
ADAPTIVE CONTROL STRATEGY FOR ISOLATED INTERSECTION AND

TRAFFIC NETWORK

A Dissertation

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Chun Shao

May, 2009

 ii

ADAPTIVE CONTROL STRATEGY FOR ISOLATED INTERSECTION AND

TRAFFIC NETWORK

Chun Shao

Dissertation

Approved:

Advisor
Dr. Ping Yi

Committee Member
Dr. William H Schneider IV

Committee Member
Dr. Ernian Pan

Committee Member
Dr. Kevin L Kreider

Committee Member
Dr Zhong-Hui Duan

Accepted:

Department Chair
Dr. Wieslaw K. Binienda

Dean of the College
Dr. George K. Haritos

Dean of the Graduate School
Dr. George R. Newkome

Date

 iii

ABSTRACT

Traffic congestion due to increased travel demands is a common problem in urban

areas across the United States. Among the many solutions to traffic congestion,

operational treatment providing more efficient traffic operation is attractive due to its

relatively low cost. Besides traditional operation treatments such as actuated control and

signal coordination, adaptive signal control strategies have becoming increasingly

popular since 1980s. The advantages of the existing adaptive control strategies, such as

SCATS, SCOOT, OPAC and RHODES, over the actuated control scheme are reviewed

and their limitations are used as the basis for improvement in this research. Two adaptive

control logics, PODE and GABNOR, are proposed for isolated intersection and traffic

network optimization. By using real-time traffic as input, PODE dynamically searches

movement combinations for phasing and timing decisions that minimize piecewise

system delay. In GABNOR, the obstacles preventing the application of Genetic

Algorithm in real-time have been addressed and possible solutions have been presented.

Implemented as computer programs, PODE and GABNOR are compared with other

control logics and show competitive optimization ability. The results have been analyzed

with statistic tools and the system sensitivity to traffic arrival pattern and system

parameters are also analyzed. Future works are introduced to further examine and

improve the performance of PODE and GABNOR.

 iv

DEDICATION

To my wife and our baby Daniel

To my parents

You are the most important part of my present life!

 v

ACKNOWLEDGEMENTS

First of all, I would like to praise the almighty God for all the guidance in my life

and giving me wisdom and strength to finish this dissertation.

I would like to express my deepest sense of gratitude to my advisor Professor

Ping Yi, who is a wise advisor, aggressive researcher and patient teacher. Without his

guidance and persistent help this dissertation would not have been possible.

I would like to thank my committee member Dr. Zhong-Hui Duan for her

valuable help on Genetic Algorithm. My thanks also go to Mr. Darren Moore and Mr.

Steven Oberlin for their help on reviewing my dissertation. I also want to thank my

colleagues in the transportation laboratory for their supports and helps.

 I would take this opportunity to express my profound gratitude to my beloved

parents. This thesis is dedicated to them in appreciation.

My final, and most heartfelt, acknowledgment must go to my wife Feiran Yu for

supporting me with her unconditional love. Those supports are not only in the toughest

time of my experiments, but also in every day’s life. Honey, you are the best gift for me

from God!

 vi

TABLE OF CONTENTS

Page

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

CHAPTER

I. INTRODUCTION ... 1

II. LITERATURE REVIEW ... 4

2.1 Adaptive Control Logic for Isolated Intersection ... 4

2.1.1 Uncertainty in Predicting Future Traffic Flows .. 5

2.1.2 Difficulty in Arrival Time Estimation .. 5

2.1.3 Lack of Self-adjusting Mechanism ... 8

2.2 Adaptive Control Logic for Traffic Network .. 9

III. METHODOLOGY ... 11

3.1 PODE for Isolated Intersection ... 11

3.1.1 Initial Queue Size .. 13

3.1.2 Vehicle Arrivals .. 14

3.1.3 Vehicle Releases ... 15

3.1.4 Optimization Process .. 16

 vii

3.2 GABNOR for Traffic Network ... 21

3.2.1 Data Collection and Analysis.. 23

3.2.2 Genetic Algorithm Engine .. 29

3.2.3 Parallel Fitness Evaluation .. 32

3.2.4 Mesoscopic Internal Evaluator ... 33

3.2.5 Signal Transition between Timing Plans .. 37

IV. IMPLEMENTATION... 40

4.1 Microscopic Evaluation Platform ... 40

4.2 PODE .. 41

4.2.1 Configuration File ... 41

4.2.2 Algorithm .. 43

4.3 GABNOR .. 43

4.3.1 Configuration File and Visual Tool .. 45

4.3.2 Traffic Information Database .. 46

4.3.3 Evaluation Platform Interface Module .. 48

4.3.4 Traffic Data Collection and Analysis Module .. 49

4.3.5 Traffic Network Optimization Module ... 50

V. SIMULATION EVALUATION .. 52

5.1 PODE .. 52

5.1.1 Evaluation Scenario .. 52

5.1.2 Benchmark .. 54

5.1.3 Evaluation Results .. 55

 viii

5.1.4 Sensitivity of Vehicle Arrival Pattern ... 59

5.2 GABNOR .. 60

5.2.1 Parallel Computation Evaluation .. 60

5.2.2 Evaluation Scenarios ... 62

5.2.3 Benchmark .. 64

5.2.4 Evaluation Results .. 65

5.2.5 Detector Error Impact Study ... 69

5.2.6 Sensitivity of System Parameters.. 71

VI. CONCLUSIONS AND FUTURE WORKS ... 82

REFERENCES ... 84

APPENDICES .. 87

APPENDIX A. SAMPLE CONFIGURATION FILE FOR PODE.............................. 88

APPENDIX B. SAMPLE SOURCE CODE ... 94

APPENDIX C. TRAFFIC DATABASE TABLE CREATION SQL FILE 104

 ix

LIST OF TABLES

Table Page

3.1 Sample Performance Index Table ... 17

3.2 Turning Movement Detection Sequence Table .. 24

4.1 XML Configuration File Comments ... 42

5.1 Sample Traffic Demand Distribution on Each Approach 53

5.2 Best Maximum Green Affected by Traffic Demand and Distribution in
Actuated Control ... 55

5.3 Delay Reduction in PODE Against Actuated Control 58

5.4 Evaluation Results of Arterial in City of Green, Ohio 66

5.5 Evaluation Results of Grid Network in City of Akron, Ohio 68

5.6 Results of Detection Error Tolerance Experiment with 10% Error 70

5.7 Results of Detection Error Tolerance Experiment with 20% Error 71

5.8 Evaluation Results with 75 Population Size ... 73

5.9 Evaluation Results with 100 Population Size ... 74

5.10 Evaluation Results with 0.6 Crossover Rate ... 75

5.11 Evaluation Results with 0.8 Crossover Rate ... 76

5.12 Evaluation Results with 0.05 Mutation Rate .. 77

 x

5.13 Evaluation Results with 0.15 Mutation Rate .. 79

5.14 Evaluation Results with 0.20 Mutation Rate .. 80

5.15 Suggested Values for Parameters of GABNOR ... 81

 xi

LIST OF FIGURES

Figure Page

2.1 Geometric Layout for Vehicle Arrival Time Estimation 6

2.2 Travel Time between dA and A with Different Queue Sizes 7

3.1 PODE Detectors .. 12

3.2 Flow Chart of PODE Algorithm ... 20

3.3 Sample Optimization Result ... 21

3.4 Detector Configuration for Typical Four-leg Intersection 24

3.5 Flowchart of Turning Movement Identification Process 25

3.6 Example of Multiple Matches ... 28

3.7 Sample Timing Plan Encoding ... 30

3.8 Delay Calculation in GABNOR.. 34

3.9 Transition between Two Timing Plans ... 38

4.1 Structure of VISSIM API ... 41

4.2 GABNOR System Architecture .. 45

4.3 Visual Configuration Tool .. 46

4.4 Diagram of Traffic Information Database .. 48

4.5 TDCA Module Interface ... 50

 xii

4.6 Optimization Server Interface ... 51

4.7 Optimization Client Program .. 51

5.1 Screen Snapshot of PODE Evaluation .. 53

5.2 Vehicle Delay Comparison between Actuated Control and PODE 57

5.3 PODE Sensitivity Test of Vehicle .. 59

5.4 Parallel Computation Speed Experiment with 36 Clients 61

5.5 Parallel Computation Speed Experiment with 24 Clients 62

5.6 Arterial of Massillon Rd in Green, Ohio .. 63

5.7 Grid Traffic Network in Downtown Akron, Ohio 64

5.8 Average Delay of Intersections in the Arterial ... 66

5.9 Average Delay of Intersections in Grid Network 67

5.10 Mann-Whitney U Test for Stops in Grid Network Optimization 69

5.11 Mann-Whitney U Test for Stops with Different Population Size 73

5.12 Mann-Whitney U Test for Stops with 0.05 and 0.10 Mutation Rate 78

5.13 Mann-Whitney U Test for Stops with 0.20 and 0.10 Mutation Rate 80

 1

1 I. INTRODUCTION

CHAPTER I

INTRODUCTION

Traffic congestion due to increasing travel demands is a common problem in

urban areas across the United States. According to the Texas Transportation Institute's

report (1), the total delay that U.S. drivers experienced has reached 4.2 billion hours in

2005, which was 0.8 billion hours in 1982 correspondingly. Along with 2.9 billion

gallons of fuel wasted by delay, nation-wide vehicle delay costs $78.2 billion dollars for

drivers. Among the many solutions to traffic congestion, operational treatment providing

more efficient traffic operation is becoming increasingly attractive due to its relatively

low cost. In 2005, 292 million hours of delay and $5.4 billion of congestion cost were

saved by signal modifications.

Besides traditional operation treatments such as actuated control and signal

coordination, adaptive signal control strategies have been increasingly popular since

1980s. Among the adaptive control strategies, Sydney Coordinated Adaptive Traffic

System (SCATS) and Split Cycle Offset Optimisation Technique (SCOOT) are two

outstanding strategies for traffic network optimization. In early 1980's, SCATS was

introduced in Sydney, Australia (2) and became known for its implementation of

Divorce-Marriage method which select intersections for coordination dynamically. Since

its introduction, SCATS has been deployed in over 16,000 intersections in 93 cities in 21

 2

counties by June, 2007 (3). Almost at the same time, SCOOT was presented as a third

generation adaptive traffic signal control system in United Kingdom (4). The SCOOT

uses gradient search to incrementally adjust the green split, cycle length and offset of

each intersection in the traffic network. In nearly three decades, SCOOT has been

deployed in over 200 cities and towns world widely and its ability in improving traffic

condition has been widely evaluated. Other famous adaptive control systems such as

Optimization Policies for Adaptive Control (OPAC) (5) with rolling horizon optimization

and Real-Time Hierarchical Optimized Distributed and Effective System (RHODES) (6)

with hierarchical optimization have also been developed and tested in recent years in the

United States sponsored by the Federal Highway Administration. OPAC was first

presented by N. H. Gartner in 1983, and uses a simplified Dynamic Programming (DP)

method and Rolling Horizon approach to optimize signal control for isolated intersection.

OPAC was later expanded to include a coordination/synchronization strategy suitable for

arterials and networks control (7). Similarly, RHODES is a hierarchical strategy

introduced by Head and Mirchandani in 1992 (6). RHODES has different algorithms for

intersection control and network control. At the intersection control level, RHODES

applies a procedure called Controlled Optimization of Phases (COP) (8) which optimizes

phasing and timing by using a DP method. For network control, RHODES uses the

REALBAND model (9) based on platoon flow prediction. According to previous studies

(10), the decline of vehicle delay in OPAC varies from 3.9% to 15.94% compared with

the actuated control logic in three field tests. The software simulation performed for

RHODES (11) also showed significant vehicle delay reduction for both low and high

levels of traffic demand against actuated control.

 3

However, current adaptive control logic has several limitations including

uncertain traffic flow prediction, difficulty in estimating the arrival time, and lack of a

self-adjusting mechanism; all are discussed in the next chapter. Rapid developments of

recent years in other fields, such as artificial intelligence, information and computer

science, have revealed cutting-edge approaches in adaptive traffic signal control.

Motivated by the need for improvement in adaptive control logic, this research has

developed and tested a novel adaptive control strategy and tested its effectiveness in

comparison with other existing signal control algorithms.

 4

2 LITERATURE REVIEW

CHAPTER II

LITERATURE REVIEW

Adaptive control logic for isolated intersection is different from the one for traffic

arterial and network. It is necessary to discuss the control logic in two different levels

(intersection and network) individually. The following section reviews the current

practice of adaptive control logic in each level and discusses the possibility of

improvement.

2.1 Adaptive Control Logic for Isolated Intersection

Adaptive traffic signal control for isolated intersection is advantageous over the

conventional type of control because no preset plans are specified in advance. The

algorithms dynamically compute the signal timing plan based on real-time data obtained

from upstream detectors. These timing plans continuously adjust cycle length, green split

and phase sequence to provide better progression and minimize delay. From previous

studies, adaptive control logic provides comparable or better performance than actuated

control (12). In spite of those advantages, application of adaptive control is still

characterized by some limitations which warrant improvement.

 5

2.1.1 Uncertainty in Predicting Future Traffic Flows

Adaptive control strategies rely mainly on the prediction of the arriving flow (13).

There are two types of prediction. The first is based on the real-time data measured in the

field to estimate the movement of vehicles detected. The other is based upon historical

data to predict the future arriving flow. For convenience of referencing, we call the

former estimation and the latter prediction. While long-term optimization is ideal for

reaching the global optimums, the real-time data based control relies on a number of

short-term optimizations to reduce uncertainty in traffic demand and improve accuracy in

computation. The short-term optimization, usually in the order of 30 to 60 seconds,

makes it possible for all the optimizing processes to be based on estimation rather than

prediction. For example, the COP algorithm used in RHODES optimizes the phase

sequence every 30 to 40 seconds depending on the upstream detector’s location. The

OPAC strategy relies on data from the past 50 to 100 seconds (14), therefore its

effectiveness is largely dependent on the accuracy of flow prediction. No matter how the

traffic information is obtained, there will always be some difference between the

predicted and the field condition. Hence, a desirable adaptive control strategy should

reduce reliance on prediction as much as possible.

2.1.2 Difficulty in Arrival Time Estimation

A reliable estimation model must be developed to provide real-time traffic

information for adaptive control. Vehicle arrival information is typically obtained from

detectors placed upstream of the intersection, and the objective of estimation is to obtain

the vehicle travel time between the upstream detector and the intersection stop line

 6

er (5, 14). For system optimization, the ability to estimate traffic conditions for a long

duration is desirable, but because of geometric constraints and uncertainties in vehicle

arrivals, there is most always a tradeoff between the estimation duration and data

accuracy. The geometric layout of the travel time estimation is shown in Figure 2.1.

dA dU

A

Stop Line

Figure 2.1 Geometric Layout for Vehicle Arrival Time Estimation

RHODES (15) splits travel time into two parts, the time between upstream

detector dU and arrival detector dA, and the time from dA to intersection A. Detector dA is

located several hundred feet upstream of intersection A in order to provide long enough

“reaction time” for the system to adjust the signals. In heavy traffic conditions, however,

the travel time from dA to intersection A cannot be easily determined because it is largely

affected by the existing queue and the signal status at intersection A. Let us consider two

cases shown in Figure 2.2:

t1

dA

t2

A

t1

dA

t2

A

 (a) Vehicle arrival without existing queue (b) Vehicle arrival with existing queue

Figure 2.2 Travel Time between dA and A with Different Queue Sizes

iii τδμ += (2.1)

Where,

I: Index for vehicles arriving at intersection A,

ȝi: Estimated arrival time of vehicle i to intersection A,

δi: Estimated arrival time of vehicle i at detector dA,

τi: Estimated travel time between dA and intersection A.

In Equation 2.1, δi is affected by where the vehicle is detected (dU in Figure 2.1)

and the distance to reach dA. On the one hand, there are errors in predicting δi (15), on the

other hand, the travel time τi is not merely to divide the distance between dA and

intersection A by the approaching speed of the vehicle. Different queue lengths

remaining in the approach will affect τi, as depicted in Figure 2.2. In addition, the

approaching speed is likely to change as the arriving vehicle gets close to the queue,

which also affects the estimated vehicle arrival time to the intersection.

