
Decision-Tree Classifiers for Computer

Vision Applications

Avinash Kak

Purdue University

June 24, 2011

1:28am

An RVL Tutorial Presentation

(Presented in Fall 2010, Revised in Summer 2011)

c©2011 Avinash Kak, Purdue University

1

CONTENTS

Section Title Page

What do We Mean by a Computer Vision System That 3
Learns on its Own How to Recognize Objects

Entropy 5

Conditional Entropy 10

Average Entropy 12

Using Class Entropy to Discover the Best Feature for 13
Discriminating Between the Classes

Constructing a Decision Tree 19

The Perl Module Algorithm::DecisionTree-1.41 31

The Python Module DecisionTree-1.5 36

Decision Trees for Solving Computer Vision Problems 37

Converting a Decision-Tree Classifier into a Hash-Table 49
Classifier Fast Object Recognition

For Digging Deeper 56

2

What do We Mean by a Computer Vision

System that Learns on its Own How to

Recognize Objects

• Consider the following computer vision ex-

periment:

– We show a number of different objects

to a sensor system. These objects be-

long to M different classes.

– For each object shown, all that we tell

the computer is its class label. We do

NOT tell the computer how to discrim-

inate between the objects belonging to

the different classes.

3

– We supply a large vocabulary of features
to the computer and also provide the

computer with tools to extract these

features from the sensory information
collected from each object. For image

data, these features could be color, tex-

ture, etc. For range data, the features
could be curvature, corners formed by

the meeting of the planar surfaces, etc.

– The job given to the computer is: From

the data thus collected, the computer

must figure out on its how to best dis-
criminate between the objects belong-

ing to the different classes. In other

words, the computer must learn on its
own what features to use for discrim-

inating between the classes and what

features to ignore.

• What we have described above constitutes

an exercise in a self-learning computer vi-
sion system.

4

Entropy

• As we will see later, entropy is a power-

ful tool that can be used by a computer

to determine on its own own as to what

features to use and how to carve up the

feature space for achieving the best possi-

ble discrimination between the classes.

• What is entropy?

• If a random variable X can take N different

values, the ith value with probability pi, we

can associate the following entropy with X:

H = −
∑

i

pi log2 pi

5

• To gain some insight into what H mea-

sures, consider the case when the normal-

ized histogram of the values taken by the

random variable X looks like

1/8 ____ ____ ____ ____ ____ ____ ____ ____
^ | | | | | | | | |
| | | | | | | | | |

hist(X) | | | | | | | | |
(normalized) | | | | | | | | |

-->
1 2 3 4 5 6 7 8

• In this case, X takes one of 8 possible val-

ues, each with a probability of pi = 1/8.

For a such a random variable, the entropy

is given by

H = −

8∑

i=1

1

8
log2

1

8

= −

8∑

i=1

1

8
log2 2

−3

= 3 bits

6

• Now consider the following example in which

the uniformly distributed random variable

X takes one of 64 possible values:

1/64 ____ ____ ____ ____ ___ ____
histogram | | | | | | | |
(normalized) | | | | | | | |

--->
1 2 3 4 63 64

• In this case,

H = −

64∑

i=1

1

64
log2

1

64

= −

8∑

i=1

1

8
log2 2

−6

= 6 bits

• So we see that the entropy, commonly mea-

sured in bits, has increased because now we

have greater “chaos” in the values of X. It

can now take one of 64 values with equal

probability.

7

• Let’s now consider an example at the other

end of spectrum: We will consider an X
that is always known to take on a particular

value:

1.0 ___
| |
| |

histogram | |
(normalized) | |

| |
| 0 | 0 | 0 | 0 | | | 0 | 0 |
--->

1 2 3 .. k 63 64

• In this case, we obviously have

pi = 1 i = k

= 0 otherwise

• The entropy for such an X would be given
by:

H = −

N∑

i=1

pi log2 pi

= − [p1 log2 p1 + ...pk log2 pk + ...+ pN log2 pN]

8

= − 1× log2 1 bits

= 0 bits

where we use the fact that as x → 0,

x log x → 0 in all of the terms of the sum-

mation except when i = k.

• So we see that the entropy becomes zero

when X has zero chaos.

• In general, the more nonuniform the

probability distribution for an entity, the

smaller the entropy associated with the

entity.

9

Conditional Entropy

• The conditional entropy H(Y |X) measures

how much entropy (chaos) remains in Y if

we already know the value of the random

variable X.

