, can further enrich the graph 

structure. Additional geometric properties such as geometric 

curve equations and relative sizes of entities can also be 

incorporated. The adjacency matrix is formulated to capture the 

structural properties of the skeleton, such as loop-loop, edge-

loop connections, etc. This representation reflects the topology 

and the high-level geometry of the skeletons. 

In order to detect graph /subgraph isomorphism we utilize 

a decision-tree based approach developed by Messmer and 

Bunke [9]. This algorithm is a modification of the subgraph 

detection algorithm developed by Ullman [8], which uses a 

backtracking approach with refinement to prune the search 

space. Ullman’s algorithm is treated as a benchmark to compare 

new isomorphism detection algorithms. Messmer and Bunke 

modified this algorithm to make it suitable for database 

searching. The algorithm indexes all the graphs in a database in 

the form of a decision tree using the various permutations of 

the adjacency matrix. Although, the space requirements for this 

system are exponential in the sizes of the graphs, the search 

time is sub-polynomial in the number of query graph nodes. 

Moreover, the search time does not depend on the size of the 

database, but only on the size of the largest skeletal graph. The 

small sizes of our skeletal graphs prove to be inexpensive in 

terms of indexing time and space requirements for this 

algorithm. 

 

 
Figure 4 Skeletons for similar models 

  

 Our system uses a rudimentary similarity measure (Eq. 6), 

which is defined as ratio of the number of entities that match 

between two graphs (say, GA and GB) to the size of the larger of 

the two graphs.  

#
( , ) 100

( , )
A B

A B

of Matching Entities
Similarity G G x

Max G G

 
=  
 

 (6) 

However, this measure does not take into account the relative 

sizes of the skeletal entities in determining similarity. The idea 

is illustrated in Fig. 4; Model 1 and Model 2 will be detected to 

be isomorphic and the similarity will be predicted as 100%. 

Likewise, the similarity between Model 1 and Model 3 will be 

predicted as 66%, although Model 1 is more similar to Model 3 

than Model 2. This is due to the fact that the skeletal graphs for 

the first two models (shown below) are structurally isomorphic. 

 Additional heuristics such as relative sizes, parametric 

equations and local properties of the entities can be used to 

arrive at more accurate similarity measures that better 

distinguish models that are slightly dissimilar. This argument 

brings us to the issue of hierarchical similarity in our system. 

We can develop the system to give the user a control on the 

level of graph comparison. If the user desires, matching may 

stop at a higher level or continue to a lower level using local 

properties. However, in this study we have restricted our 

approach to a higher level of graph matching. Results of 

isomorphism detection are presented in Section 5.1.2. 

3. RELEVANCE FEEDBACK 
3.1 Semantic Gap 

The system-perceived similarity is defined with low-level 

feature vectors in the database. However, a user cannot 

envision a 3D model at such a low level. The user-perceived 

similarity is defined by human visual perception. The 

difference between the system-perceived similarity and the 

user-perceived similarity is termed as the “Semantic gap of 

similarity” [11] as explained earlier. 

The ideal similarity measure needs to map a 3D model to a 

unique feature vector, similar models to similar feature vectors, 

and dissimilar models to dissimilar feature vectors. However, 

the semantic gap poses an extreme difficulty to exactly 

represent 3D models with feature vectors. Therefore, some 

similar models can be mapped to very dissimilar feature vectors 

and dissimilar models can be mapped to similar feature vectors. 

Although psychologists have researched the area for almost 70 

years, it is still difficult to quantitatively simulate the visual 

perception of humans [12]. Effectiveness of 3D shape search 

systems is greatly affected by the semantic gap. 

 

 
Figure 5  Search result I to show semantic gap from a 

database of 150 models 
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Figure 5 is a search result obtained using second order 

moment invariants as the feature vector. From the users 

viewpoint it is obvious that the search engine retrieved some 

significantly dissimilar models. However, after we checked the 

feature vectors of all models, we found that these seven models 

indeed had the largest similarity to the query model. In other 

words, the search engine successfully identified the feature 

vectors that were most similar to the query vector, based on the 

system-perceived similarity. However, because of the semantic 

gap, the system could not guarantee that system-perceived 

similarities are the same as user-perceived similarities. 