 7

 8

Similarly, OPAC defines travel time as the time for the vehicle to travel between

the upstream and the downstream signals (14) and the difficulty in travel time estimation

must also be dealt with in congested traffic. This problem exists in the optimization

process of every adaptive control system today. However, very limited up to date work is

reported in the literature as to how the varying queue length will affect the arrival time

estimation.

2.1.3 Lack of Self-adjusting Mechanism

The effectiveness of adaptive control strategies also relies on reasonable

estimation of system parameters governing queue formation/dissipation, start-up delay,

and vehicle clearance. The start-up delay and the vehicle releasing rate may be different

from time to time due to the influence of construction, incident, and even the weather

condition. The differences cannot be accounted for if static parameters are used in the

model, and the cumulated error can become large enough to offset any systems advantage

over other types of control. However, most of the existing adaptive control strategies do

not contain a self-adjusting mechanism.

In summary, improvements over adaptive control logic for isolated intersection

should include the following:

1. Data used in optimization come from real-time detection and estimation. Use of long-

term based prediction from historical data is not desired;

2. The arrival time estimation model is reliable and adaptive to a variety of traffic

conditions; and

 9

3. The control logic must contain a self-adjusting mechanism to monitor system

operation and make corrections.

2.2 Adaptive Control Logic for Traffic Network

Compared with isolated intersections, traffic networks prefer coordinated timing

plans usually determined by four parameters: cycle length, green split, offset and phase

sequence. Since the number of possible signal timing plans increased exponentially

against the incremental number of intersections involved in the network, the algorithm

finding the global best solution, such as Dynamic Programming, cannot yield an optimal

result in a short time. Most adaptive control strategies employed near-optimal searching

algorithms provide the approximate best solution in real-time.

Among the near-optimal searching algorithms, Genetic Algorithm (GA) has

shown its compatible ability in many areas. Although GA became popular through the

work of Holland in 1975 (16), practical application of it started in the late 1980s with the

dramatic increase in desktop computational power. The application of GA in traffic

signal timing optimization started from the early 1990s. Foy et al. (17) introduced a

method using GA to optimize a four-intersection network by minimizing vehicle delay.

Hadi and Wallace presented a similar GA problem in 1993 (18) and suggested to

combine with TRANSYT-7F to optimize all four parameters which are cycle time, phase

sequence, green split and offset. Park et al. proposed in 1999 a GA approach to optimize

traffic network, especially in oversaturated conditions (19). In Park's model, the

fractional values are first used to represent all the four parameters of signal timing. His

model was later combined with CORSIM simulation to optimize a 31 nodes traffic

 10

network (20). Though the ability of GA to optimize signal timing has been demonstrated,

the above efforts are all focused on offline optimization, in which the computation burden

generally is too large to prevent applications in real-time. For example, in Park's model,

the optimization time in each step (update interval) varies from several minutes to several

hours depending on the complexity of the traffic network and the calculation speed of the

computer processor. Another obstacle prevents the offline system to be applied in real-

time is data collection. The traffic information used in optimization, such as the traffic

demand, should be obtained in real-time from field instead of using prerecorded data.

Other problems such as how to shift from one timing plan to another should also be

addressed. In 2004, Lee et al. (21) introduced a real-time application to provide optimized

acyclic signal operation through rolling horizon method based on the Genetic Algorithm.

While this work represents an improvement, the model is relatively simple in details to

collect and process data for only a 3-intersection linear system.

In short, GA has shown its ability in off-line traffic network optimization but its

application in real-time traffic control is very limited. To implement adaptive control

logic with GA, the following obstacles should be overcome:

1. Optimization should be finished in relatively short time to fulfill the requirement of

real-time operation;

2. Data collection, such as volume, headway and etc., should be accurate enough; and

3. Switching from one timing plan to another should be smoothly and quickly.

 11

3 METHODOLOGY

CHAPTER III

METHODOLOGY

The adaptive control logic described in this proposal is divided into two parts: one

for the isolated intersection, and the other for the entire traffic network. In an isolated

intersection optimization, the logic called Piecewise Optimum Delay Estimation (PODE)

(22) is used while in traffic network optimization, the logic named Genetic Algorithm

Based Network Optimization in Real-time (GABNOR). The following section will

discuss the logic in detail.

3.1 PODE for Isolated Intersection

PODE is a piecewise decision strategy that optimizes signal operations in short-

term intervals based on field detection. Similar to other adaptive control schemes, PODE

utilizes data input on vehicle arriving, system queue, and at the stop line (Figure 3.1). The

special features of PODE include flexible interval length and self-adjustment. The length

of piecewise optimization interval can vary from several seconds to a few dozen, and the

self-adjusting program is performed at the beginning of each interval to correct

estimation error and reset system parameters if necessary. All the possible movement

combinations are treated as candidate phases and will be assigned to each interval. A lane

group is associated with each phase which is the collection of lanes receiving the green

signal. For each interval, PODE will exam all possible interval length and phase

combinations (for instance, there are 120 combinations if the range of interval length is

15 seconds and in an eight-phase operation). The performance index of each combination

is compared and optimized phase and length is selected. Interval by interval, the sequence

of the phases and the length of each interval are dynamically determined by the algorithm

to achieve system optimization according to real-time traffic data.

Figure 3.1 PODE Detectors

The objective function of adaptive control strategies is commonly used to

minimize system wide vehicle delay or to maximize the intersection utilization, such as

the throughput of the whole intersection. In PODE, either objective function can be

selected and we chose the former for the model discussion in this paper. The selected

objective function serves as the basis for comparison among different optimization phase

sequence and interval lengths.

The total system delay during the optimization is the summation of vehicle delay

in the existing queue at each second in each lane at each approach, as shown in

Equation 3.1.

 12

∑ ∑ ∑
=

=
approach lane

c

t

tjj

j

D
1

, λ (3.1)

Where,

j: Optimization interval index,

Dj: Delay of intersection during interval j,

cj: Length of interval j (sec),

t: Time index at one second incremental inside interval, t = 1 to cj,

Ȝj,t: Queue size at time t in interval j (veh).

For simplicity of presentation, we use only one lane in an approach to explain the

modeling details. For any optimization interval j, we can get the following equation:

tjtjtjtj ,,1,, γαλλ −+= − (3.2)

Where

αj,t: Estimated arriving vehicles at the t second in interval j (veh),

γj,t: Estimated vehicle releases at the t second in interval j (veh).

Through iteration, we can rewrite the delay calculation equation as the following:

() (∑∑
==

−⋅+−+⋅=
jj c

t

tjtjjjj

c

t

tj tcc
1

,,0,

1

, 1 γαλλ) (3.3)

Clearly, the system wide delay is dependent on the estimation of Ȝj,0, αj,t and γj,t.

The research explains the estimation process of these parameters one by one.

3.1.1 Initial Queue Size

Ȝj,0 is the initial queue size at the beginning of each optimization interval. It is also

the final queue size at the end of last optimization interval, that is

1,10, −−=
jcjj λλ . (3.4)

 13

When the system is first initialized, the queue size is set to zero, that is Ȝ1,0 = 0.

As the optimization progresses, the queue size is tracked interval by interval.

Since the number of arriving and releasing vehicles is each estimated, there is a

likely difference between the estimate and the actual data. This will result in error in

queue size estimation. To avoid accumulation of errors, PODE has built in a procedure to

calibrate the queue size, which is part of the self-adjusting program.

The queue adjusting procedure is performed with the help of a detector at the stop

line and a queue detector which is placed in a short distance upstream (usually 200 ft) to

track the input and output within the section. Our experiments showed that a queue tail

exceeding the queue detector caused little difference in PODE optimization. The

adjustment will not be made until the lane group has lost the right of way (from green to

red) for a time period long enough to allow the queue to be stable. To reduce system

input and hardware reliance, PODE does not require precise queue length measurement

and uses only approximate queue size information in the self-adjusting algorithm.

3.1.2 Vehicle Arrivals

Because of the difficulty in determining the arrival time at the stop line, we

estimate the arrival time at the queue tail instead. If there is no waiting vehicle, the stop

line naturally becomes the queue tail. With the estimated queue size Ȝj,t and vehicle’s

arrival information, the arrival time at the queue tail is estimated with the help of a car-

following model.

Once a vehicle is detected by the upstream detector, its speed and location are

tracked every second by the system according to the following equation:

1,1,, −− −= tjtjtj vll (3.5)

 14

 15

Where:

lj,t, Distance between the stop line and the arriving vehicle at time t in interval j,

vj,t, Speed of arriving vehicle at time t in interval j.

The speed of each vehicle at time t is estimated by the car-following model

(which is not described here as it is well known to researchers). The time lag of response

and sensitivity in this model (23) are PODE’s system parameters and are adjusted

periodically by comparing the estimated versus the actual arrivals obtained from the self-

adjusting program discussed in the previous section. For example, when the estimation is

consistently larger than the actual for five intervals, the response time lag is reduced and

the sensitivity increased. By means of this model, the location of the arriving vehicle at

any time t is determined.

At the same time, as the queue is being released the length of queue is tracked by

using a pre-established queue releasing wave speed obtained from field observations. A

function is established to determine queue length with the input of queue size and time.

At any time t of optimization interval j, we will compare the queue length qj,t with each

arriving vehicle’s location lj,t and update the arrivals. For example, if the vehicle’s

location has not reached the queue tail, no additional vehicle will be counted to join the

queue.

3.1.3 Vehicle Releases

Vehicle releases γj,t are determined at each second depending on the queue size Ȝj,t,

the arrivals αj,t, and the selected phase pj for the optimization interval j. The number of

vehicles that can be released into the intersection is constrained by the following:

1. If no green time is assigned, the releases γj,t for the corresponding movements will be

zero;

2. If green time is assigned and there is an existing queue that cannot be cleared in this

second by estimation, the release γj,t for the corresponding lane will be determined by

the maximum queue release rate r; and

3. If the queue size Ȝj,t is small (including zero) and can be cleared in this second by

estimation, the number of released vehicles will be the summation of queue size Ȝj,t-1

and vehicle arrivals αj,t during the same second.

Similarly, the basic vehicle releasing rate r is measured from the field considering

the start-up delay. Collectively, the calculation of vehicle releases can be written as

()⎩
⎨
⎧

+
=

− j,1,

j

, p phase of group lane in the,min

p phase of group lane in the NOT 0

tjtj

tj r αλ
γ (3.6)

Where,

r: Maximum queue release rate measured from field,

pj: Selected phase for optimization interval j.

 16

)

3.1.4 Optimization Process

For any given interval length cj and selected phase pj, Equation 3.3 can be

rewritten as

(
jj

c

t

tj pc
j

,Delay
1

, =∑
=

λ (3.7)

Since the selected objective of PODE algorithm is to find the minimum system

wide delay among different possible interval lengths, the measure of performance, Mj, is

the system delay Dj divided by the optimization interval length cj. The objective function

for Mj can be written as follows:

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ∑

approach lane j

jj

j

j

j
c

pc

c

D
M

),(Delay
 minminmin . (3.8)

By varying cj and pj in Equation 3.8, Mj is calculated sequentially for all possible

combinations of cj and pj. In each iteration, Mj is recorded as it relates to cj and pj

(exemplified in Table 3.1). At the end of the iterations, a comparison is made in the last

row (maximum cj) of the table to select the best phase pj corresponding to the minimum

performance index. Next, the Mj values within the selected phase column are compared

and the cj from the cell having the minimum Mj value will selected as the next interval to

use.

Table 3.1 Sample Performance Index Table

 pj
1 2 3 4 5** 6 7 8

cj (sec)

5 N/A N/A N/A N/A 110.26 N/A N/A N/A

6 N/A N/A N/A N/A 110.30 N/A N/A N/A

7 N/A N/A N/A N/A 110.31 N/A N/A N/A

8 N/A N/A N/A N/A 110.33 N/A N/A N/A

9 N/A N/A N/A N/A 110.36 N/A N/A N/A

10 N/A N/A N/A N/A 110.38 N/A N/A N/A

11 123.67 91.99 129.67 86.63 110.43 116.58 104.59 99.72

12 123.80 92.07 129.83 86.32 110.55 116.73 104.67 99.80

13 124.01 92.32 129.99 86.00 110.62 116.89 104.73 99.85

14 124.27 92.88 130.34 85.85 110.86 117.22 104.97 100.10

15 124.44 93.03 130.62 85.59 111.04 117.47 105.11 100.23

16 124.65 93.26 130.91 85.37 111.31 117.70 105.35 100.29

17 124.73 93.51 131.03 85.23* 111.67 117.91 105.52 100.31

18 124.96 93.77 131.27 85.34 111.92 118.06 105.74 100.24

19 125.37 94.01 131.49 85.48 112.20 118.28 105.98 100.18

20 125.51 94.34 131.77 85.60 112.48 118.43 106.12 100.09

* Selected Cj and Pj

 17

** Current phase when optimizing

Second Comparison First Comparison

 18

The basic steps in PODE are as follows:

1. Collect and record vehicle arrival information from the upstream detector at each

second;

2. Adjust the initial queue size Ȝj,0 at the beginning of each optimization interval,

according to detection by the queue detector and stop line detector;

3. Adjust system parameters, such as maximum queue release rate, etc., if necessary;

4. Design possible combinations of phase pj and interval length cj;

5. Estimate the vehicle arrivals αj,t by means of tracking vehicle location lj,t and queue

length qj,t;

6. Estimate the vehicle releases γj,t with selected phase pj, queue size Ȝj,t and vehicle

arrivals αj,t;

7. Repeat steps 5 and 6 till the vehicle arrivals and releases at any second in interval j

have been determined;

8. Calculate the performance index Mj based on estimated Ȝj,0, αj,t and γj,t;

9. Repeat step 5-9 until all the feasible combinations of pj and cj have been checked;

10. Compare performance index Mj among different pj at the maximum cj, choose the pj

with minimum Mj;

11. Compare performance index Mj among different cj within the chosen pj. Select cj with

minimum Mj; and

12. Return selected cj and pj as optimized result.

 19

A flow chart is shown in Figure 3.2 to help understand the PODE optimization

process. A sample optimization result is shown in Figure 3.3. There are eight potential

phases to choose from in each optimization interval. It can be seen from the chart that

interval j and interval j+1 are both adopting phase 2 which gives the lane group in north

and south bound the right of the way. After that, phase 7 is assigned to the interval where

the north bound left turn and through movements are given the green indication. Notice

that a switch between phase 2 and phase 7 occurred when optimization interval shifted

from j+1 to j+2. This means a clearance time (yellow plus red) is given at the beginning

of interval j+2 to end the green for the south bound traffic while the green is continued

for the north bound through movement. Notice that the interval length is flexible and the

length of a phase is not limited by the interval length. For instance, the length of phase 2

is 20 seconds since it is selected by both intervals j and j+1.

Start

Collect vehicle information based on upstream detector

Is the end of last optimized interval j-1?

Adjust queue λj,0 based on queue detector information

Adjust system parameters

For all the possible combination

of phase pj and length cj

Estimate the vehicle arrivals αj,t and releases γj,t

with given pj and cj for 1 ≤ t ≤ cj

Calculate the performance index Mj

Compare at max. cj to select pj with min. Mj

Compare at selected pj to choose cj with min. Mj

Return selected cj and pj

No

Yes
Self-adjusting

Figure 3.2 Flow Chart of PODE Algorithm

 20

Optimization

Interval

Index j

pj = 2

cj = 12s

Pj+1 = 2

cj+1 = 8s

j+1

pj+2 = 7

cj+2 = 16s

j+2

pj+3 = 3 pj+4 = 1

cj+3 = 10s cj+4 = 10s

Time

j+3 j+4

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

Optimization interval index: j

Optimization interval length: cj

Phase index at interval j: pj

Figure 3.3 Sample Optimization Result

3.2 GABNOR for Traffic Network

Similar to other traffic optimization systems, the objective function of GABNOR

is to minimize the total vehicle delay of the traffic network in the evaluation time horizon.