• In general,

H(Y |X) = H(X,Y) − H(X)

Note that this definition treats X at a purely

symbolic level; that is, without instanti-

ating it to any specific value. Given two

random variables X and Y , the entropy

contained in both when taken together is

H(X, Y). The above definition says that if

we know X completely, we have obviously

gained H(X) bits of information.

10

• The formula for H(X, Y) is given by

H(X,Y) = −
∑

i,j

p(xi, yj) log2 p(xi, yj)

• As mentioned earlier, the formula for H(Y |X)

shown on the previous slide treats X purely
symbolically.

• We may now raise the following question:

What is the entropy associated with Y if
we know that X has taken on a specific
value a? The answer to that is:

H(Y |X = a) = −
∑

i

p(yi|X = a) × log2 p(yi|X = a)

11

Average Entropy

• Given N random variables X1, X2, . . .XN ,
we can associate an average entropy with
all N random variables by

Hav = −

N∑

1

H(Xi) × p(Xi)

12

Using Class Entropy to Discover the Best

Feature for Discriminating Between the

Classes

• Consider the following question: Let us say

that we are given the measurement data as

described on Slides 3 and 4. Let the ex-

haustive set of features known to the com-

puter be {f1, f2,, fK}.

• Now the computer wants to know as to

which of these features is best in the sense

of being the most class discriminative.

• How does the computer do that?

13

• To discover the best feature, all that the

computer has to do is to compute the class

entropy

H(C|f) =
∑

i

H(C|f = i) × p(f = i)

where the notation f = i means that the

feature f takes on a value of i. So, remem-

ber, in such notation, i is NOT a particular

choice of a feature, but a value taken by

the feature f . The computer selects that

features for which H(C|f) is the smallest

values.

• Let’s now focus on the calculation of the

right hand side in the equation shown above.

14

• The entropy in each term on the right hand

side in the equation shown on the previous

slide can be calculated by

H(C|f = i) = −
∑

m

p(Cm|f = i) × log2 p(Cm|f = i)

• But how do we figure out p(Cm|f = i)?

Note that Cm is the name of the mth class

and the above summation is over all the

classes.

• We will next present two different ways

for calculating p(Cm|f = i). The first ap-

proach works if we can assume that the ob-

jects shown to the sensor system are drawn

uniformly from the different classes. If that

is not the case, one must use the second

approach.

15

• Our first approach for calculating p(Cm|f =

i) is count-based: Let’s say we have M

classes of objects that we show to a sensor

system. We pick objects randomly from

the population of all objects belonging to

all M classes. Say the sensor system makes

K feature measurements, f1, f2,, fK, on

each object. For each feature fk, the sen-

sor system keeps a count of the number of

objects that gave rise to the fk = i value.

Now we estimate p(Cm|f = i) by counting

off the number of objects from class Cm

that exhibited the fk = i measurement.

• Our second approach for estimating p(Cm|f =

i) uses the Bayes’ Theorem:

p(Cm|f = i) =
p(f = i|Cm) × p(Cm)

p(f = i)

This formula also allows us to carry out

separate measurement experiments for ob-

jects belonging to different classes.

16

• Another advantage of the formula shown

at the bottom of the previous slide is that

it is no longer a problem if only a small

number of objects are available for some

of the classes — such non-uniformities in

object populations are taken care of by the

p(Cm) term.

• The denominator in the formula at the bot-

tom of the previous slide can be taken care

of by the required normalization:

∑

m

p(Cm|f = i) = 1

• What’s interesting is that if we do obtain

p(f = i) through the normalization men-

tioned above, we can also use it in the for-

mula for calculating H(C|f) as shown at

the top in Slide 14. Otherwise, p(f = i)
would need to be estimated directly from

the raw experimental data.

17

• So now we have all the information that is

needed to estimate the class entropy H(C|f)

for any given feature f by using the formula

shown at the top in Slide 14.

• It follows from the nature of entropy (See

Slides 5 through 9) that the smaller the

value for H(C|f), especially in relation to

the value of H(C), the greater the class

discriminatory power of f .

• Should it happen that H(C|f) = 0 for some

feature f , that implies that feature f can

be used to identify objects belonging to

at least one of the M classes with 100%

accuracy.

18

Constructing a Decision Tree

• Now that you know how to use the class

entropy to find the best feature that will

discriminate between the classes, we will

now extend this idea and show how you can

construct a decision tree. Subsequently

the tree may be used to classify future sam-

ples of data.