 

3.2 Subjectivity of Similarity Definitions 
Besides the semantic gap, the subjectivity of similarity 

definition is another factor that greatly influences the 

effectiveness of 3D shape search systems. As described in 

Section 1, we have extracted a set of feature elements to 

represent 3D models. However, different users may value these 

features differently. In other words, the similarity search of 3D 

models is subjective. Using predefined universal similarity 

measures cannot reflect preferences of different similarity 

views. If the system is configured differently than the user’s 

similarity definition, it is impossible that the retrieval system 

will get satisfactory results. Our system uses the interface 

between users and the system to reconfigure and customize the 

system for different users. 

Our system is initially tuned to a general (default) 

similarity definition. The reconfiguration is implemented on 

two levels. On a higher level, a user is allowed to choose the 

feature elements to be used in similarity computations. In other 

words, weights of the feature elements are either included or 

discarded. For simplicity, we grouped the feature elements into 

groups and users can choose groups of feature elements for 

comparison. Our system currently has five groups: geometric 

parameters, moment invariants, principal moments, skeletal 

entities, and eigenvalues of the skeletal graph (see section on 

User Interface in [4]). In the rest of this paper, we mainly use 

the second order moment invariants. At a lower level, the 

weight of each feature element can be reconfigured to reflect 

user’s similarity definition. The higher-level reconfiguration is 

coarse and is done before searching. The lower-level 

reconfiguration is a fine-tuning, which is done by using 

relevance feedback after presenting the search results to users. 

Relevance feedback [13-14] is described in more detail in the 

following section. 

 

3.3 Query Reinterpretation and Reconfiguration 
The semantic gap and subjectivity of similarity make it 

difficult to correctly retrieve similar models for a user. 

Relevance feedback is used to train the system to reconfigure 

its similarity definition to reflect user’s preference so as to 

bridge the “semantic gap of similarity” (see Fig. 6). This 

reconfiguration is applied on the low-level feature vectors. 

However, it is impossible for a user to directly adjust the 

weights of low-level feature elements. The method to 

circumvent this problem is to present search results graphically 

to a user, ask the user to evaluate the search results, and give 

feedback to the system. The system, in turn, identifies patterns 

in the user’s feedback and adjusts the weights accordingly. 

Thus a user just deals with the high-level models instead of 

low-level features.  

The procedure of relevance feedback is illustrated in Fig. 6 

above. It consists of the following steps:  

(a) Database query: When the system retrieves some 

models based on the query example, it will order them 

by similarity measure of feature vectors and presents 

them to the user.  

(b) Relevance Feedback: Users classify them into relevant 

and irrelevant groups and inform the system.  

(c) Query reinterpretation and reconfiguration: The 

system, in turn, reconfigures itself to reflect the user’s 

preference, reinterpret user’s intention and does the 

search again.  

(d) Repeat Query: This process iterates until either the 

user is satisfied or the system cannot improve the 

results further.  
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Figure 6 Procedure of relevance feedback 

 

We utilize user’s relevance feedback in two ways: query 

reinterpretation and weight reconfiguration. Query 

reinterpretation is done in order to update the query point. Our 

system is designed to learn from the relevance feedback and 

update the query to represent user’s query intention. After 

being presented the search results, the user is given an option to 

identify the relevant and irrelevant models. In query 

reinterpretation, the query neighborhood is moved to the 

centroid of the relevant models, as shown in Fig. 7. The left 

rectangle represents the original query and database. The “+” 

represent relevant models; the “-” represents irrelevant models 

and “o” represents undetermined models. The new query better 

represents the user’s search intention. The search based on the 



 6 Copyright © 2003 by ASME 

new query can find some relevant models that were not 

identified by the previous one. 
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Figure 7 Query reinterpretation using relevance feedback 

 

Weight reconfiguration [12] reassigns weights to feature 

vector elements. The weights reflect the importance of the 

elements to the user. By relevance feedback and 

reconfiguration, the database can be customized for different 

users. Figure 8 illustrates the weight reassignments using two 

feature elements. It can be seen that the user has assigned more 

importance to feature element A than B; because the relevant 

models have closer values for feature element A. Therefore, the 

system adjusts the weights and assigns higher weights for 

element A than B. With these adjusted weights, the search 

system recomputes the similarity and presents the new search 

results to the user. Figure 8b shows that the models with similar 

values of feature element A stay closer. Thus, the search system 

will retrieve them as similar models.  