Briefly, GABNOR optimize traffic network by searching among possible timing plans

and select the optimal one. Since different timing plans differ in cycle length and offset,

the length of evaluation time horizon will be different also. In order to compare different

timing plans, we adopt the average vehicle delay per second as the objective to be

minimized as shown in equation 3.9

 21

∑ ∑ ∑
=

=∈∀
p.length

0t

tionsn.intersec

i

si.movement

m

m.delay[t]
p.length

n.Delay(p)
MinimizeP, p (3.9)

Where,

P: collection of all possible timing plans,

p: timing plan object,

n: network object,

n.Delay(p): method of network n to calculate delay with given p,

p.length: the length of evaluation time horizon for timing plan p,

t: time index,

n.intersections: the collection of all intersections in network n,

i: intersection object,

i.movements: the collection of all movements in intersection i,

m: movement object,

m.delay[t]: delay of movement m at time t.

As the growth of possible number of timing plans is exponential to the increase of

number of intersections in the network, exhausting search is impossible to solve this

problem with current computing power. GA, in this case, can perform better searching

result in limited time.

Similar to other GA based algorithms, GABNOR includes a GA Engine to

optimize signal timing and evaluate each timing plan by using a Mesoscopic Internal

Simulator. A special process to help GABNOR shift from one timing plan to another is

also included. We will introduce these key components in the following section.

 22

 23

3.2.1 Data Collection and Analysis

To perform on-line optimization, vital information including volume for each

movement, vehicle headway, startup delay and etc. should be collected in real-time

continuously. Among these data, the volume for each movement of an intersection is the

most difficult one to obtain. In GABNOR, we will calculate vehicle turning movements

by tracking detectors' status and traffic signal code second-by-second. To illustrate the

very basic idea of this method, we will take a four-leg intersection as an example. As

shown in Figure 3.4, there is only one lane in each leg for each direction, which means

each lane is shared by left turn, right turn and through vehicles. Detectors are placed at

the stop bar in all approaches of this intersection. There are two types of detectors: input

detectors (white) which provide the detection of vehicles approaching the intersection

and output detectors (gray) which provide the detection of vehicles leaving the

intersection. For each turning movement, a fixed detector pair is activated. For example,

any northbound left turn vehicle will first activate detector 1 then detector 8. Thus, we

can get a table of detection sequence for each turning movement as shown in Table 3.2.

The basic idea of this method is to find out vehicle turning movements based on detection

sequence table according to the recorded detections and signal status.

1

4

3

2

5

6

7

8

N

Figure 3.4 Detector Configuration for Typical Four-leg Intersection

Table 3.2 Turning Movement Detection Sequence Table

Input
Detector

Output
Detector

Movement Abbreviation

1 7 Northbound Through NT

1 6 Northbound Right Turn NR

1 8 Northbound Left Turn NL

2 8 Westbound Through WT

2 7 Westbound Right Turn WR

2 5 Westbound Left Turn WL

3 5 Southbound Through ST

3 8 Southbound Right Turn SR

3 6 Southbound Left Turn SL

4 6 Eastbound Through ET

4 5 Eastbound Right Turn ER

4 7 Eastbound Left Turn EL

At signalized intersection, only part of the vehicles approaching the intersection

can get the right of way at any moment. The signal information can help us to filter the

candidate movements. However, the process to identify turning movements by searching

detection pairs can still be very complicated when there are multiple combinations

available caused by shared lane or other factors. To identify the turning movements under

any circumstance, there are three modules in the process, Input Detection Recording

 24

Module, Output Detection Matching Module and Input Detection Cleanup Module. As

shown in, the detail processes of these three modules are introduced below in Figure 3.5.

Figure 3.5 Flowchart of Turning Movement Identification Process

 25

 26

3.2.1.1 Input Detection Recording Module

This module is trigged by the detection from input detectors. Once the status of an

input detector changes from activated to deactivated, which means that a vehicle has left

the detector. The detector's ID and the deactivation timestamp will be recorded and saved

in the waiting list. The saved records will be used in the other two modules.

3.2.1.2 Output Detection Matching Module

This module is trigged by the detection from output detectors. An output detection

means a vehicle left the intersection and there should be one and only one input detection

matched with it. However, in practice, it will not always just return one input detection

from the waiting list. As shown in Figure 3.5, there are three possible cases need to be

taken care of.

Case I: There is no matched detection in the waiting list.

This situation can be caused by either a miss detection on input detectors or false

detection from output detectors. Since any detection in the future will not be helpful to

solve this problem, we will not output anything except mark the output detection as an

error.

Case II: There is only one matched detection in the waiting list.

This is the best condition for detection match. We will simply search the turning

 27

movement table and find the corresponding movement based on the detection pair.

System will output this movement as the result and mark the input and output detection

as identified.

Case III: There is more than one matched detection in the waiting list

This is the most complicated situation we need to handle in the algorithm. It can

be caused by many reasons, such as false detections of input detector, vehicles not

cleared in the intersection and etc. To illustrate the process when we have more than one

candidate, a simple example will be discussed. Consider a four-leg intersection with one

lane on each direction as shown in Figure 3.6. There is a vehicle moving from south to

east (northbound right turn) and another vehicle moving from north to south (southbound

through). At any moment, the vehicles' position is shown in Figure 3.6 (a). There are two

candidate input detections both available for the output detection. The system will then

hold all detections and not make a decision until the southbound vehicle leaves the

intersection. As shown in Figure 3.6 (b), there are now two output detections, one from

detector 5 and the other from detector 6. Though there are still two possible matches for

output detection 6, there is only one input detection to match with output detection 5. The

algorithm will output the movement as southbound through. Consequently, we only have

one input detection to match with output detector 6. The algorithm will then output

northbound right turn and all the output detections have been matched and the turning

movements are determined.

 28

(a) Unsolvable Situation Caused by Vehicle not Cleared the Intersection

(b) Solvable Situation when Vehicle Cleared the Intersection

Figure 3.6 Example of Multiple Matches

1

2

3

4

5

6

7

8

Input Detections: 1, 3
Output Detection: 5, 6

Possible Matches for 6:
1->6 Northbound Right Turn
3->6 Southbound Left Turn

Possible Matches for 5:
3->5 Southbound Through

1

Input Detections: 1, 3

2

3

4

5

6

7

Output Detection: 6

Possible Matches:
1->6 Northbound Right Turn
3->6 Southbound Left Turn

8

 29

3.2.1.3 Input Detection Cleanup Module

This module is an independent process which cleanups the expired input

detections in the detection waiting list. Input detections which have no matched output

detection for a given time should be removed from the waiting list to keep the system

working properly. These non-matched detections may be caused by false detection from

input detectors or miss detection on output detectors. The expiration time is preset by the

system (usually the length of phase in experience) and the cleanup process is performed

every second. This module is very crucial in helping solve the problem of multiple

matches in the algorithm.

3.2.2 Genetic Algorithm Engine

A GA engine is built in GABNOR to help optimizing traffic networks. The

encoding method of this engine and its parameter selection are introduced in the

following.

3.2.2.1 Signal Timing Plan Encoding

Before introducing the GA used in GABNOR, we will introduce the encoding

mechanism to help understand the modeling process. To avoid generating an unsuitable

timing plan and reduce the optimization time, a green split is calculated from the traffic

volume information instead of being encoded. The other parameters, such as cycle length,

offset and phase sequence, are encoded in a binary string using fractional value. In

addition, half cycle is supported in GABNOR and is encoded also. An example of

encoding for a timing plan of a two-intersection traffic network is shown in Figure 3.7. In

this example, six bits are used to represent the common cycle length of the intersections

in the network. For each intersection, 12 bits are used to encode half cycle, offset and

phase sequence. Among these 12 bits, one bit is used to represent whether this

intersection is half cycle or not, seven bits are used to represent the offset, and the last

four bits are used to represent the phase sequence (lead or lag). With the encoded binary

string shown in Figure 3.7, we can interpret to a signal timing plan for the whole network.

The cycle length of the first intersection is 128 seconds and the offset is 74 seconds,

while the cycle length of second intersection is 64 seconds due to half cycle and the offset

is 37 seconds. The phase sequences are as shown in the figure. With this encoding

mechanism, we can easily convert between a signal timing plan and its corresponding

binary string.

Figure 3.7 Sample Timing Plan Encoding

3.2.2.2 Genetic Algorithm and its Parameters

Generally, Genetic Algorithm includes the following processes:

1. Initialization

 30

 31

2. Evaluation

3. Reproduction

4. Termination

 Initialization process randomly establishes the first generation of chromosomes,

which is a collection of different traffic timing plans in GABNOR. After that, GA will

perform the Evaluation process which will evaluate the fitness of each chromosome. In

GABNOR, the fitness value is the total delay of traffic network estimated by a

mesoscopic internal simulator. After all the chromosomes have been evaluated, the

Reproduction process will produce a new generation based on the fitness value of each

chromosome. There are three operations in the reproduction process: Selection,

Crossover and Mutation. Selection will pick up two chromosomes according to a given

scheme. In GABNOR, we adopted the commonly used Rank Selection plus Elitism

approach to perform this operation. Crossover will generate child chromosome(s) with

parent chromosomes selected in Selection operation. In GABNOR, Uniform Crossover is

used to generate new timing plans with given crossover probability. The Mutation

operation will randomly change the bits in chromosome by given mutation probability to

keep variations in the chromosomes. Once a new generation has been built, the

Evaluation operation will be repeated until the termination criteria are fulfilled. In

GABNOR, the major termination criteria is whether the calculation time has exceed a

given upper limit or not, which will ensure the optimal result can be applied in real-time.

Three major parameters are used in the optimization process of GA, population

size, crossover probability and mutation probability. Population size is the number of

 32

individual chromosomes in each generation. Since we are doing real-time optimization, a

trade-off must be made between larger populations that may not converge in time and

smaller populations that may converge to local optimum. The population size in

GABNOR is selected according to a general rule of thumb that the population size is

close to the length of binary string of chromosome. We also set the crossover probability

as 0.7 and mutation probability as 0.1 according to Kovvali and Messer's study (24). We

noticed that in Park’s work (19) the optimized results are found insensitive to the

parameters of GA for traffic network optimization and there is no exception in GABNOR.

3.2.3 Parallel Fitness Evaluation

The most time-complex process in GA is the fitness evaluation. For a real-time

optimization system, GABNOR must optimize signal timing in a very short time span.

With the help of the potential parallel feature of GA, we designed and implemented a

Parallel Fitness Evaluation process to calculate the fitness value of multiple

chromosomes simultaneously.

Parallel Fitness Evaluation is a client-server based program. The server will

maintain a pool of unevaluated chromosomes (timing plans) and the client will send the

request to the server asking for evaluating. If there is any chromosome available in the

pool, the server will select one and send it to the client. The result will be sent back to the

server after the client finishes the evaluation. With the help of multi-threading (25) and

asynchronous socket communication (26), the server can handle multiple clients' requests

at the same time. Theoretically, the evaluation speed will increase linearly to the number

of clients.

 33

3.2.4 Mesoscopic Internal Evaluator

To evaluate different timing plans, an internal mesoscopic evaluator is used in

GABNOR. With given phase codes of evaluation time horizon, the evaluator estimates

vehicle delay based on input-output modeling. From Equation 3.9, the total network

delay is the summary of delay at each movement of each intersection. To calculate the

delay, we track the arrival flow, departure flow and delayed vehicles of each movement

second by second. The arrival flow is determined by the upstream movements' departure

flow, the travel condition on the feed approach and it will not be affected by the signal

timing or queue in the approach. The departure flow means the vehicle release at each

second of the movement. It is determined by signal timing, delayed vehicles, capacity of

lanes and etc. As shown in Figure 3.8, with given arrival flows and signal timing (phase

codes), the departure flow can be estimated second by second. The delayed vehicles at

each second mean the vehicles slowed down by signal timing, queue or other factors. The

summary of delay at each second is the total delay of that movement as shown in Figure

3.8. The estimation of each variable will be discussed in the next part.

Figure 3.8 Delay Calculation in GABNOR

3.2.4.1 Arrival Flow

The arrival flow is determined by the departure flow of upstream movements and

the travel condition of its feed approach and upstream movements. If there is no upstream

movement exists, the arrival flow will follow the Poisson distribution. Platoon dispersion

used in equation 3.10 will not be introduced here in order to keep the simplicity of the

model. The calculation of arrival flow is as follows

()
⎪
⎪
⎩

⎪⎪
⎨

⎧

==≥
+

−−
=

=

∑
t existvements noapp.feedmoif ,...,, and

m.volume
where rand(t)

!

,Γ
,

xist ovements e app.feedm ifme]u.traveltitimeapp.travele[tu.departur

t]m.arrival[

oachm.feedapprppSuppose a

vementsapp.feedmo

u

 210
3600

 ,
1

min

κλ
κ

λκκ

 (3.10)

where,

m: movement object,

 34

m.feedapporach: the feed approach of movement m,

t: time index,

m.arrival[t]: the arrival flow of movement m at time t,

app.feedmovements: the collection of feed movements of feed approach app

of movement m,

u: movement object for upstream movement,

u.departure[t]: the departure flow of u at time t,

app.traveltime: the average travel time on approach app from field data,

u.traveltime: the average travel time of movement u from field data,

rand(t): random value between 0 and 1 generated by random

seed t,

m.volume: the volume of movement m from field data,

Г(ț,Ȝ): Incomplete gamma function which is . ∫
∞ −−

λ

κ dxex x1

 35

3.2.4.2 Departure Flow

The departure flow is determined by the phase code, delayed vehicles, the

capacity of lanes and other factors. The calculation of departure flow can be described by

a series of criteria. Suppose we need to determine the departure flow of movement m at

time t, or m.departure[t], the criteria are as follows:

0 for tt] m.arrival[1]m.delay[te[t]m.departur

0]m.arrival[e[0]m.departur

>+−≤
≤

 (3.11)

where,

m.delay[t]: the delayed vehicles of movement m at time t,

m.arrival[t]: the arrival flow of movement m at time t.

Besides the above criteria, the departure flow is also limited by the feed approach

capacity, which can be presented by

∑≤
sm.feedlane

l

onflowratel.saturatie[t]m.departur (3.12)

Where,

l: lane object,

m.feedlanes: the collection of feed lanes of movement m,

l.saturationflowrate: the saturation flow rate of lane l from field data.

If the phase code of the intersection at time t doesn't allow movement m to release

vehicles, the following criteria needs to be added:

0e[t]m.departur ≤ (3.13)

The departure flow is the maximum value that accomplishes all the above criteria.

3.2.4.3 Delayed Vehicles

Delayed vehicles means the number of vehicle being delayed at each movement.

It is determined by the arrival flow and the departure flow as follows:

0 te[t] form.departurt]m.arrival[1]m.delay[tm.delay[t]

e[0]m.departur0]m.arrival[m.delay[0]

>−+−=
−=

 (3.14)

Where,

m: movement object,

t: time index,

m.delay[t]: the delayed vehicles of movement m at time t,

m.arrival[t]: the arrival flow of movement m at time t,

m.departure[t]: the departure flow of movement m at time t.

 36

 37

3.2.5 Signal Transition between Timing Plans

Whenever a new timing plan is generated, switching from the current timing plan

to the new one is necessary. There are two major methods used in practice, one called

Dwell and the other called Shortway. Dwell will hold the current signal status until

synchronized. It is faster than Shortway method that most transition can be finished in

one cycle. However, since the signal is held, it will block other directions traffic until it is

synchronized. According to the study performed by Shelby, Bullock and Gettman (27),

Dwell transition is the most disruptive transition method over a range of conditions.

Shortway, on the contrast, provides superior performance compared with Dwell, but

usually needs longer transition time. With advanced computing technology, we can

choose a transition method intelligently to reduce the effect of transition period to traffic

flow.