• But what is a decision tree?

• For those not familiar with decision tree

ideas, the traditional way to classify multi-

dimensional data is to start with a feature

space whose dimensionality is the same as

that of the data.

19

• In the traditional approach, each feature

in the space would correspond to the at-

tribute that each dimension of the data

measures. You then use the training data

to carve up the feature space into different

regions, each corresponding to a different

class. Subsequently, when you are trying to

classify a new data sample, you locate it in

the feature space and find the class label

of the region to which it belongs. One can

also give the data point the same class la-

bel as that of the nearest training sample.

(This is referred to as the nearest neighbor

classification.)

• A decision tree classifier works differently.

• When you construct a decision tree, you

select for the root node a feature test that

can be expected to maximally disambiguate

the class labels that could be associated

with the data you are trying to classify.

20

• You then attach to the root node a set of

child nodes, one for each value of the fea-

ture you chose at the root node. Now at

each child node you pose the same ques-

tion that you posed when you found the

best feature to use at the root node: What

feature at the child node in question would

maximally disambiguate the class labels to

be associated with a given data vector as-

suming that the data vector passed the

root node on the branch that corresponds

to the child node in question. The fea-

ture that is best at each node is the one

that causes the maximal reduction in class

entropy at that node.

• Based on the discussion in the previous sec-

tion, you already know how to find the best

feature at the root node of a decision tree.

Now the question is: How we do construct

the rest of the decision tree?

21

• What we obviously need is a child node for

every possible value of the feature test that

was selected at the root node of the tree.

• Assume that the feature selected at the

root node is fk and that we are now on

one of the child nodes hanging from the

root. So the question now is how do we

select the best feature to use at any of

these child nodes.

• The root node feature was selected as that

f which minimized H(C | f). With this

choice, we ended up with the feature fk at

the root. The feature to use at the child on

the branch fk = i will be selected as that

f 6= fk which minimizes H(C | fk = i, f).

22

• That is, for any feature f not previously

used at the root, we calculate the entropy

when we are in the fk = i branch:

H(C | f, fk = i) =
∑

j

H(C|f = j, fk = i) × p(f = j, fk = i)

Whichever feature f yields the smallest value

for the above entropy on the left will be-

come the feature test of choice at the chil-

dren of the root.

• Strictly speaking, the entropy formula shown

above for the calculation of average en-

tropy not correct. For the summation shown

on the right to yield a true average, the

formula shown would need to be expressed

as∗

H(C | f, fk = i) =
∑

j

H(C|f = j, fk = i) ×
p(f = j, fk = i)∑
j
p(f = j, fk = i)

∗Some folks refer to such normalizations in the calculation of av-
erage entropy as “JZ Normalization”— after Padmini Jaikumar
and Josh Zapf.

23

• The component entropies in the above sum-

mation on the right would be given by

H(C | f = j, fk = i) =

−
∑

m

p(Cm | f = j, fk = i)× log2 p(Cm | f = j, fk = i)

for any given feature f 6= fk.

• The conditional probability needed above

is estimated using Bayes Theorem:

p(Cm | f = j, fk = i) =
p(f = j, fk = i|Cm) × p(Cm)

p(f = j, fk = i)

=
p(f = j|Cm)× p(fk = i|Cm)× p(Cm)

p(f = j)× p(fk = i)

where the second equality is based on the

assumption that the features are statisti-

cally independent.

24

Feature Tested at This Node
f j

Feature Tested at Root

f k

k
f = 1

f = 2
k

Feature Tested at This Node
f m

• You will add other child nodes to the root

in the same manner, with one child node

for each value that can be taken by the

feature fk.

• This process can be continued to extend

the tree further to result in a structure that

will look like what is shown in the figure on

the next slide.

25

• Now we will address the very important is-

sue of the stopping rule for growing the

tree. That is, when does a node get a fea-

ture test so that it can be split further and

when does it not?

• A node N is assigned the entropy that re-

sulted in its creation. For example, the

root gets the entropy H(C) computed from

the class priors.

• The children of the root are assigned the

entropy H(C | fk) that resulted in their cre-

ation.

• A child N of the root that is on the branch

fk = i will get its own feature test (and will

be split further) if and only if we can find

a feature fj such that H(C | fj, fk = i) is

less than the entropy H(C|fk) at N .