In our system, the weights are stored in the user profile 

independent of the database. It is located one layer above the 

database. Thus the database is neutral to all users and the server 

needs to keep just a single copy of the database. The user 

profile is used to customize the database to reflect user’s 

preferences. We are also investigating the use of Artificial 

Intelligence techniques such as Neural Networks to learn from 

the relevance feedback and combine the distance in each 

element to arrive at an overall similarity measure. This is more 

complicated but it allows a nonlinear combination of distances 

in each dimension.  

 

 
Figure 8 Weight reconfiguration using relevance feedback 

4. EXPERIMENTS 
We designed and implemented experiments to test our 

approaches to deal with challenges for 3D shape search 

systems, i.e. subjectivity of shape similarity, semantic gap and 

efficiency. The tests were conducted on a DELL Pentium 2.66 

GHz PC with 1.0 GB RAM. The whole system was 

implemented in Java. We tested the ability of the 

multidimensional index to cluster similar models with a real 3D 

model database, while the efficiency of search operations was 

tested using both synthetic and real datasets. The database of 

the real 3D models currently consists of about 150 models. 

Although our real database is being expanded, the size is still 

relatively small as compared to typical design repositories. The 

sizes of synthetic datasets vary from 50 to 1,000,000 data 

records. The effects of database size, dimensionality of feature 

vector, and node volume to the efficiency of the search system 

were studied with the synthetic datasets. The synthetic database 

was created using a random number generator. 

The utility of relevance feedback to enable a customizable 

similarity definition and bridge the semantic gap was tested 

with the real 3D database. Both mechanisms for relevance 

feedback described in Section 3 were implemented. 

5. RESULTS AND DISCUSSION 
5.1 Database Indexing 

Figure 9 shows the tree structure of the index with 40 

models. This is only a sample index structure to illustrate the 

multidimensional index structure and its clustering abilities. 

Moment invariants were used as the feature vector. The index 

organizes the models into 14 nodes and 3 levels. For the 

complete real 3D database of 150 models, the index has 62 

nodes and 4 levels. For a synthetic database with 1,000,000 

records, the R-tree has 386,829 nodes and 11 levels. 

An ideal tree-based index retrieves the corresponding 

model by traversing each level only once. For an ideal tree-

based index, the height of this balanced tree determines the cost 

of search operation. However, the multidimensional index 

based on R-tree does not have this property. Because the R-tree 

represents the nodes in hyper-rectangles and there are overlaps 

among the hyper-rectangles, more than one node on each level 

has to be visited while searching.  
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Figure 9 An R-tree index structure for 40 3D models 
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Figure 10 Models clustered in the nodes of R-tree 

 

The efficiency of the R-tree index is determined by the 

pruning ability. The search basically proceeds through all the 

nodes at a level and prunes the nodes based on some criterion. 

In [15], there is a detailed description about pruning the nodes 

using MinDist and MinMax of the node to a query model. The 

pruning ability is in turn determined by the distribution of 

similarity models. If similar models are grouped in the same 

node or similar nodes, the R-tree has better pruning ability. 

Figure 10 illustrates the contents of three nodes in this tree. 

It can be seen that the index nodes grouped similar models to 

some extent. However, since the grouping of similar models in 

the R-tree depends on the sequence of insertion, similar models 

are not always grouped in the same node. In other words, R-

tree is not optimized for clustering. 