Since GABNOR is a real-time optimizer, moving smoothly and quickly from one

timing plan to another is essential for traffic operation. On the other hand, the transition

will cost time and affect the performance of the whole traffic network. To evaluate the

timing plan, the transition time should also be included, thus the phase codes for the

transition time needs to be calculated. To illustrate the determination of phase codes for

transition, let us consider the transition of one intersection as shown in Figure 3.9 with

the following notations:

C1: Cycle length of current timing plan,

F1: Offset of current timing plan,

C2: Cycle length of new timing plan,

F2: Offset of new timing plan,

X: Length of time interval where phase codes needs to be decided.

Figure 3.9 Transition between Two Timing Plans

As shown in the figure, the horizontal axis is time. The cycle length of current

timing plan for this intersection is C1 and the offset is F1. Suppose the timing plan needs

to be switched to a new one with C2 as the cycle length and F2 as the offset at time 0. The

gray area in the figure represents the region in which phase codes are already determined.

For instance, time F1-C1 to time F1 represents a complete cycle of current timing plan

without offset, while time C1+F2 to time C1+F2+C2 represents the complete cycle of new

timing plan without offset. The phase codes in the blank area shown in Figure 3.9 needs

to be filled in. Now the problem of generating phase codes for entire transition period has

been narrowed down to the blank area X.

Since the start time of X is at the end of one complete cycle of current timing plan,

the phase codes in X are independent to the current timing plan. Similarly the phase

codes in X are independent to the new timing plan. Thus, we can apply the same green

split and phase sequence of new timing plan in X with different cycle length and no offset.

According to different lengths of X, we have different schemes as follows:

Scheme I: CMin ≤ X ≤ CMax

 38

In this case, X fulfills the criteria of cycle length and the phase codes can be as

long as one complete cycle with length X.

Scheme II: 2CMin < X ≤ 2CMax and CMax < X

When X is larger than maximum cycle length but located between two times the

minimum cycle length and two times the maximum cycle length, we can divide X into

two complete cycles. When X is an even number, the cycle length is
2

X
; if X is an odd

number, the lengths of two new cycles will be
2

1−X
 and

2

1+X
, respectively.

Scheme III: 0< X < CMax – C2 and X < CMin

When X is smaller than the minimum cycle length, we can extend the blank area

with C2 and fill it with one cycle. In this case, X+C2 must be less than the maximum

cycle length.

Since X=C1+F2-F1, the possible value of X is in the range of [0, 2CMax]. Besides

the above three situations, the value of X could also be located in (CMax - C2, CMin) or

(CMax, 2CMin). In practice, the maximum cycle length is usually larger than two times the

minimum cycle length, thus the only exception of X will be (CMax - C2, CMin). Since this

situation will be very rare in the optimization, we can just discard it by considering the

new timing plan as invalid.

Considering the above schemes, we get the phase codes for transition time.

Combined with the phase codes of new timing plan, the evaluation time horizon is

prepared for evaluation.

 39

 40

4 IMPLEMENTATION

CHAPTER IV

IMPLEMENTATION

To evaluate the performance of the optimization system, a microscopic simulation

program is adopted as evaluation platform in our experiment. Its developed programming

interface enables the user to interact with the simulation model. Our algorithms are then

implemented as computer program to be tested with the microscopic evaluation platform.

In this chapter, we will discuss the detail of the implementation.

4.1 Microscopic Evaluation Platform

Microscopic simulation software is widely used in transportation engineering. It

not only assists the engineer to evaluate the timing plan before applying it in the field, but

also be helpful in travel time study, traffic safety and many other areas. Besides

simulation function, some software also provides programming interface for users to

interact with it during the simulation to perform complex studies. Among these

interactive simulation programs, VISSIM (28) is an outstanding one. VISSIM is a leading

microscopic simulation program developed by PTV AG in Germany for multi-modal

traffic flow modeling. It is used world widely because of its efficient network editing,

sophisticated vehicle behavior modeling and detailed analysis options. Besides the above

features, VISSIM also provides a well developed Application Programming Interface

(API) for users to apply their own logic in traffic signal control. The structure of VISSIM

API is shown in Figure 4.1. In our research, we use VISSIM 4.30-05 as our microscopic

evaluation platform.

Figure 4.1 Structure of VISSIM API

4.2 PODE

The algorithm of PODE is integrated and implemented with VISSIM API. In

order to keep the algorithm independent to specific intersection, we use a configuration

file to save the geometric and signal timing information of the intersection. The initial

values of parameters used in the algorithm are also saved in the configuration file.

4.2.1 Configuration File

An Extensible Markup Language (XML) formatted configuration file is used to

describe the target intersection and the parameters. For the target intersection, signal

timing information (candidate phases) and the geometric information such as approaches,

lanes and detectors are saved in the configuration file. The algorithm will first read the

document and parse it with an XML engine, such as Microsoft XML DOM (Document

Object Model). The parsed value will then be used during the optimization calculation.

The full text of a sample configuration file for PODE is attached in Appendix A and the

comments are shown in Table 4.1.

 41

 42

Table 4.1 XML Configuration File Comments

XML Configuration File Comments

Element approach

Attributes Type Meaning

index integer Sequence index

laneNum integer Number of lanes in this approach

type string Type of this approach, such as "veh" or "ped"

Sub Elements

lane

Element lane

Attributes Type Meaning

index integer Sequence index

queueDetNum integer Number of queue detectors in it

lane integer ID of lane in the approach

queueLeaveCars float Queue release rate in this lane

weight float Weight of this lane in optimization

Sub Elements

countDet

queueDet

Element countDet

Attributes Type Meaning

id integer ID of count detector

distance float Position of this detector

Element queueDet

Attributes Type Meaning

id integer ID of queue detector

index integer Sequence index

distance float Position of this detector

queuemin integer Min. number of queue when detector is occupied

queuemax integer Max. number of queue when detector is occupied

Element sg

Attributes Type Meaning

index integer Sequence index

minGreen integer Minimum green of signal group

approachNum integer
Number of approaches with right of the way when

the signal group is in green

Element Phase

Attributes Type Meaning

index integer Sequence index

Sub Elements

sg

 43

e

n

I

4.2.2 Algorithm

The algorithm of PODE is implemented with Microsoft Visual Studio 2003 in

C++ language. In order to simplify the internal data sharing, the data collection module

and optimization algorithm are integrated together. The algorithm first read the

configuration file to initialize the system and then optimizes the signal timing in real time.

Part of the source code is available in Appendix B.

4.3 GABNOR

For network optimization, GABNOR is much more complicated than PODE.

Since multiple intersections are optimized simultaneously, the data collection and

algorithm module should be separated rather than integrated as in PODE. As shown

in Figure 4.2, GABNOR is mainly composed with a traffic information database and

three cooperated modules, which are Traffic Data Collection and Analysis (TDCA)

module, Traffic Network Optimization (TNO) module, and Evaluation Platform Interfac

(EPI) module. Evaluation platform is a microscopic simulation program with the functio

of interactive signal control usually provided as an API. EPI module will utilize the AP

function to collect information from the detectors and traffic signals in the simulation

program and forward to TDCA module. Another major task of EPI is applying optimized

timing plan received from TNO in the evaluation platform. The independence of EPI to

evaluation platform makes it possible to perform seamless transition among different

simulation programs or even hardware equipment. Once the raw data sent from EPI has

been received by TDCA module, it will analyze the data and extract useful information to

be saved in the database. One example of such useful information is vehicle turning

 44

movements. Traffic information database in Figure 4.2 saves all vital traffic information

and gets ready for querying requests by TNO module or any other traffic data analysis

program. TNO module will optimize the traffic network periodically based on the traffic

information obtained from the database and the optimal timing plan generated will then

be sent to EPI module for application. All three modules and database are connected with

each other in an Ethernet network. The detailed implementation of these modules is

introduced in the following chapter.

Traffic

Information

Database

Ethernet

Traffic Data

Collection and Analysis

Module

Detector, Signal

Raw Data

Processed Traffic Records

and Signal Data

Traffic Records and Signal Data

Queries for Database

Query Results

(Vehicle Volume and etc.)
Detector, Signal

Raw Data
Optimized

Timing Plan

Traffic Network

Optimization Module

Query Results

(Vehicle Volume and etc.)

Queries for Database

Optimized

Timing Plan

Evaluation Platform

Interface Module

Evaluation Platform

A
P

I

Figure 4.2 GABNOR System Architecture

4.3.1 Configuration File and Visual Tool

Similar to PODE, there is a configuration file in XML format saving the initial

parameter values and geometric and signal information of the whole traffic network.

Since the complexity of the configuration file will increase along with the increment of

 45

the traffic network scale, it is inefficient to configure this file in text format manually. A

visual tool is then needed to assist the configuration of the whole network. In GABNOR,

a visual configuration assistant program is developed with Microsoft Visual Basic .NET

2008 as shown in Figure 4.3. The traffic network editing method is similar to VISSIM

and a well trained user can build up a nine-intersection traffic network in couple hours.

Figure 4.3 Visual Configuration Tool

4.3.2 Traffic Information Database

Traffic information collected and extracted in real-time is essential to

optimization. In order to provide simplistic method to save and load the data, a database

 46

 47

is created to store the useful traffic information. Microsoft SQL Server 2005 is used as

the existing computational drivers in our programming language. The diagram of the

database model is shown in Figure 4.4. There are three tables in the database,

VehicleMovements, Detections and SignalLogs. The VehicleMovements table saves

vehicle turning movements identified from the detection data. Each turning movement

record consists of the intersection where it belongs to, the name of this movement, the

detectors' activation and deactivation time, and the type of movement. User can later

query statistical information such as volume, average travel time and etc. The queried

data will then be used by TNO to perform optimization. Detections table saves detections

records for all the detectors in the system. IntersectionID and DetectorID are used to help

identify the detector while each detection's active time and its duration are also saved in

the database. Type and memo are used to mark the detection either an error or part of an

identified movement. The data saved in Detections table can be used to update system

parameters such as average headway, start-off delay and etc. SignalLogs table records the

signal status of each intersection at each second. These signal data will be helpful in both

network optimization and system parameters updating. The SQL file for creation of the

three tables is listed in APPENDIX C.

Detections

PK ID

IntersectionID

DetectorID

ActiveTime

Duration

Type

Memo

SignalLogs

PK IntersectionID

PK PhaseTime

PhaseCode

VehicleMovements

PK ID

IntersectionID

Movement

EnterActiveTime

EnterDeactiveTime

ExitActiveTime

ExitDeactiveTime

Type

Figure 4.4 Diagram of Traffic Information Database

 48

4.3.3 Evaluation Platform Interface Module

EPI is implemented with Microsoft Visual Studio 2003 in C++ language

according to the API provided by VISSIM. The main function of EPI is linking

GABNOR with microscopic simulation software to perform the evaluation. A socket

client is built in EPI to communicate with TDCA module to transfer detection and signal

data. Every second, EPI will send a message to TDCA containing the data collected from

the simulation software. This message is a string with the following format:

Time:Type:Signal Update:Cycle Index:Phase Code[:Detector ID:

Activation Num[:ms|speed|length]:Deactivation Num[:ms|speed|length]]

Where:

Time: Time on the client,

 49

Type: Type of message, such as "INIT" or "DETECTION",

Signal Update: Indicator of whether need update timing plan or not,

Cycle Index: Current time index in the cycle,

Phase Code: An encoded string to save the signal status information,

Detector ID: Identification number of detector with detection reported,

Activation Num: Number of vehicles arrived at (activate) the detector,

Deactivation Num: Number of vehicles left (deactivate) the detector,

ms: Million second of the detection,

speed: Speed of the vehicle (optional),

length: Length of the vehicle (optional).

4.3.4 Traffic Data Collection and Analysis Module

After the message sent from EPI received by TDCA module, an analysis

procedure will be executed to filter useful information. Some information, such as signal

status and detections, can be stored in the database without much process, while the

others need further computation such as vehicle turning movement. TDCA module

implements the vehicle identification process and other data analysis functions. Interfaces

shown in Figure 4.5 are also provided for users to monitor the status of TDCA module.

 (a) Message Sending/Receiving Interface (b) Signal and Detector Status Monitor

Figure 4.5 TDCA Module Interface

4.3.5 Traffic Network Optimization Module

TNO is a client-server structured module with parallel computation capability.

The server maintains a pool of connections with all the clients and another pool of timing

plans needs to be evaluated. The evaluation will be performed on the client side and the

server will dynamically assign timing plans to the clients. Through the given interface

shown in Figure 4.6, user can check the status of the clients, track the optimization status

and setup the optimization parameters, such as population, crossover rate and mutation

rate.

 50

 (a) Clients List (b) Status Monitor (c) Parameters Configuration

Figure 4.6 Optimization Server Interface

Client program shown in Figure 4.7 will receive the timing plan sent from the

server and send back the evaluation result. Besides evaluation function, auto-updating is

another feature of the client program. Any update package released in the server will be

downloaded by the clients automatically. This feature will not only ensure that all the

clients using the same function to evaluate the timing plan, but also save substantial time

during the system developing where the evaluation function usually updated frequently.

Figure 4.7 Optimization Client Program

 51

 52

5 SIMULATION EVALUATION

CHAPTER V

SIMULATION EVALUATION

After the algorithms have been implemented, we investigate their performance on

the simulation evaluation platform.

5.1 PODE

As adaptive control logic for isolated intersection, PODE was evaluated with

different traffic load compared with well-adjusted actuated control at an isolated

intersection. The detail of the evaluation is discussed in the following part.

5.1.1 Evaluation Scenario

PODE system testing and evaluation is performed on a four-legged intersection.

Each approach of the intersection has two lanes for the through movements with a left

turn pocket while the curb lane is shared with right turn vehicles. A screen snapshot of

the operation is shown in Figure 5.1. During the evaluation, we changed the traffic

demand of the whole intersection from 1600 veh/hr to near 7000 veh/hr at the intervals of

400 veh/hr. The high volume represents an oversaturated situation because the theoretical

and practical capacity for this intersection is reported in the range of 6000 to 6400 veh/hr

considering start-up delay and clearance time (29). Many testing runs were made at each

 53

.

volume level with different traffic load distributions on each approach, as exemplified

in Table 5.1

Figure 5.1 Screen Snapshot of PODE Evaluation

Table 5.1 Sample Traffic Demand Distribution on Each Approach

Traffic Demand Load Distribution (veh/hr)

Approach 1 Approach 2 Approach 3 Approach 4 Total Demand

…

800 800 800 800 3200

700 900 700 900 3200

600 1000 600 1000 3200

600 600 1000 1000 3200

700 700 900 900 3200

900 900 900 900 3600

800 1000 800 1000 3600

700 1100 700 1100 3600

700 700 1100 1100 3600

800 800 1000 1000 3600

1000 1000 1000 1000 4000

900 1100 900 1100 4000

800 1200 800 1200 4000

800 800 1200 1200 4000

900 900 1100 1100 4000

…

 54

5.1.2 Benchmark

We used the actuated control logic as the benchmark for comparison. The setup

for phasing and timing in actuated control follows the standard of National Electrical

Manufacturers Association (NEMA) for a fully actuated eight-phase dual-ring controller.

Different locations for placing the actuating detector are tested in each run in order to

give a fair consideration of the actuated control, and the best result is included as the

benchmark performance. The parameters of actuated control are also adjusted at different

traffic demand levels and load distributions to get the best performance. One (and the

most important) such parameters is the maximum green for each phase. As shown

in Table 5.2, each row represents different traffic demand and distribution. The maximum

green for each phase is the one which produced minimum vehicle delay. From the table

we can see that the best maximum green varies for different traffic demands and

distributions.