26

• If the condition H(C | fk = i, f) < H(C | fk)

cannot be satisfied at the child node fk = i

of the root for any feature f 6= fk, the child

node remains without a feature test and

becomes a leaf node of the decision tree.

• Another reason for a node to become a

leaf node is that we have used up all the

features along that branch up to that node.

• That brings us to the last important is-

sue related to the construction of a de-

cision tree: associating class probabilities

with each node of the tree.

• As to why we need to associate class prob-

abilities with the nodes in the decision tree,

let us say we are given for classification a

new data vector consisting of features and

their corresponding values.

27

• For the classification of the new data vec-

tor mentioned above, we will first subject

this data vector to the feature test at the

root. We will then take the branch that

corresponds to the value in the data vec-

tor for the root feature.

• Next, we will subject the data vector to

the feature test at the child node on that

branch. We will continue this process until

we have used up all the feature values in

the data vector. That should put us at one

of the nodes, possibly a leaf node.

• Now we wish to know what the residual

class probabilities are at that node. These

class probabilities will represent our classi-

fication of the new data vector.

28

• If the feature tests along a path to a node

in the tree are fk = i, fm = l, . . ., we will as-

sociate the following class probability with

the node:

p(Cm | fk = i, fm = l, . . .)

for m = 1,2, . . . ,M where M is the number

of classes.

• The above probability may be estimated

with Bayes Theorem:

p(Cm | fk = i, fm = l, . . .) =

p(fk = i, fm = l, . . . | Cm)× p(Cm)

p(fk = i, fm = l, . . .)

29

• If we again use the notion of statistical

independence between the features both

when they are considered on their own and

when considered conditioned on a given

class, we can write:

p(fk = i, fm = l, . . .) =
∏

f along branch

p(f = v)

p(fk = i, fm = l, . . . | Cm) =
∏

f along branch

p(f = v | Cm)

30

The Perl Module

Algorithm::DecisionTree-1.41 for

Decision-Tree Induction and Classification

• The goal of this section is to introduce

the reader to some of the more impor-

tant functions in my Perl module Algo-

rithm::DecisionTree that can be down-

loaded from

http://search.cpan.org/~avikak/Algorithm-DecisionTree-1.41/

lib/Algorithm/DecisionTree.pm

The above URL is supposed to be one con-

tinuous string. If you cannot copy-and-

paste it in your browser, just do a Google

search on “Algorithm::DecisionTree” and

go to Version 1.41 when you get to the

CPAN page for the module.

31

• Looking at the formulas in the previous

section, we obviously need to compute the

following sort of marginal, joint, and con-

ditional probabilities:

p(Cm)

p(f = v)

p(f = v | Cm)

p(Cm | f = v)

p(fk = vk, fm = vm . . .)

p(fk = vk, fm = vm . . . | Cm)

p(Cm | fk = vk, fm = vm . . .)

• And the following sorts of entropies:

H(C | f)

H(C | f = v)

H(C | fk = vk, fm = vm . . .)

• We will now familiarize the reader with the

functions in the Algorithm::DecisionTree mod-

ule that compute the entities listed above.

32

• In the module Algorithm::DecisionTree,

the following functions compute the required

probabilities:

prior probability for class(classname)

probability for feature value(feature, value)

probability for feature value given class(feature, value, class)

probability for a class given feature value(class, feature, value)

probability of a sequence of features and values(

array features and values)

probability of a sequence of features and values given class(

class, array of features and values)

probability for aclass given sequence of features and values(

class, array of features and values)

• And the following functions compute the

required entropies:

class entropy for a given feature(feature)

class entropy for a given feature and given value(feature, value)

class entropy for a given sequence of feature values(

array features and values)

33

• The following functions in the module com-

pute the decision tree from the probabili-

ties and entropies listed above:

construct decision tree classifier()

recursive descent(root node)

where the first function returns an instance

of type Node that serves as the root node

of the decision tree. This node is then sup-

plied as the argument to the second func-

tion named above.

• A new data vector is classified with the help
of the following functions:

classify()

recursive descent for classification(root node)

where the argument root node in the call

to the second function represents the root

node of the decision tree.

34

• Before the module can invoke any of the

functionality described above, you must sup-

ply it with a training datafile that must be

formatted as described in the documenta-

tion page of the module.

• The module also allows you to generate

your own training and testing datasets.