 

5.1.1 Efficiency of the multidimensional index 

The primary indicators of the search efficiency are the 

number of visited nodes and ratio of visited nodes during a 

search operation. The visited nodes are loaded into the 

temporary memory (RAM) from the database during search 

operations. The query model is compared with the models in 

the retrieved node to determine the search direction or to 

compute similarity. The ratio of visited nodes is the ratio of the 

total number of nodes to the number of visited nodes. Since 

disk I/O is the bottleneck for current computer systems, the 

number of nodes visited directly translates to the number of 

disk I/O operations, which directly impacts overall 

performance. The ratio of visited nodes indicates the 

improvement that R-tree achieves compared to an exhaustive 

search. 

Figures 11 and 12 show the required visiting and ratio of 

visited nodes in synthetic data sets with different sizes and 

dimensionality, respectively, when the node volume is 5. 

Dimensionality is the number of feature elements that describe 

a 3D model. Figures 13 and 14 illustrate the required visiting 

and the ratio of visited nodes at different node volumes and 

database sizes when the dimensionality is 5. 

It is seen from these figures that the multidimensional 

index prunes a large number of nodes, especially at lower 

dimensionalities and node volumes. In the case where the 

dimensionality of records is 3 and node volume is 5, the ratio of 

visited is about 0.00125. In other words, for every 800 nodes, 

there is only one loaded in temporary memory for similarity 

computation. In all the above tests, the longest time for a 

similarity query is less than 1 second. It can be seen from the 

figures that the required visiting increases when the database 

size, dimensionality of record, and the node volume increase.  

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200000 400000 600000 800000 1000000

Number of Records

N
u

m
b

e
r 

o
f 

V
is

it
e

d
 N

o
d

e
s

Dim 3

Dim 5

Dim 9

Dim 20

 
Figure 11 Numbers of visited nodes v.s. dimensionality and 

database size 
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Figure 12 Ratios of visited nodes at different dimensionality 

and database size 
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Figure 13 Numbers of Visited nodes with different database size 

and node volumes (dimensionality = 5) 
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Figure 14 Ratio of visiting nodes with different database 

size and node volumes 

 

We also performed tests with real databases of 40 and 150 

models, respectively. Each node in the index contains the 

information of at most 5 models. The average number of visited 

nodes, for 1000 queries, was 3.62 for the tree of 40 models and 

6.01 for that of 150 models. This number is close to the height 

of the R-tree, which is the optimal visiting number for tree-

based indexing structures. Nevertheless, we expect the 

efficiency to degrade with an increase in database size, node 

volume and dimensionality of data records. 

 

5.1.2 Skeletal Graph Index 

 For indexing the skeletal graphs in our database, we have 

utilized the decision-tree based algorithm developed by 

Messmer and Bunke. We populated our database with skeleton 

graphs of 150 models. Figures 15 (a) and (b) show results for 

two queries on the database, respectively. The search results are 

presented with the rank and similarity values for each retrieved 

model. Although, the system retrieves all the relevant models in 

the database, it also retrieves irrelevant parts, since we do not 

have any filtering mechanism to reduce the search space. 

Enriching the skeletal graph structure with more information 

such as local properties (volume, parametric equations and 

moments) and classification of edges into straight and curved 

will increase the precision of our system. Noise during 

skeletonization also leads to similar models having different 

skeletons, resulting in different graphs. Including a smoothing 

operation before graph generation and a fuzziness factor in the 

graph matching process can avoid these problems. 

 

 
(a) 

 
(b) 

Figure 15(a) and (b) Two Graph matching results using 

skeletal graphs 

 

5.2 Relevance Feedback Results 

5.2.1 Query Reconstruction 

Figures 16 (a) and (b) are the models retrieved by the 

search system before and after query reconstruction based on 

relevance feedback. The top-left model is the query model. The 

feature vector used in 5.2.1 and 5.2.2 is second order moment 

invariants. It can be seen that the similarity is recomputed and 

more number of similar models are retrieved after relevance 

feedback. 