 55

Table 5.2 Best Maximum Green Affected by Traffic Demand and Distribution in

Actuated Control

Traffic Demand (veh/hr) Maximum Green for Phase (sec)

App. 1 App. 2 App. 3 App. 4 1 2 3 4 5 6 7 8

…

800 800 800 800 10 16 10 16 10 16 10 16

700 900 700 900 10 16 10 18 10 16 10 18

600 1000 600 1000 10 14 10 22 10 14 10 22

600 600 1000 1000 10 20 10 20 10 20 10 20

700 700 900 900 10 20 10 20 10 20 10 20

900 900 900 900 10 18 10 18 10 18 10 18

800 1000 800 1000 10 18 10 22 10 18 10 22

700 1100 700 1100 10 16 10 22 10 16 10 22

700 700 1100 1100 10 24 10 24 10 24 10 24

800 800 1000 1000 10 22 10 22 10 22 10 22

1000 1000 1000 1000 10 22 10 22 10 22 10 22

900 1100 900 1100 10 22 10 24 10 22 10 24

800 1200 800 1200 10 18 10 26 10 18 10 26

800 800 1200 1200 10 28 10 28 10 28 10 28

900 900 1100 1100 10 28 10 28 10 28 10 28

…

5.1.3 Evaluation Results

PODE is tested next at this intersection under the same traffic and geometric

conditions. With input from the upstream detector (placed 1000 ft upstream), queue

detector (placed 200 ft upstream) and stop line detector, PODE optimized the intersection

operation at the interval range of five to 20 seconds. The clearance time for each phase

includes three seconds yellow plus two seconds red which is the same with the one in

actuated control. There are eight candidate phases for selection and 128 length and phase

combinations for each interval to compare and choose. The simulation results with PODE

are shown in Figure 5.2 based on seventy runs which include fourteen levels of traffic

 56

demands with five different loading distributions at each level. We can see from this

figure that PODE consistently outperforms the actuated control logic, and the vehicle

delay from PODE is notably reduced in high volume situations. Specifically, in the low to

medium demand range, from 1600 veh/hr to 4800 veh/hr, the saving in vehicle delay by

PODE against the best performance of actuated control is within ten seconds/veh. In high

traffic demand, from 5200 veh/hr to 6400 veh/hr (actuated control cannot handle higher

demand), actuated control begins to increasingly show large “jumps” in delay, which

means its performance is unstable with different traffic load distributions. In comparison,

although vehicle delay in PODE also goes up with the increase in traffic demand, the

change is much smoother and the increments are much smaller compared with actuated

control. In addition, PODE can handle a larger volume (exceeding 6800 veh/hr) whereas

actuated control breaks down (rapid and continuous queue growth) when volume reaches

6400 veh/hr. It should be pointed out that there is no need to manually adjust the PODE

system parameters during the seventy runs, whereas in the actuated control logic the

location of the detectors and the maximum green have to be changed in order to obtain its

best performance as discussed earlier.

0

10

20

30

40

50

60

70

80

90

100

110

1200 2000 2800 3600 4400 5200 6000 680

Traffic Demand (veh/hr)

V
e
h

ic
le

 D
e

la
y
 (

s
e

c
/v

e
h

)

0

Actuated Control

PODE

Figure 5.2 Vehicle Delay Comparison between Actuated Control and PODE

Table 5.3 shows the percentage of reduction in vehicle delay. The range of

reduction varies from 20% to 45%. With the increase of traffic demand, the percentage of

reduction also increases indicating that PODE works very well in heavy to oversaturated

traffic situations. The reduction of average vehicle delay for high traffic demand (larger

than 5200 veh/hr) starts at 11 seconds and goes up to 40 seconds or 45%. The phase

duration in PODE changes with traffic demand. We used a minimum green to handle

extremely low volumes, and the system extended the green to as long as 50 seconds to

accommodate very high volumes. In comparison, the phase duration in actuated control

went up to 80 seconds in order to obtain best operation results. Most cycle lengths in

 57

PODE are between 45 and 80 seconds while in actuated control are from 60 to 200

seconds.

 58

 Demand
(veh/hr)

Average Delay (sec/veh) Reduction
(seconds)

Reduction
Percentage

Table 5.3 Delay Reduction in PODE Against Actuated Control

Traffic

Actuated Control PODE

1 6% 600 13.94 10.28 3.66 26.2

2000 14.73 11.86 2.87 19.48%

2400 16.30 13.02 3.28 20.12%

2800 18.51 14.84 3.67 19.83%

3200 21.78 16.78 5.00 22.96%

3600 24.85 18.54 6.31 25.39%

4000 27.14 20.76 6.38 23.51%

4400 30.45 23.00 7.45 24.47%

4800 33.19 24.44 8.75 26.36%

5200 39.29 28.10 11.19 28.48%

5600 48.03 33.50 14.53 30.25%

6000 61.14 39.04 22.10 36.15%

6400 88.78 48.80 39.98 45.03%

6800 N/A 62.10 N/A N/A

Overall A eduction Percentage verage R 26.79%

C ed with othe ol logic, PODE has also showed that it is

further im system optim ion. According to OPAC field tests (10) and lation

results (30), the reduction percentage is from 0% to 20% against actuated control. There

is very little reported work of RHODES at a single intersection. Sen and Head (8)

presented a chart to show the difference of delay between COP (algorithm used at

intersection control level in RHODES) and actuated control for an isolated intersection

with three through lanes plus one right turning bay and one (some approaches have two)

left turning bay. From this chart, the average delay from COP increased from 15 sec/veh

to 35 sec/veh as the traffic demand increased from 4500 veh/hr to 4800 veh/hr. In the

case of PODE, however, the delay is around 20 sec/veh to 25 sec/veh at the same level of

traffic demand according to Figure 5.2. Nevertheless, we believe the model

implementation and testing has shown the competitive strength of PODE to perform well

ompar r contr able to

prove izat simu

 1

 59

irectly

continuously performed well independent

to external factors, such as vehicle arrival pattern. To verify whether PODE is sensitive to

vehicle c

consistently, especially in heavy and oversaturated traffic. Since we did not d

implement the aforementioned models, one should be cautions when citing the above

statistics in comparison.

5.1.4 Sensitivity of Vehicle Arrival Pattern

Reliable adaptive control logic should

 arrival pattern or not, we run the evaluation model five times with the same traffi

demand in Table 5.1 but different seeds for vehicle generation. The test results shown

in Figure 5.3 indicate that the PODE performs well consistently when different vehicle

generating seeds are used.

0

10

20

30

40

50

60

70

1200 2000 2800 3600 4400 5200 6000 6800

Traffic Demand (veh/hr)

V
e
h

ic
le

 D
e
la

y
 (

s
e
c
)

Seed #1

Seed #2

Seed #3

Seed #4

Seed #5

Figure 5.3 PODE Sensitivity Test of Vehicle

 60

5.2 GABNOR

e control logic for traffic network, GABNOR was evaluated with

differen sed

Parallel Computation Evaluation

putation of GABNOR is tested. There are total

37 desk

)

l

4

U

e

As adaptiv

t scenarios compared with the optimized timing plan generated from widely u

signal timing optimization tool. The detail of the evaluation is discussed in the following

part.

5.2.1

First, the capability of parallel com

top computers involved in this experiment. One of these computers acts as the

server while the others installed with client program to evaluate chromosomes. The

computation speed of GABNOR increased up to 54 chromosomes per second (ch/sec

while the number of clients reaches to 36. However, as shown in Figure 5.4, the paralle

computation has met a threshold of 54 ch/sec after the number of computer reaches 24.

With further investigation of the computation capability of the clients, we find out that 2

computers are Intel Core 2 CPU with 3.00 GB RAM while the other 12 computers are

Pentium 4 with RAM in the range from 512 MB to 2.00 GB. Computer with Core 2 CP

can calculate up to 3.5 ch/sec while the slowest Pentium 4 computer can only evaluate

1.5 ch/sec or 700 million seconds per chromosome. Similar to “Wooden Barrel Theory”,

the performance of parallel computation is determined by the slowest, not the fastest

computer in the system. Thus we check the number of chromosomes evaluated by the

slowest computer in each generation. In our experiment, we have 75 chromosomes to b

evaluated in each generation and the slowest computer usually evaluates two

chromosomes, in another word, 1400 ms, in each generation on average. The

 61

/sec, which computation speed can be calculated by 75 chromosomes / 1400 ms = 53.5 ch

is very close to the speed we observed.

53.7653.1954.1
52.0251.32

42.75
38.92

35.88

28.89

22.94

15.84

8.35

0

16

32

48

64

80

96

112

0 6 12 18 24 30 36 42

Number of Computers

S
p

e
e
d

 (
c
h

/s
e
c
)

Measured Speed

Ideal Speed

Figure 5.4 Parallel Computation Speed Experiment with 36 Clients

T e s

chromo wer of the

which only

o increase th peed of evaluation, we can either limit the number of

somes evaluate by the slowest computer or increase the computation po

slowest client in the system. Since we have 24 computers which have similar

computation power in range from 3.0 ch/sec to 3.5 ch/sec, we did another test

includes these 24 computers. As shown in Figure 5.5, the test results show the calculation

speed continuously increased along with the increment of the computer number. When

the computer number increases, the difference between the ideal speed and measured

speed also increases. This may be caused by the non-parallelizable part in the

 62

unication optimization program, such as reproduction process, and the time lost in comm

between server and clients. With the help of parallel computation, we can evaluate the

performance of GABNOR in real-time.

57.06

52.73

47.88

41.66

34.84

26.76

18.8

10.03

0

10

20

30

40

50

60

70

80

90

0 3 6 9 12 15 18 21 24 27

Number of Computers

S
p

e
e
d

 (
c
h

/s
e
c
)

Measured Speed

Ideal Speed

Figure 5.5 Parallel Computation Speed Experiment with 24 Clients

5.2.2 Evaluation Scenarios

There are two scenarios tested during the evaluation of GABNOR. Each of them

composed with nine intersections while one is an arterial highway and the other is a grid

urban traffic network. The two different scenarios are selected to evaluate the

performance of GABNOR under different network configurations.

5.2.2.1 Arterial

The first scenario is a nine-intersection arterial located at Green, Ohio. The

geometric layout of this arterial is shown in Figure 5.6. Besides regular at-grade

intersections, this corridor also includes a diamond interchange. The main street,

Massillon Rd, is a 1.76 mile two-way arterial and the speed limit varies from 35 mph to

45 mph. Afternoon peak hour volume is modeled in the evaluation program.

N S

E

W

R
a

b
e

r
R

d

77

77

B
o

e
tt

le
r

R
d

C
o

rp
o

ra
te

 W
o

o
d

s
 C

ir

G
ra

y
b

il
l

R
d

T
o

w
n

p
a

rk
 B

lv
d

S
te

e
s

e
 R

d

Massillon Rd

E
 T

u
rk

e
y

fo
o

t
L

a
k
e

 R
d

2660 ft 530 ft 760 ft 762 ft 614 ft 1324 ft 1793 ft 1171 ft

Figure 5.6 Arterial of Massillon Rd in Green, Ohio

5.2.2.2 Grid Network

To verify the capability of optimizing grid traffic network of GABNOR, we also

tested it in a 3x3 grid network in downtown Akron, Ohio. As shown in Figure 5.7, the

grid traffic network consists of two one-way streets and four two-way streets. The length

of each block is shown in the figure and the traffic volume information is randomly

assigned.

 63

E Market St

Mill St

E Bowery St

N

S

EW

341 ft 347 ft

Figure 5.7 Grid Traffic Network in Downtown Akron, Ohio

5.2.3 Benchmark

To evaluate the performance of GABNOR, SYNCHRO is chosen to generate

benchmark timing plan of the comparison. Both the nine-intersection arterial and grid

network with their volume information was modeled in SYNCHRO. After that,

recommended optimization procedure from SYNCHRO has been applied. The signal

timing plan was then optimized with the network cycle length varying from 50 to 150

seconds. The increment was two seconds due to half cycle option. The best timing plan

was exported to and evaluated by VISSIM.

 64

 65

5.2.4 Evaluation Results

Meanwhile, the arterial and grid network was also modeled in GABNOR.

Because of GABNOR’s adaptive capability, it doesn’t require the volume information.

The population size of GA was set to 50 and the maximum generation was 150.

Crossover and mutation probability were 0.7 and 0.1 typically. The minimum cycle

length and the maximum cycle length were the same with SYNCHRO which were 50 and

150 seconds. The optimization interval was set to 15 minutes and the maximum GA

calculation time was limited to 200 seconds. Evaluations of GABNOR and benchmark

timing plan from SYNCHRO were finished in VISSIM through ten randomly seeded

simulation runs. Each simulation lasted 70 minutes including ten minutes for warm up

time. The performance of the arterial was sampled in the last 45 minutes of the simulation

which was after the first optimization of GABNOR (at 25 minutes).

5.2.4.1 Arterial

Generally, the average delay of whole arterial is 15% lower in GABNOR among

those ten simulation runs. From the average delay of each intersection shown in Figure

5.8, we can find that the timing plan generated in GABNOR tends to balance the vehicle

delay among those intersections. As shown in Table 5.4, delay, stops and queue length of

each simulation run have been listed and the data are tested with statistic tools. The

Shapiro-Wilk test (31) shows that all six groups of data are normally distributed with

95% confidence level. The improvements of the delay, stops and queue length in

GABNOR are all statistical significant according to the T-Test.

0

5

10

15

20

25

30

35

Turk
ey

fo
ot

 L
ak

e

R
ab

er

I-7
7

N

I-7
7

S

C
oor

pe
ra

te
 W

oods

B
oet

tle
r

G
ra

yb
ill

Tow
npar

k

Ste
es

e

A
v
e
ra

g
e
 D

e
la

y
 (

v
e
h

/s
e
c
) SYNCHRO

GABNOR

Figure 5.8 Average Delay of Intersections in the Arterial

Table 5.4 Evaluation Results of Arterial in City of Green, Ohio

Random Seed
Delay (sec) Stops Queue Length (ft)

Synchro GABNOR Synchro GABNOR Synchro GABNOR

1 17.10 14.10 0.51 0.40 25.40 18.70

2 15.60 13.40 0.46 0.37 21.40 18.40

3 16.20 13.60 0.48 0.39 22.90 17.60

4 19.40 15.90 0.59 0.42 33.10 23.40

5 17.70 15.10 0.53 0.42 26.90 21.20

6 16.80 14.50 0.51 0.42 25.40 19.70

7 17.30 14.90 0.51 0.42 26.50 20.40

8 16.90 14.00 0.51 0.42 25.60 20.90

9 16.50 13.80 0.49 0.39 24.60 20.10

10 17.20 15.90 0.51 0.45 26.90 22.90

Average 17.07 14.52 0.51 0.41 25.87 20.33

Standard Deviation 1.0133 0.9041 0.0343 0.0226 3.0862 1.8679

Difference 14.94% 19.61% 21.41%

Shapiro-
Wilk Test

p-value* 0.2594 0.3266 0.1410 0.2721 0.1707 0.9645

Normal Dist YES YES YES YES YES YES

F-Test
p-value* 0.3698 0.1148 0.0754

Homo. Vari. YES YES YES

T-Test
p-value* 0.0000 0.0000 0.0000

Diff. Sig. YES YES YES

* Reject the null hypothesis when p-value < 0.05

 66

5.2.4.2 Grid Network

For grid network optimization, as shown in Figure 5.7, GABNOR yields very

close result to the benchmark timing plan and the difference in delay is less than 1%.

When observing the simulation in detail, we found that the timing plan generated by

GABNOR is similar to the one from SYNCHRO except for shorter cycle length. This

may be caused by relatively small dimension (3 intersections at each direction) of the

network allows both SYNCHRO and GABNOR approach to the global best timing plan.

0

5

10

15

20

25

M
ai

n &
 M

ar
ket

M
ai

n &
 M

ill

M
ai

n &
 B

ow
er

y

H
ig

h &
 M

ark
et

H
ig

h &
 M

ill

H
ig

h &
 B

ow
er

y

B
ro

adw
ay

 &
 M

ar
ke

t

B
ro

adw
ay

 &
 M

ill

B
ro

adw
ay

 &
 B

ow
ery

A
v
e
ra

g
e
 D

e
la

y
 (

v
e
h

/s
e
c
)

SYNCHRO

GABNOR

Figure 5.9 Average Delay of Intersections in Grid Network

Comparison of detailed performance between SYNCHRO and GABNOR is

shown in Table 5.5. From the results, GABNOR has almost the same result of

SYNCHRO. T-Test results also show that the difference of delay and queue length

between two methods is not significant. Mann-Whitney U test is used to examine the

difference in stops since the F-Test doesn't support the homogeneity of variance in stops.