• To generate your own data requires that

you supply a parameter file to the mod-

ule that contains the names of the classes,

the names you wish to use for the features,

and the different possible values taken by

each of the future. Another critical part of

the parameter file is the biasing informa-

tion which tells the training data generator

how you want the training samples to be

biased (probabilistically speaking) for the

different classes.

35

The Python Module DecisionTree-1.5 for

Decision-Tree Induction and Classification

• If you would rather use Python, you might

want to check out my Python module

DecisionTree-1.5. You can download it from

http://pypi.python.org/pypi/DecisionTree/1.5

• The Python version should work faster for

large decision trees since it uses probabil-

ity and entropy caching much more exten-

sively than the Perl module.

• Apart from the speedup achieved by caching,

the overall functionality of the Python mod-

ule is the same as that of the Perl module.

36

Decision Trees for Solving Computer

Vision Problems

• The approach presented so for the induc-

tion of a decision tree works well when

features take on values that are symbolic,

as would be the case for an application in

which the class names, the feature names,

and the values for the features are some-

thing along the following lines:

class names: malignant benign
class priors: 0.4 0.6

feature: smoking
values: heavy medium light never

feature: exercising
values: never occasionally regularly

feature: fatIntake
values: low medium heavy

feature: videoAddiction
values: none low medium heavy

37

• This does not mean that the feature val-

ues are not allowed to be numerical, but

any numbers would be treated purely sym-

bolically.

• The fact that features values are only al-

lowed to be symbolic prevents the types

of decision trees constructed by the Al-

gorithm::DecisionTree module from being

useful in computer vision applications.

• In computer vision, a feature may take on

a discrete value drawn from a set of very

large cardinality, or, for that matter, a value

drawn from a continuous interval.

• Consider, for example, using color as a fea-

ture in object recognition.

38

• If we consider all three primary color com-

ponents (R,G,B) together and assume that

each is quantized to 256 levels, the value of

the color feature will be one out of 16,777,216

(= 256× 256× 256) values.

• An alternative would be to use three sep-

arate color features, one for each primary

color. So the three features could be la-

beled colorR, colorG and colorB. Now each

feature would take on only one out of 256

values.

• In either representation, we have the fol-

lowing problem: Too large and much too

fine-grained a fan-out at the nodes of the

decision tree that use these features.

• The fine-grained fan-out is particularly trou-

blesome because of the ever-present mea-

surement noise in these types of features.

39

• To choose a path in the decision tree on

the basis of, say, the value of colorR being

123 may or may not make sense consid-

ering that the decision paths for the same

feature being, say, 122 or 124 (or any of

the other nearby values) may be just as

applicable, if not more.

• For computer vision applications, the fan-

out logic at each node is much better struc-

tured along the following lines:

– Let’s say that our root node tests for feature
fk and the range of values that this feature can
take is from vmin to vmax. (We choose fk for the
root since f = fk gives us the minimum value
for H(C|f). This entropy can be calculated as
earlier.)

– Our goal now is to choose a decision point vd
in the interval [vmin, vmax] so that we get the
smallest value for the average of the class en-
tropies calculated separately over the intervals
[vmin, vd) and [vd, vmax), especially so in relation
to the class entropy calculated over the entire
interval [vmin, vmax].

40

– That is, we first want to calculate

H< = H(C | fk < vd)

H> = H(C | fk ≥ vd)

and find the average of the two:

Hav = H< × p(fk < vd) + H> × p(fk ≥ vd)

– We choose for vd that point which yields the
smallest value for Hav.

– If Hav is not less than H(C | fk) we do NOT
expand the node with fk as the feature test. So
on this decision path, this is where the decision
tree will stop.

– However, if Hav is less than H(C | fk), we now
create two child nodes and the decision tree will
look like what is shown in the figure on the next
slide (assuming that root node tested for feature
fk).

41

Feature Tested at Root

f k

k d
f < v

k d
f > v

• The entropy H(C | fk < vd) needed for

the calculations at the root node can be

estimated by

H(C | fk < vd) = −
∑

m

p(Cm | fk < vd)× log2 p(Cm | fk < vd)

• The probability p(Cm | fk < vd) may be

estimated by culling from the training data

all those object instances whose fk feature

measurements satisfy the condition fk < vd
and then counting the number of instances

in which the object identity corresponds to

the class label Cm.