 

 
(a) 

 
(b) 

Figure 16 Search results (a) before, and (b) after query 

reconstruction 

 (Top-left model is the query model) 
 

5.2.2 Weight reconfiguration 

Figures 17 (a) and (b) are the results before and after 

weight reconfiguration for a query model. It can be seen that 

more number of similar models are retrieved after weight 

reconfiguration. 
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(a) 

 
(b) 

Figure 17 Search results (a) before weight reconfiguration (b) 

after weight reconfiguration 
 

5.3 Database Clustering 
In order to enable a user to quickly search a model, our 

system is designed to provide an easy to browse hierarchical 

Cluster Map Interface as described earlier. This interface will 

use unsupervised clustering algorithms to form hierarchical 

similarity-based clusters. Traditionally, there are three major 

types of clustering algorithms: 1) Hierarchical 2) K-means 
clustering and 3) Self-Organizing Maps (SOMs). We have used 

SOMs for forming the cluster maps because they: 1) are 

amenable to visualization, 2) allow easy interpretation, 3) allow 

dynamic updating, and 4) are simple to implement. A self- 

organizing map (SOM) is a clustering algorithm based on a 

competitive learning approach [16-17]. It consists of a number 

of interconnected computational units called neurons, which 

are laid in either a hexagonal or rectangular topology. As new 

instances of 3D models are presented to the network, the 

positions of neurons are updated such that similar neurons 

move closer while dissimilar neurons move away from each 

other. Also, similar models are grouped in neighboring neurons, 

and dissimilar models are indexed in far away neurons. The 

SOM has properties of both vector quantization and vector 

projection algorithms. This allows projection of data in higher 

dimensions to lower dimensions, typically two dimensions 

(2D). In this research, self-organizing maps were studied for 

clustering 3D engineering parts based on the second-order 

moment invariants. The architecture of the SOM consists of 64 

nodes in an 8 x 8 hexagonal topology, while training was 

continued until 800 iterations.  

Although R-trees are capable of forming clusters, which 

appear as data pages in the R-tree index, they are not optimized 

for clustering. Recall from our discussion on R-trees in Section 

5.1 that Page 4 and Page 10 in the R-tree separate some very 

similar models (clamps). Figure 18 illustrates two clusters that 

were generated by the Self-Organizing Map (SOM). It can be 

seen that these models are grouped in the same node (Node 51) 

by the SOM. Likewise, the models grouped by the SOM in 

Node 64 are similar. Due to space constraints we are unable to 

present all the results from the two methods for comparison. In 

the future, we will use data clustering algorithms to group 

similar models into clusters prior to insertion in the R-tree. This 

will improve the performance of the multidimensional index. 

We will also explore methods to cluster models based on the 

skeletal graph representations. 

 

 
Figure 18 Models clustered in nodes of the SOM 

6. CONCLUSION AND FUTURE WORK 
The paper has introduced the database and related 

techniques to support a 3D engineering shape search system. 

An R-tree based multidimensional indexing technique was used 

to speed up the content-based 3D shape retrieval effectively. 

The efficiency of this index was investigated for both synthetic 

and real databases. The results on synthetic database showed 

the scalability of the system. To improve the similarity indexing 

ability of the R-tree, we investigated the use of clustering 

algorithms to pre-classify the models. Preliminary results show 

that the clustering algorithms perform better than the R-tree in 

grouping similar models. 

Two relevance feedback mechanisms, namely, query 

reconstruction and weight reconfiguration, were used to 

improve the effectiveness of the search system. It was shown 

that relevance feedback indeed reduces the “semantic gap”. 

Search performance was improved after query reconstruction 

and weight reconfiguration. 

Skeletal graphs, which capture topological properties of 

3D models, were used for searching 3D models utilizing graph- 

matching algorithms. Parts retrieved from various queries were 

ranked based on a similarity measure developed in the study. 

Results show the feasibility of using skeletal graphs for 3D 

engineering shape search. To the best of our knowledge, this 

paper is the first to demonstrate the feasibility of using skeletal 

graphs for 3D shape search. The system performance will be 

tested against other available approaches in the 3D shape 

search domain. 
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