As shown in Figure 5.10, the result indicates that the difference is not significant.

 67

 68

Another interesting finding is that GABNOR prefer to reduce the queue length instead of

the stops. This is supported by the observation that GABNOR usually generates smaller

cycle length than SYNCHRO.

Table 5.5 Evaluation Results of Grid Network in City of Akron, Ohio

Random Seed
Delay (sec) Stops Queue Length (ft)

Synchro GABNOR Synchro GABNOR Synchro GABNOR

1 10.20 10.20 0.39 0.39 9.60 9.60

2 10.20 10.40 0.39 0.41 9.80 9.80

3 10.20 10.20 0.39 0.43 9.80 9.30

4 10.30 10.10 0.40 0.41 9.70 9.40

5 10.60 10.60 0.41 0.41 10.10 10.10

6 10.20 10.20 0.39 0.39 9.60 9.60

7 10.00 10.00 0.39 0.39 9.40 9.40

8 10.10 10.10 0.39 0.39 9.90 9.90

9 9.90 9.90 0.38 0.38 9.30 9.30

10 10.60 10.40 0.40 0.41 10.30 10.00

Average 10.23 10.21 0.39 0.40 9.75 9.64

Standard Deviation 0.2263 0.2079 0.0082 0.0152 0.3028 0.2951

Difference 0.20% -2.04% 1.13%

Shapiro-
Wilk Test

p-value* 0.1864 0.7376 0.1275 0.1201 0.9329 0.2944

Normal Dist YES YES YES YES YES YES

F-Test
p-value* 0.4022 0.0404 0.4704

Homo. Vari. YES NO YES

T-Test
p-value* 0.5911 0.0932

Diff. Sig. NO NO

* Reject the null hypothesis when p-value < 0.05

Ranks

10 9.05 90.50

10 11.95 119.50

20

Group

1.00

2.00

Total

Stops

N Mean Rank Sum of Ranks

Test Statisticsb

35.500

90.500

-1.182

.237

.280
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Stops

Not corrected for ties.a.

Grouping Variable: Groupb.

Figure 5.10 Mann-Whitney U Test for Stops in Grid Network Optimization

5.2.5 Detector Error Impact Study

In practice, it is difficult to reach 100% detector accuracy. In the field experiment

of visual detection, the detector’s accuracy is affected by many factors, including the

height and angle of the camera, weather and traffic volume. In some cases, the detection

error can reach as high as 20%. There are primarily two types of detections error, miss

count and double count. Miss count means a vehicle passed over a detector without

detection reported. On the contrast, double count means detection reported without a

vehicle passed over the detector or two detections reported when there is only one vehicle.

The turning movement identification process is designed to reduce the impact from the

detector error. To evaluate the performance of this process, we intensively generate

detection errors in the EPI module to simulate the field situation. The turning movement

 69

 70

count identified is then compared with the one without detection error. The performance

of GABNOR with detection error is also examined to test its fault tolerance of input data.

In this experiment, EPI randomly generate 10% detection errors which include

5% double count and 5% miss count. The same vehicle arrival pattern is used in this test

and the result is listed in Table 5.6. From this table, we can find that the error percentage

of turning movement count has been reduced to 3.68% and the difference of system

performance compared with no error situation is not statistical significant.

Table 5.6 Results of Detection Error Tolerance Experiment with 10% Error

Random Seed
Turning

Movement Error
Delay (sec) Stops

Queue
Length (ft)

1 3.99% 15.30 0.41 23.40

2 2.39% 14.70 0.40 21.40

3 4.34% 14.30 0.40 20.10

4 3.87% 14.60 0.43 21.50

5 2.96% 13.90 0.39 17.90

6 3.34% 15.50 0.43 22.00

7 4.29% 13.80 0.38 19.90

8 3.60% 14.40 0.40 21.80

9 2.43% 13.50 0.37 18.70

10 5.62% 14.10 0.41 19.50

Average 3.68% 14.41 0.40 20.62

Standard Deviation 0.9760% 0.6385 0.0193 1.6844

Difference with 0% Error 0.76% 1.95% -1.43%

Shapiro-
Wilk Test

p-value* 0.7053 0.7975 0.6244 0.9106

Normal Dist. YES YES YES YES

F-Test
p-value* 0.1574 0.3237 0.3816

Homo. Variance YES YES YES

T-Test
p-value* 0.7731 0.3353 0.7513

Diff. Sig. NO NO NO

* Reject the null hypothesis when p-value < 0.05

Next, the error percentage is raised to 20% including 10% double count and 10%

miss count. As shown in Table 5.7, the error percentage of turning movement count has

been controlled around 6% and the system can still yield good performance. T-Test

 71

shows there is not significant difference between 20% error and no error. That means

GABNOR can keep almost the same performance even under high detection data error.

Table 5.7 Results of Detection Error Tolerance Experiment with 20% Error

Random Seed
Turning

Movement Error
Delay (sec) Stops

Queue
Length (ft)

1 7.36% 15.20 0.41 22.20

2 5.45% 15.60 0.44 21.60

3 6.01% 14.60 0.42 19.70

4 7.82% 14.60 0.42 19.50

5 7.44% 13.50 0.37 18.40

6 5.62% 13.70 0.39 18.60

7 4.99% 15.10 0.44 19.80

8 5.48% 16.40 0.49 23.40

9 3.98% 15.00 0.42 21.50

10 6.00% 14.30 0.41 18.90

Average 6.01% 14.80 0.42 20.36

Standard Deviation 1.2043% 0.8641 0.0321 1.7005

Difference with 0% Error -1.93% -2.68% -0.15%

Shapiro-
Wilk Test

p-value* 0.5373 0.9299 0.3295 0.3213

Normal Dist. YES YES YES YES

F-Test
p-value* 0.4475 0.1549 0.3921

Homo. Variance YES YES YES

T-Test
p-value* 0.5760 0.4292 0.9746

Diff. Sig. NO NO NO

* Reject the null hypothesis when p-value < 0.05

5.2.6 Sensitivity of System Parameters

There are three key parameters for GA, population size, crossover rate and

mutation rate. The default testing value is 50 for population, 0.7 for crossover rate and

0.1 for mutation rate. To examine the sensitivity of GABNOR to these system parameters,

we have tried different parameter values in the optimization of arterial network

respectively.

 72

5.2.6.1 Population Size

The larger population size will expand the searching space while the limited

calculation power restricts the selection of the size. According to the calculation power in

our experiment, we have nearly 60 ch/sec computation speed while the optimization time

should be limited in one or two cycles at most, which is around 100 seconds. That means

we can evaluate 6,000 chromosomes in total. Finding a balance between the population

size and the number of generations is the primary focus.

Besides the default 50 population size, we evaluate the performance of GABNOR

with the population size 75 and 100. According to the results of T-Test shown in Table

5.8, there is no significant difference in delay and queue length between 75 and 50 as the

population size. Mann-Whitney U test is used to examine the difference in stops between

two different population sizes since the F-Test yield failed result on homogeneity of

variance. The result also indicates no significant difference in stops as shown in Figure

5.11.

Table 5.8 Evaluation Results with 75 Population Size

Random Seed
Delay (sec) Stops Queue Length (ft)

75 Default 75 Default 75 Default

1 14.80 14.10 0.41 0.40 19.70 18.70

2 14.00 13.40 0.39 0.37 19.40 18.40

3 13.80 13.60 0.39 0.39 19.60 17.60

4 15.80 15.90 0.41 0.42 24.60 23.40

5 15.90 15.10 0.41 0.42 25.20 21.20

6 15.30 14.50 0.42 0.42 22.10 19.70

7 14.10 14.90 0.41 0.42 21.00 20.40

8 15.50 14.00 0.41 0.42 22.70 20.90

9 14.90 13.80 0.41 0.39 20.50 20.10

10 14.80 15.90 0.42 0.45 20.30 22.90

Average 14.89 14.52 0.41 0.41 21.51 20.33

Standard Deviation 0.7460 0.9041 0.0103 0.0226 2.0830 1.8679

Difference -2.55% 0.49% -5.80%

Shapiro-
Wilk Test

p-value* 0.4837 0.3266 0.0053 0.2721 0.1249 0.9645

Normal Dist YES YES NO YES YES YES

F-Test
p-value* 0.2881 0.0144 0.3753

Homo. Vari. YES NO YES

T-Test
p-value* 0.1897 0.0550

Diff. Sig. NO NO

* Reject the null hypothesis when p-value < 0.05

Ranks

10 9.60 96.00

10 11.40 114.00

20

Groups

1.00

2.00

Total

Stops

N Mean Rank Sum of Ranks

Test Statisticsb

41.000

96.000

-.708

.479

.529
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Stops

Not corrected for ties.a.

Grouping Variable: VAR00003b.

Figure 5.11 Mann-Whitney U Test for Stops with Different Population Size

 73

 74

e

We then increase the population size to 100, the evaluation results are shown

in Table 5.9. The delay and stops have no obvious difference from the one with 50 as th

population size. However, the queue length increased about 10% and the difference is

statistically significant. This may caused by insufficient generations to obtain well

optimized results when the population size is too large. From these results, we can find

this program prefers 50 or 75 in population size and no obvious difference in 100 with the

current computation capability.

Table 5.9 Evaluation Results with 100 Population Size

Random Seed
Delay (sec) Stops Queue Length (ft)

100 Default 100 Default 100 Default

1 15.70 14.10 0.44 0.40 23.60 18.70

2 13.90 13.40 0.39 0.37 19.10 18.40

3 14.70 13.60 0.40 0.39 23.40 17.60

4 14.80 15.90 0.38 0.42 24.50 23.40

5 16.00 15.10 0.40 0.42 23.10 21.20

6 15.00 14.50 0.43 0.42 22.40 19.70

7 15.30 14.90 0.42 0.42 21.10 20.40

8 16.10 14.00 0.46 0.42 22.80 20.90

9 15.00 13.80 0.41 0.39 21.30 20.10

10 13.70 15.90 0.36 0.45 22.20 22.90

Average 15.02 14.52 0.41 0.41 22.15 20.33

Standard Deviation 0.8039 0.9041 0.0296 0.0226 1.5400 1.8679

Difference -3.44% -0.24 % -8.95%

Shapiro-
Wilk Test

p-value* 0.6016 0.3266 0.9995 0.2721 0.7788 0.9645

Normal Dist YES YES YES YES YES YES

F-Test
p-value* 0.3660 0.2169 0.3809

Homo. Vari. YES YES YES

T-Test
p-value* 0.2464 0.9385 0.0372

Diff. Sig. NO NO YES

* Reject the null hypothesis when p-value < 0.05

5.2.6.2 Crossover Rate

According to Kovvali and Messer's study (24), crossover rate is recommended

from 0.5 to 0.8 in traffic signal optimization. A higher crossover factor may yield a faster

 75

convergence. However, if it is too high, premature convergence becomes a problem.

Besides the default value, we also tried 0.6 and 0.8 for crossover rate in GABNOR to

assess its sensitivity to this parameter.

The results of GABNOR with crossover rate at 0.6 are shown in Table 5.10. From

the result, we can find that GABNOR has no statistical significant difference in delay and

stops, while the average queue length is 10% longer statistically significant compared

with the one in default.

Table 5.10 Evaluation Results with 0.6 Crossover Rate

Random Seed
Delay (sec) Stops Queue Length (ft)

0.6 Default 0.6 Default 0.6 Default

1 13.70 14.10 0.38 0.40 17.80 18.70

2 15.30 13.40 0.43 0.37 21.50 18.40

3 14.90 13.60 0.41 0.39 20.40 17.60

4 16.00 15.90 0.38 0.42 24.30 23.40

5 16.30 15.10 0.41 0.42 27.10 21.20

6 14.80 14.50 0.42 0.42 22.00 19.70

7 15.30 14.90 0.42 0.42 23.10 20.40

8 14.40 14.00 0.38 0.42 22.50 20.90

9 14.80 13.80 0.37 0.39 20.90 20.10

10 15.10 15.90 0.42 0.45 24.30 22.90

Average 15.06 14.52 0.40 0.41 22.39 20.33

Standard Deviation 0.7442 0.9041 0.0220 0.0226 2.5427 1.8679

Difference -3.72% 1.95% -10.13%

Shapiro-
Wilk Test

p-value* 0.8550 0.3266 0.0672 0.2721 0.9800 0.9645

Normal Dist YES YES YES YES YES YES

F-Test
p-value* 0.2856 0.4688 0.1859

Homo. Vari. YES YES YES

T-Test
p-value* 0.0669 0.4280 0.0056

Diff. Sig. NO NO YES

* Reject the null hypothesis when p-value < 0.05

The results of evaluation with crossover rate at 0.8 are listed in Table 5.11. All the

three performance measurements, delay, stops and queue length, are similar to the one in

default crossover rate. According to T-Test, the difference is not statistically significant.

 76

From these results, the crossover rate can be chosen among 0.6, 0.7 and 0.8 without

obvious difference on system performance.

Table 5.11 Evaluation Results with 0.8 Crossover Rate

Random Seed
Delay (sec) Stops Queue Length (ft)

0.8 Default 0.8 Default 0.8 Default

1 14.90 14.10 0.41 0.40 20.30 18.70

2 13.70 13.40 0.39 0.37 18.90 18.40

3 14.10 13.60 0.42 0.39 18.50 17.60

4 15.20 15.90 0.41 0.42 22.50 23.40

5 16.20 15.10 0.44 0.42 23.30 21.20

6 15.50 14.50 0.43 0.42 23.80 19.70

7 16.80 14.90 0.41 0.42 22.60 20.40

8 14.90 14.00 0.40 0.42 23.80 20.90

9 14.70 13.80 0.40 0.39 19.90 20.10

10 14.00 15.90 0.40 0.45 20.10 22.90

Average 15.00 14.52 0.41 0.41 21.37 20.33

Standard Deviation 0.9764 0.9041 0.0152 0.0226 2.0434 1.8679

Difference -3.31% -0.24% -5.12%

Shapiro-
Wilk Test

p-value* 0.7374 0.3266 0.4406 0.2721 0.1607 0.9645

Normal Dist YES YES YES YES YES YES

F-Test
p-value* 0.4112 0.1278 0.3967

Homo. Vari. YES YES YES

T-Test
p-value* 0.1880 0.8971 0.1343

Diff. Sig. NO NO NO

* Reject the null hypothesis when p-value < 0.05

5.2.6.3 Mutation Rate

Mutation assists in preventing the Genetic Algorithm from local convergence.

However, if the mutation rate is too high, it will prevent convergence and destroy

successful genotypes. Besides 0.1 mutation rate used in the evaluation, other three values,

0.05, 0.15 and 0.20, are also examined in our experiment. As shown in Table 5.13, there

is no significant difference in delay by using 0.05 instead of 0.1 as the mutation rate

though the queue length is longer in 0.05 mutation rate. Since the variances in stops are

not homogeneous, we use Mann-Whitney U test instead of T-Test to check the difference.

 77

As shown in Figure 5.12, the difference is significant. This means using 0.05 as the

mutation rate can further reduce vehicle stops without affect the performance of delay.