42

• However, for greater theoretical validity, it

is better to estimate the probability

p(Cm | fk < vd) by using the Bayes Theo-

rem:

p(Cm | fk < vd) =
p(fk < vd | Cm)× p(Cm)

p(fk < vd)

where the denominator can be treated merely

as a normalization constant that may be

estimated from the constraint

∑

m
p(Cm | fk < vd) = 1

• Obviously, we can calculate the entropy

H(C | fk ≥ vd) needed at the root in a

similar manner.

43

• Basically what we have done so far is to

bipartition the range of values that can be

taken on by the fk, the bifurcation point

being a decision threshold vd that yields
the greatest reduction in the entropy.

• Having expanded the root node with fea-

ture test on fk, let’s now consider the branch

fk < vd of the decision tree.

• For the next feature test on the left branch

emanating from the root, we now search

through all features other than fk and, for

each such feature f , we compute H(C | fk<, f)
where fk< means fk < vd. The feature that

gives us the smallest value for this entropy

is chosen as the feature test for the child

node.

• Let us say that the above reasoning has

given us fj as the feature to test on in the
left child of the root.

44

• We go through similar reasoning for the

right branch emanating from the root. We

calculate H(C | fk>, f) where fk> means

fk ≥ vd for all features f 6= fk and we

choose for the feature test that f which

yields the smallest value for the entropy.

Let this feature be fl. The decision tree

will now look like what is shown in the fig-

ure below.

Feature Tested at Root

f k

k d
f < v

f j fm

k d
f > v

Feature Tested Feature Tested

• To extend the tree further, we now biparti-

tion the range of values at each of the two

second-level nodes.

45

• Focusing on the feature test fj in the left

node, let the range of values for this fea-

ture be [umin, umax]. We now find a deci-

sion threshold ud in this interval that yields

the largest reduction in the average of the

entropies calculated as follows:

H< = H(C | fk < vd, fj < ud)

H> = H(C | fk ≥ vd)

Hav = H< × p(fk < vd, fj < ud) + H> × p(fk ≥ vd, fd ≥ ud)

In the above calculations, we choose for

the decision point ud that value which min-

imizes Hav.

• If it turns out that this Hav is not smaller

than the value of H(C | fk<, fj) calculated

previously, we do not bifurcate this node

and stop growing the decision tree on this

branch.

46

• At this point, our decision tree will look

like what is shown below:

Feature Tested at Root

f k

k d
f < v

f j fm

k d
f > v

Feature Tested Feature Tested

j d
f < u

j d
f > u

• As we continue growing the decision tree in

this manner, an interesting point of differ-

ence arises between the traditional decision

trees we talked about earlier and the deci-

sion trees needed for computer vision appli-

cations When we consider the features for

the feature tests to use at the children of

the node where we just used the fj feature

for our feature test, we throw the parent

node’s feature fk back into contention.

47

• In general, this difference between the tra-

ditional decision trees and the decision trees

needed for computer vision is more illusory

than real. That is because when consid-

ering the root node feature fk at the the

third-level nodes in the tree, the values of

fk will be limited to the interval [vmin, vd)

in the left children of the root and to the

interval [vd, vmax in the right children of

the root. Testing for whether the value

of the feature fk is in, say, the interval

[vmin, vd) is not the same feature test as

testing for whether this value is in the in-

terval [vmin, vmax].

48

Converting a Decision-Tree Classifier into

a Hash-Table Classifier for Fast Object

Recognition

• Once you have constructed a decision tree

for classification, it can be converted into

a hash table for fast object recognition.

• Creating such hash tables is straightfor-

ward for the traditional decision trees in

which the feature values are all symbolic

(even when numeric, since they would be

treated symbolically).

• So in the rest of this tutorial, I will focus on

how such a hash table may be constructed

for a decision tree of the sort described in

the previous section.

49

• As you now know, a node in a decision trees

for computer vision applications has only

two children, unless the node is a leaf node,

in which case it has no children. (Such

trees are also called binary trees.)

• For my explanation, I will assume that we

have only two features f1 and f2 that we

will use to recognize objects. The feature

f1 could stand for the color of the object

and the feature f2 could be a measure of

its texture in the image.

• With just the two features f1 and f2, let

say that our decision tree looks like what

is shown in the figure on the next slide.

50

f 1

f 1 f 1

1 d
f > v

Feature Tested Feature Tested

2 d
f < u

2 d
f > u

Feature Tested at Root

f 2 f2

1 d
f < v

Feature Tested Feature Tested

1

2

3 4

5

• The numbers in red circles in the deci-

sion tree shown above indicate the order

in which the nodes were visited.