Table 5.12 Evaluation Results with 0.05 Mutation Rate

Random Seed
Delay (sec) Stops Queue Length (ft)

0.05 Default 0.05 Default 0.05 Default

1 14.20 14.10 0.37 0.40 21.70 18.70

2 13.50 13.40 0.37 0.37 19.10 18.40

3 13.70 13.60 0.39 0.39 20.30 17.60

4 15.50 15.90 0.38 0.42 23.50 23.40

5 15.00 15.10 0.38 0.42 22.10 21.20

6 15.00 14.50 0.40 0.42 21.60 19.70

7 15.50 14.90 0.40 0.42 23.90 20.40

8 14.00 14.00 0.38 0.42 21.30 20.90

9 14.60 13.80 0.39 0.39 22.10 20.10

10 15.00 15.90 0.40 0.45 23.50 22.90

Average 14.60 14.52 0.39 0.41 21.91 20.33

Standard Deviation 0.7180 0.9041 0.0117 0.0226 1.4940 1.8679

Difference -0.55% 5.85% -7.77%

Shapiro-
Wilk Test

p-value* 0.3727 0.3266 0.1239 0.2721 0.6021 0.9645

Normal Dist YES YES YES YES YES YES

F-Test
p-value* 0.2516 0.0320 0.2581

Homo. Vari. YES NO YES

T-Test
p-value* 0.6209 0.0025

Diff. Sig. NO YES

* Reject the null hypothesis when p-value < 0.05

Ranks

10 7.35 73.50

10 13.65 136.50

20

Groups

1.00

2.00

Total

Stops

N Mean Rank Sum of Ranks

Test Statisticsb

18.500

73.500

-2.425

.015

.015
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Stops

Not corrected for ties.a.

Grouping Variable: VAR00008b.

Figure 5.12 Mann-Whitney U Test for Stops with 0.05 and 0.10 Mutation Rate

As mutation rate raise to 0.15, there is no significant difference in delay and stops,

though the queue length is longer as shown in Table 5.13. Since the objective function of

GABNOR is minimizing the vehicle delay, 0.15 can still be considered as acceptable

mutation rate.

 78

 79

Table 5.13 Evaluation Results with 0.15 Mutation Rate

Random Seed
Delay (sec) Stops Queue Length (ft)

0.15 Default 0.15 Default 0.15 Default

1 14.40 14.10 0.38 0.40 19.70 18.70

2 13.20 13.40 0.37 0.37 18.70 18.40

3 15.00 13.60 0.41 0.39 19.70 17.60

4 15.80 15.90 0.41 0.42 24.30 23.40

5 15.00 15.10 0.42 0.42 20.90 21.20

6 15.20 14.50 0.44 0.42 20.70 19.70

7 15.90 14.90 0.43 0.42 23.40 20.40

8 14.70 14.00 0.39 0.42 20.90 20.90

9 14.20 13.80 0.36 0.39 20.30 20.10

10 15.50 15.90 0.41 0.45 23.40 22.90

Average 14.89 14.52 0.40 0.41 21.20 20.33

Standard Deviation 0.8130 0.9041 0.0262 0.0226 1.8643 1.8679

Difference -2.55% 1.95% -4.28%

Shapiro-
Wilk Test

p-value* 0.6240 0.3266 0.7176 0.2721 0.2171 0.9645

Normal Dist YES YES YES YES YES YES

F-Test
p-value* 0.3785 0.3353 0.4978

Homo. Vari. YES YES YES

T-Test
p-value* 0.0750 0.2695 0.0231

Diff. Sig. NO NO YES

* Reject the null hypothesis when p-value < 0.05

For 0.20 mutation rate, the system performance dropped down significantly as

shown in Table 5.14. Though the difference in stops is not significant according to Mann-

Whitney U test, 0.20 mutation rate is not yield the same performance compared to other

mutation rates. This is also supported by Kovvali and Messer's study (24) in which the

maximum recommended mutation rate is 0.19 for GA in traffic signal optimization.

Table 5.14 Evaluation Results with 0.20 Mutation Rate

Random Seed
Delay (sec) Stops Queue Length (ft)

0.20 Default 0.20 Default 0.20 Default

1 16.30 14.10 0.42 0.40 27.70 18.70

2 13.40 13.40 0.39 0.37 18.00 18.40

3 15.00 13.60 0.40 0.39 21.10 17.60

4 15.70 15.90 0.41 0.42 22.00 23.40

5 15.70 15.10 0.42 0.42 26.10 21.20

6 15.50 14.50 0.41 0.42 24.10 19.70

7 15.90 14.90 0.41 0.42 23.30 20.40

8 15.50 14.00 0.43 0.42 24.70 20.90

9 15.70 13.80 0.42 0.39 22.30 20.10

10 15.30 15.90 0.41 0.45 23.50 22.90

Average 15.40 14.52 0.41 0.41 23.28 20.33

Standard Deviation 0.7832 0.9041 0.0114 0.0226 2.6968 1.8679

Difference -6.06% -0.49% -14.51%

Shapiro-
Wilk Test

p-value* 0.0743 0.3266 0.4788 0.2721 0.9753 0.9645

Normal Dist YES YES YES YES YES YES

F-Test
p-value* 0.3379 0.0262 0.1445

Homo. Vari. YES NO YES

T-Test
p-value* 0.0146 0.0121

Diff. Sig. YES YES

* Reject the null hypothesis when p-value < 0.05

Ranks

10 10.50 105.00

10 10.50 105.00

20

Group

1.00

2.00

Total

Stops

N Mean Rank Sum of Ranks

Test Statisticsb

50.000

105.000

.000

1.000

1.000
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Stops

Not corrected for ties.a.

Grouping Variable: Groupb.

Figure 5.13 Mann-Whitney U Test for Stops with 0.20 and 0.10 Mutation Rate

 80

 81

According to the above tests, the recommended values for the parameters of GA

in GABNOR are summarized in Table 5.15. It could be the guide for future experiments

of GABNOR.

Table 5.15 Suggested Values for Parameters of GABNOR

Parameters Suggested Values

Population Size 50, 75 or 100

Crossover Rate 0.6, 0.7 or 0.8

Mutation Rate 0.05, 0.10 or 0.15

 82

6 CONCLUSIONS AND FUTURE WORKS

CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

Adaptive signal control strategy for isolated intersection and traffic network has

been introduced in this dissertation. The limitation and problems in existing traffic

optimization strategies are addressed and used as the basis for developing PODE for

isolated intersection and GABNOR for traffic network. The methodology of PODE and

GABNOR has been discussed in detail and the implementation of both algorithms is

presented. Simulation based evaluation has shown the competitive optimization

capability of both algorithms. For PODE, the results demonstrate the encouraging

potential in solving traffic congestion problem at isolated intersections, and it is

supported by the system sensitivity test results. As for GABNOR, it has shown its

competitive capability to optimize not only arterial, but also grid traffic network. Parallel

computation feature helps GABNOR optimize the whole traffic network in real-time.

System sensitivity tests demonstrate its independence to the parameters and its fault

tolerance feature allows the system works stably under different situations.

However, both PODE and GABNOR are just a simple prototype of a mature real-

time optimization system. The simulation results are very limited and more scenarios

should be tested for each system. Some extreme situations, such as traffic accidents or

oversaturated conditions, should be included in the evaluation. Moreover, additional field

 83

tests should be considered to examine the system. Besides the above tasks, using

microscopic internal evaluator instead of the current mesoscopic could further improve

the performance of GABNOR as more accurate and detailed information can be obtained.

To keep advancing PODE and GABNOR, it is important to incorporate the leading edge

technologies, such as Vehicle Infrastructure Integration (VII) (32), into the system.

 84

REFERENCES

1. 2007 Urban Mobility Report, Texas Transportation Institute, September 2007,
http://tti.tamu.edu/documents/mobility_report_2007_wappx.pdf

2. Sims, A. G., and K. W. Dobinson. 1980. "The Sydney Coordinated Adaptive Traffic
(SCAT) System: Philosophy and Benefits". IEEE Transactions on Vehicular

Technology. VT-29, no. 2.

3. Australia. RTA Annual Report 2007. New South Wales Government, 2007.

4. Hunt, P.B, D.I Robertson, R.D Bretherton, and R.I Winton. SCOOT: A Traffic
Responsive Method of Coordinating Signals. 1981.

5. Gartner, Nathan H. OPAC: A Demand-Responsive Strategy for Traffic Signal Control.
[Washington, D.C.]: Transportation Research Board, National Research Council,
1983.

6. Head, K. Larry, Pitu B. Mirchandani, and Dennis Sheppard. 1992. "Hierarchical
Framework for Real-Time Traffic Control". Transportation Research Record. no.
1360.

7. Gartner, N.H., et al, Implementation of the OPAC Adaptive Control Strategy in a
Traffic Signal Network, 2001 IEEE Intelligent Transportation Systems Conference

Proceedings, 2001

8. Sen, S. and Head, K.L., Controlled Optimization of Phases at an Intersection,
Transportation Science Vol. 31 No. 1, 1997

9. Dell'Olmo, P. and Mirchandani, P.B., REALBAND: An Approach for Real-Time
Coordination of Traffic Flows on Networks, Transportation Research Record 1494,
1995

10. Gartner, N.H., Tarnoff, P.J., and Andrews, C.M., Evaluation of Optimized Policies
for Adaptive Control Strategy, Transportation Research Record 1324, 1991

 85

11. Mirchandani, P. and Head, L., RHODES: A Real-Time Traffic Signal Control System:
Architecture, Algorithms, and Analysis, Transportation Research Record, Part B,
2001

12. Saiyed, S. and Stewart, J. A., An Assessment of Pre-timed, Actuated and Adaptive
Signal Control Strategies for Unsaturated and Saturated Arterial Network,
Transportation Research Board, 2004

13. Lawrence A Klein, Sensor Technologies and Data Requirements for ITS, ISBN
158053077X, Artech House Publisher, Boston, London, Jan 1, 2001

14. U.S. Department of Transportation/Office of the Secretary of Transportation,
Demand-Responsive Decentralized Urban Traffic Control Part II: Network

Extensions, 1983

15. Head, K.L., Event-Based Short-Term Traffic Flow Prediction Model, Transportation

Research Record 1510, 1995

16. Holland, John H. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor:
University of Michigan Press, 1975.

17. Foy, M. D., R. F. Benekohal, and D. E. Goldberg. 1992. "Signal Timing
Determination Using Genetic Algorithms". TRANSPORTATION RESEARCH

RECORD. no. 1365: 108.

18. Hadi, M. A., and C. E. Wallace. 1993. "Hybrid Genetic Algorithm To Optimize
Signal Phasing and Timing". TRANSPORTATION RESEARCH RECORD. no. 1421:
104.

19. Park, Byungkyu, Carroll J Messer, and Thomas Urbanik II. 1999. "Traffic Signal
Optimization Program for Oversaturated Conditions: Genetic Algorithm Approach".
Transportation Research Record. no. 1683: 133.

20. Park, Byungkyu, Nagui Rouphail, and Jerome Sacks. 2001. "Assessment of
Stochastsic Signal Optimization Method Using Microsimulation". Transportation

Research Record. no. 1748: 40-45.

21. Lee, J., B. Abdulhai, A. Shalaby, and E.-H. Chung. 2005. "Real-Time Optimization
for Adaptive Traffic Signal Control Using Genetic Algorithms". JOURNAL OF

INTELLIGENT TRANSPORTATION SYSTEMS. 9, no. 3: 111-122.

 86

22. P. Yi, C. Shao, and Y. Wang. 2008 " Piecewise Optimum Delay Estimation for
Improved Signal Control". Will be published in Transportation Research Record

2008.

23. Gartner, N.H., C.J. Messer and A.K. Rathi, Chapter 4 Car Following Models, Revised

Monograph on Traffic Flow Theory, Transportation Research Board, 1997

24. Kovvali, V. G., and C. J. Messer. 2002. "SENSITIVITY ANALYSIS OF GENETIC
ALGORITHM PARAMETERS IN TRAFFIC SIGNAL OPTIMIZATION". 81

st

Annual Meeting of the Transportation Research Board

25. Microsoft, "Using Threading (C# Programming Guide)",
http://msdn.microsoft.com/en-us/library/5xt1dysy(VS.80).aspx, July, 2008

26. Microsoft, "Using an Asynchronous Server Socket", http://msdn.microsoft.com/en-
us/library/5w7b7x5f(VS.71).aspx, July, 2008

27. Shelby, S. G., D. M. Bullock, and D. Gettman. 2006. "Transition Methods in Traffic
Signal Control". TRANSPORTATION RESEARCH RECORD. no. 1978: 130-140.

28. PTV AG: VISSIM, November, 2009, http://www.ptvag.com/traffic/software/vissim/

29. TRB, Highway Capacity Manual, National Research Council, Washington, D. C.,
2000

30. Li, H.L., Zhang, L., and Gartner, N.H., Comparative Evaluation Of Three Adaptive
Control Strategies: Opac, Tacos, And FLC, Transportation Research Board, 2006

31. Shapiro, S. S. and Wilk, M. B. (1965). "An analysis of variance test for normality
(complete samples)", Biometrika, 52, 3 and 4, pages 591-611.

32. Vehicle Infrastructure Integration (VII), November, 2009, http://www.vehicle-
infrastructure.org/

 87

APPENDICES

 88

APPENDIX A

SAMPLE CONFIGURATION FILE FOR PODE

<IOMConfig>
 <minTimeSteps>5</minTimeSteps>
 <maxTimeSteps>20</maxTimeSteps>
 <timeSlice>1</timeSlice>
 <yellow>3</yellow>
 <allred>2</allred>
 <startOffDelay>1</startOffDelay>
 <queueWaveCars>0.8</queueWaveCars>
 <leaveCars>1</leaveCars>
 <systemDistance>450</systemDistance>
 <avgVehQueueSpacing>6</avgVehQueueSpacing>
 <avgVehLength>16</avgVehLength>
 <limitSpeed>50</limitSpeed>
 <maxExceed>0</maxExceed>
 <maxDifference>100</maxDifference>
 <maxGreen>100</maxGreen>
 <changeDifference>0</changeDifference>
 <reducePara>4</reducePara>
 <reduceTime>7</reduceTime>
 <queueMaxSpeedPer>0.8</queueMaxSpeedPer>
 <queueSpeedupTime>8</queueSpeedupTime>
 <volume>800 800 800 800</volume>
 <pedestrian>
 <highVolume>30</highVolume>
 <mediumVolume>6</mediumVolume>
 <highDiff>14</highDiff>
 <mediumDiff>7</mediumDiff>
 <lowDiff>0</lowDiff>
 <maximumOut>30</maximumOut>
 </pedestrian>
 <detConfig node=1 sgNum=8 approachNum=4 phaseNum=8 >
 <approach index=0 laneNum=3 type="veh">
 <lane index=0 queueDetNum=3 lane=1 queueLeaveCars=0.59
weight=1 >
 <countDet id=33 distance=1000 />

 89

 <queueDet id=1 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=2 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=3 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 <lane index=1 queueDetNum=3 lane=2 queueLeaveCars=0.59
weight=1 >
 <countDet id=34 distance=1000 />
 <queueDet id=4 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=5 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=6 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 <lane index=2 queueDetNum=3 lane=7 queueLeaveCars=0.59
weight=1 >
 <countDet id=-1 distance=0 />
 <queueDet id=7 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=8 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=41 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 </approach>
 <approach index=1 laneNum=3 type="veh" >
 <lane index=0 queueDetNum=3 lane=1 queueLeaveCars=0.59
weight=1 >
 <countDet id=35 distance=1000 />
 <queueDet id=9 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=10 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=11 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 <lane index=1 queueDetNum=3 lane=2 queueLeaveCars=0.59
weight=1 >
 <countDet id=36 distance=1000 />
 <queueDet id=12 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=13 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=14 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 <lane index=2 queueDetNum=3 lane=7 queueLeaveCars=0.59
weight=1 >
 <countDet id=-1 distance=0 />
 <queueDet id=15 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=16 index=1 distance=94 queuemin=6
queuemax=9 />

 90

 <queueDet id=42 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 </approach>
 <approach index=2 laneNum=3 type="veh" >
 <lane index=0 queueDetNum=3 lane=1 queueLeaveCars=0.59
weight=1 >
 <countDet id=37 distance=1000 />
 <queueDet id=17 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=18 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=19 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 <lane index=1 queueDetNum=3 lane=2 queueLeaveCars=0.59
weight=1 >
 <countDet id=38 distance=1000 />
 <queueDet id=20 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=21 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=22 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 <lane index=2 queueDetNum=3 lane=7 queueLeaveCars=0.59
weight=1 >
 <countDet id=-1 distance=0 />
 <queueDet id=23 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=24 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=43 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 </approach>
 <approach index=3 laneNum=3 type="veh" >
 <lane index=0 queueDetNum=3 lane=1 queueLeaveCars=0.59
weight=1 >
 <countDet id=39 distance=1000 />
 <queueDet id=25 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=26 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=27 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 <lane index=1 queueDetNum=3 lane=2 queueLeaveCars=0.59
weight=1 >
 <countDet id=40 distance=1000 />
 <queueDet id=28 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=29 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=30 index=2 distance=174 queuemin=10
queuemax=1000 />