• Note that when we create two child nodes

at any node in the tree, we are dividing up

a portion of the underlying feature space,

the portion that can be considered to be

allocated to the node in question.

51

f values
1

f values2

vmin
vmax

umin

umax

1

2

3

4
5

• Each node being in charge of a portion

of the feature space and how it gets par-

titioned when we create two child nodes

there is illustrated by the figure above. In

this figure, the circled numbers next to the

partitioning lines correspond to the num-

bers attached to the nodes in the decision

tree on the previous slide.

52

• It is good for mental imagery to associate

the entropies we talked about earlier with

the different portions of the feature space.

For example, the entropy H(C | f1<) ob-

viously corresponds to the portion of the

feature space to the left of the vertical di-

viding line that has the number 1 in the fig-

ure. Similarly, the entropy H(C | f1<, f2<)

corresponds to the portion that is to the

left of the vertical dividing line numbered 1

and below the horizontal dividing line num-

bered 2.

• As we grow the decision tree, our goal must

be to reach the nodes that are pure or until

there is no further reduction in the entropy

in the sense we talked about earlier. A

node is pure if it has zero entropy. Obvi-

ously, the classification made at that node

will be unambiguous.

53

• After we have finished growing up the tree,

we are ready to convert it into a hash table.

• We first create a sufficiently fine quantiza-

tion of the underlying feature space so that

the partitions created by the decision tree

are to the maximum extent feasible on the

quantization boundaries.

• We are allowed to use different quantiza-

tion intervals along the different features

to ensure the fulfillment of this condition.

• The resulting divisions in the feature space

will look like what is shown in the figure on

the next slide.

54

f values
1

f values2

vmin
vmax

umin

umax

1

2

3

4
5

• The tabular structure shown above can now

be linearized into a 1-D array of cells, with

each cell pointing to the unique class label

that corresponds to that point in the fea-

ture space (assuming that portion of the

feature space is owned by a pure node).

However, should it be the case that the

portion of the feature space from which

the cell is drawn is impure, the cell in our

linearized structure can point to all of the

applicable class labels and the associated

probabilities.

55

For Digging Deeper

• During her Ph.D dissertation in the Robot

Vision Lab at Purdue, Lynne Grewe cre-

ated a full-blown implementation of a decision-

tree/hashtable based classifier for recog-

nizing 3D objects in a robotic workcell. It

was a pretty amazing dissertation. She

not only implemented the underlying the-

ory, but also put together a sensor suite for

collecting the data so that she could give

actual demonstrations on a working robot.

• The learning phase in Lynne’s demonstra-

tions consisted of merely showing 3D ob-

jects to the sensor suite. For each object

shown, the human would tell the computer

what its identity and pose was.

56

• From the human supplied class labels and

pose information, the computer constructed

a decision tree in the manner described in

the previous section. Subsequently, the de-

cision tree was converted into a hash table

for fast classification.

• The testing phase consisted of the robot

utilizing the hash table constructed during

the learning phase to recognize the objects

and to estimate their poses. The proof of

the pudding lay in the robot successfully

manipulating the objects.

• The details of this system are published in

Lynne Grewe and Avinash Kak, "Interactive Learning
of a Multi-Attribute Hash Table Classifier for
Fast Object Recognition," Computer Vision and
Image Undersgtanding, pp. 387-416, Vol. 61,
No. 3, 1995.

57

Acknowledgment

In one form or another, decision trees have been around
for the last fifty years. However, their popularity during
the last decade is owing to the entropy-based method
proposed by Ross Quinlan for their construction. Fun-
damental to Quinlan’s approach is the notion that a
decision node in a tree should be split only if the en-
tropy at the ensuing child nodes taken together will be
less than the entropy at the node in question. The al-
gorithm presented in this tutorial is based on the same
idea.

I have enjoyed several animated conversations with Josh
Zapf and Padmini Jaikumar on the topic of decision
tree induction. (As a matter of fact, this tutorial was
prompted by some early conversations with Josh re-
garding decision trees, in general, and regarding Lynne
Grewe’s implementation of decision-tree induction for
computer vision applications.) We are still in some dis-
agreement regarding the computation of average en-
tropies at the nodes of a decision tree. But then life
would be very dull if people always agreed with one an-
other all the time.

58