 91

 </lane>
 <lane index=2 queueDetNum=3 lane=7 queueLeaveCars=0.59
weight=1 >
 <countDet id=-1 distance=0 />
 <queueDet id=31 index=0 distance=12 queuemin=1
queuemax=5 />
 <queueDet id=32 index=1 distance=94 queuemin=6
queuemax=9 />
 <queueDet id=44 index=2 distance=174 queuemin=10
queuemax=1000 />
 </lane>
 </approach>
 <sg index=0 minGreen=6 approachNum=1 clearance=0 >
 <approach index=0 laneNum=2 >
 <lane index=0 />
 <lane index=1 />
 </approach>
 </sg>
 <sg index=1 minGreen=6 approachNum=1 clearance=0 >
 <approach index=0 laneNum=1 >
 <lane index=2 />
 </approach>
 </sg>
 <sg index=2 minGreen=6 approachNum=1 clearance=0 >
 <approach index=1 laneNum=2 >
 <lane index=0 />
 <lane index=1 />
 </approach>
 </sg>
 <sg index=3 minGreen=6 approachNum=1 clearance=0 >
 <approach index=1 laneNum=1 >
 <lane index=2 />
 </approach>
 </sg>
 <sg index=4 minGreen=6 approachNum=1 clearance=0 >
 <approach index=2 laneNum=2 >
 <lane index=0 />
 <lane index=1 />
 </approach>
 </sg>
 <sg index=5 minGreen=6 approachNum=1 clearance=0 >
 <approach index=2 laneNum=1 >
 <lane index=2 />
 </approach>
 </sg>
 <sg index=6 minGreen=6 approachNum=1 clearance=0 >
 <approach index=3 laneNum=2 >
 <lane index=0 />
 <lane index=1 />
 </approach>
 </sg>
 <sg index=7 minGreen=6 approachNum=1 clearance=0 >
 <approach index=3 laneNum=1 >
 <lane index=2 />
 </approach>
 </sg>

 92

 <phase index=0 >
 <sg index=0 code=2 />
 <sg index=1 code=1 />
 <sg index=2 code=2 />
 <sg index=3 code=2 />
 <sg index=4 code=2 />
 <sg index=5 code=1 />
 <sg index=6 code=2 />
 <sg index=7 code=2 />
 </phase>
 <phase index=1 >
 <sg index=0 code=1 />
 <sg index=1 code=2 />
 <sg index=2 code=2 />
 <sg index=3 code=2 />
 <sg index=4 code=1 />
 <sg index=5 code=2 />
 <sg index=6 code=2 />
 <sg index=7 code=2 />
 </phase>
 <phase index=2 >
 <sg index=0 code=2 />
 <sg index=1 code=2 />
 <sg index=2 code=2 />
 <sg index=3 code=1 />
 <sg index=4 code=2 />
 <sg index=5 code=2 />
 <sg index=6 code=2 />
 <sg index=7 code=1 />
 </phase>
 <phase index=3 >
 <sg index=0 code=2 />
 <sg index=1 code=2 />
 <sg index=2 code=1 />
 <sg index=3 code=2 />
 <sg index=4 code=2 />
 <sg index=5 code=2 />
 <sg index=6 code=1 />
 <sg index=7 code=2 />
 </phase>
 <phase index=4 >
 <sg index=0 code=1 />
 <sg index=1 code=1 />
 <sg index=2 code=2 />
 <sg index=3 code=2 />
 <sg index=4 code=2 />
 <sg index=5 code=2 />
 <sg index=6 code=2 />
 <sg index=7 code=2 />
 </phase>
 <phase index=5 >
 <sg index=0 code=2 />
 <sg index=1 code=2 />
 <sg index=2 code=1 />
 <sg index=3 code=1 />
 <sg index=4 code=2 />

 93

 <sg index=5 code=2 />
 <sg index=6 code=2 />
 <sg index=7 code=2 />
 </phase>
 <phase index=6 >
 <sg index=0 code=2 />
 <sg index=1 code=2 />
 <sg index=2 code=2 />
 <sg index=3 code=2 />
 <sg index=4 code=1 />
 <sg index=5 code=1 />
 <sg index=6 code=2 />
 <sg index=7 code=2 />
 </phase>
 <phase index=7 >
 <sg index=0 code=2 />
 <sg index=1 code=2 />
 <sg index=2 code=2 />
 <sg index=3 code=2 />
 <sg index=4 code=2 />
 <sg index=5 code=2 />
 <sg index=6 code=1 />
 <sg index=7 code=1 />
 </phase>
 </detConfig>
</IOMConfig>

 94

 APPENDIX B

SAMPLE SOURCE CODE

sc_dll_main.cpp

/*---
-----*/

void SC_DLL_Calculate (unsigned long sc_no)
{
 /* Executes one pass through the controller logic of SC no. <sc_no>.
*/
 /* This function is called from VISSIM once per SC at the end of
each */
 /* signal control interval, after the (detector) data for all SC's
*/
 /* has been passed to the controller DLL.
*/

 /* ### */

/**
**/
 /* Init the parameter
*/

/**
**/
 int l = 0; // Loop for Link
 int p = 0; // Loop for Phase
 int ap = 0; // Loop for Approach
 int la = 0; // Loop for Lane
 int d = 0; // Loop for Detector

 double initQueueMin[MAX_APPROACH_NUM][MAX_LANE_NUM];

 95

 double initQueueMax[MAX_APPROACH_NUM][MAX_LANE_NUM];

 for (ap = 0; ap < MAX_APPROACH_NUM; ap++) {
 for (la = 0; la < MAX_LANE_NUM; la++) {
 for (d = 0; d < MAX_QUEUE_DET; d++) {
 detState[ap][la][d] = false;
 detAct[ap][la][d] = false;
 }
 initQueueMin[ap][la] = 0;
 initQueueMax[ap][la] = FLT_MAX;
 }
 }

/**
**/
 /* Process the node and adjust the queue
*/
 /* Use the PODE algorithm to get the result
*/

/**
**/

/**
**/
 /* Get the detectors' information and calculate the limitation of
queue */

/**
**/
 for (ap = 0; ap < para.detConfig->approachNum; ap++) {
 for (la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++) {
 // Check the count detector, get the speed
 Lane* lane = &objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->lanes[la];
 if (lane->countDet.id > 0)
 {
 double speed = Det_VehSpeed(sc_no, lane->countDet.id) *
FT_SPEED;
 if (speed > 0 && Det_FrontEnds(sc_no, lane-
>countDet.id) > 0)
 {

/**
**/
 /* Deal with the pedestrian queue
*/

/**
**/
 if (objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->type == T_APP_PED)

 96

 {
 queue[ap][la].queueSize += 1;
 }
 else
 {

/**
**/
 /* Calculate the arriving vehicle to estimate
the queue length */

/**
**/
 int intArrivingVeh = arrivalNumber[ap][la];
 for (int i = (int)(objResult->timeSteps -
(Sim_Time() - sg_start_time)); i < MAX_ARRIVAL_BUFFER_STEP; i++)
 {
 if (input[i][ap][la] > 0)
 {
 intArrivingVeh++;
 }
 }

/**
**/
 /* Calculate the estimated arrival time
*/

/**
**/
 double queueLength = queue[ap][la].queueLength
+ intArrivingVeh * (para.avgVehLength + para.avgVehQueueSpacing);
 int time = 0;
 if (lane->countDet.distance > queueLength)
 {
 if (speed > para.limitSpeed * 0.2 ||
queueLength < para.systemDistance)
 {
 if (queueLength < para.systemDistance)
 {
 time = (int)((lane-
>countDet.distance - para.systemDistance) / (speed *
para.timeSlice));
 }
 else
 {
 time = (int)((lane-
>countDet.distance - queueLength) / (speed * para.timeSlice) +
para.reduceTime / 2);
 }

 }
 }

 97

/**
**/
 /* No two vehicles arrive at the same second
*/

/**
**/
 while (input[time][ap][la] > 0) //||
Sim_Time() - sg_start_time + time <= objResult->timeSteps+5)
 {
 time++;
 }
 if (time >= MAX_ARRIVAL_BUFFER_STEP) {
 time = MAX_ARRIVAL_BUFFER_STEP - 1;
 }

 input[time][ap][la] = speed;
 totalInput[(int)(time+Sim_Time())][ap][la] =
speed;
 }
 }
 }

 // Check the Queue Detector
 for (d = 0; d < lane->queueDetNum; d++) {
 int detPres = Det_Presence(sc_no, lane-
>queueDets[d].id);
 if(detPres > 0)
 {
 detAct[ap][la][d] = true;
 if(Det_FrontEnds(sc_no, lane->queueDets[d].id) ==
0) detState[ap][la][d] = true;
 }
 }
 }
 }

/**
**/
 /* Adjust the queue size
*/

/**
**/
 for (ap = 0; ap < para.detConfig->approachNum; ap++) {
 for (la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++) {
 Lane* lane = &objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->lanes[la];
 for (d = lane->queueDetNum - 1; d >= 0; d--) {
 if (detState[ap][la][d]) {
 for (int tempD = 0; tempD < d; tempD++) {
 if (detAct[ap][la][tempD]) {
 break;

 98

 }
 }
 if (tempD < d || d == 0) {
 initQueueMin[ap][la] = lane-
>queueDets[d].queuemin;
 initQueueMax[ap][la] = lane-
>queueDets[d].queuemax;
 break;
 }
 }
 }
 }
 }

/**
**/
 /* Roll up the input array
*/

/**
**/

 for (int i = 0; i < MAX_ARRIVAL_BUFFER_STEP - 1; i++) {
 for (ap = 0; ap < MAX_APPROACH_NUM; ap++) {
 for (la = 0; la < MAX_LANE_NUM; la++) {
 input[i][ap][la] = input[i+1][ap][la];
 }
 }
 }

 for (ap = 0; ap < MAX_APPROACH_NUM; ap++) {
 for (la = 0; la < MAX_LANE_NUM; la++) {
 input[MAX_ARRIVAL_BUFFER_STEP-1][ap][la] = 0;
 }
 }

/**
**/
 /* Adjust the queue information
*/
 /* and calculate the new result
*/

/**
**/

 if (Sim_Time() - sg_start_time >= objResult->timeSteps)
 {
 sg_start_time = Sim_Time();
 //initialize input file as 0 in each horizon for next
prediction

 99

 for (ap = 0; ap < para.detConfig->approachNum; ap++) {
 for (la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++) {
 if (objAlgPODE->GetIntersectionApproach(para.detConfig,
ap)->type == T_APP_PED || (!objAlgPODE->isLaneInPhase(ap, la,
objResult->firstPhase, para) && waitingTime[ap][la] >
para.maxTimeSteps)) {
 if(queue[ap][la].queueSize < initQueueMin[ap][la])
queue[ap][la].queueSize = initQueueMin[ap][la];
 if(queue[ap][la].queueSize > initQueueMax[ap][la])
queue[ap][la].queueSize = initQueueMax[ap][la];
 queue[ap][la].queueLength = queue[ap][la].queueSize
* (para.avgVehQueueSpacing + para.avgVehLength);
 queue[ap][la].queueStatic = queue[ap][la].queueSize;
 queue[ap][la].queueSpeed = 0;
 }
 }
 }

/**
**/
 /* Output the current system situation
*/

/**
**/
 TiXmlDocument log("log.xml");

 TiXmlElement* x_Time = new TiXmlElement("Time");
 x_Time->SetAttribute("index", (int)Sim_Time());

 for (int i = 0; i < para.detConfig->approachNum; i++)
 {
 TiXmlElement* x_Approach = new TiXmlElement("Approach");
 x_Approach->SetAttribute("index", i);
 x_Approach->SetAttribute("laneNum", objAlgPODE-
>GetIntersectionApproach(para.detConfig, i)->laneNum);

 for (int j = 0; j < objAlgPODE-
>GetIntersectionApproach(para.detConfig, i)->laneNum; j++)
 {
 TiXmlElement* x_Lane = new TiXmlElement("Lane");
 x_Lane->SetAttribute("index", j);
 x_Lane->SetAttribute("sysNum", arrivalNumber[i][j]);

 TiXmlElement* x_Queue = new TiXmlElement("Queue");
 x_Queue->SetAttribute("length",
(int)queue[i][j].queueLength);
 x_Queue->SetAttribute("size",
(int)queue[i][j].queueSize);
 x_Queue->SetAttribute("static",
(int)queue[i][j].queueStatic);
 x_Queue->SetAttribute("speed",
(int)queue[i][j].queueSpeed);

 100

 x_Lane->LinkEndChild(x_Queue);

 for (int k = 0; k < arrivalNumber[i][j]; k++)
 {
 TiXmlElement* x_SysVeh = new TiXmlElement("SysVeh");
 x_SysVeh->SetAttribute("speed",
(int)queueArrival[i][j][k].speed);
 x_SysVeh->SetAttribute("distance",
(int)queueArrival[i][j][k].distance);
 x_Lane->LinkEndChild(x_SysVeh);
 }

 for (int k = 0; k < MAX_ARRIVAL_BUFFER_STEP; k++)
 {
 if (input[k][i][j] > 0)
 {
 TiXmlElement* x_ArrVeh = new
TiXmlElement("ArrVeh");
 x_ArrVeh->SetAttribute("arrTime", k);
 x_ArrVeh->SetAttribute("speed",
(int)input[k][i][j]);
 x_Lane->LinkEndChild(x_ArrVeh);
 }
 }

 x_Approach->LinkEndChild(x_Lane);
 }

 x_Time->LinkEndChild(x_Approach);
 }

/**
**/
 /* Optimize Next Time Slice
*/

/**
**/
 if (Sim_Time() > 30)
 {
 int a = 0;
 }
 objLastResult = objResult;
 objResult = objAlgPODE->PODE(input, queue, queueArrival,
arrivalNumber, initDelay, para, greenTime, sgGreenTime, greenExtension,
pedWaitingTime, pingpongSwitch, objResult, &fDiff, (int)Sim_Time());

 totalDelay += objResult->delay;

 for (int i = 0; i < objResult->timeSteps; i++)
 {
 for (ap = 0; ap < para.detConfig->approachNum; ap++)
 {

 101

 for (la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++)
 {
 if (input[i][ap][la] > 0)
 {
 totalVehicle += 1;
 totalDelay -= para.systemDistance /
input[i][ap][la];
 }
 }
 }
 }

/**
**/
 /* Find out ping pong switch SGs
*/

/**
**/
 bool bolRemain = false;
 int* lastResultCode = objAlgPODE->GetPhaseCode(objLastResult,
objLastResult->timeSteps-1)->phaseCodes;
 int* resultCode = objAlgPODE->GetPhaseCode(objResult,
objResult->timeSteps-1)->phaseCodes;
 if (lastResultCode != NULL && resultCode != NULL)
 {
 for (int i = 0; i < para.detConfig->sgNum; i++)
 {
 if (lastResultCode[i] == SG_STATE_GREEN &&
resultCode[i] == SG_STATE_GREEN)
 {
 // We have same signal group remain green in the
new phase
 bolRemain = true;
 break;
 }
 }

 }

 for (int i = 0; i < para.detConfig->sgNum; i++)
 {
 if (bolRemain)
 {
 if (lastResultCode[i] == SG_STATE_GREEN &&
resultCode[i] != SG_STATE_GREEN)
 {
 pingpongSwitch[i] = true;
 }
 }
 else
 {
 pingpongSwitch[i] = false;
 }

 102

 }

/**
**/
 /* Record the phase and length
*/

/**
**/
 if (objLastResult->firstPhase == objResult->firstPhase)
 {
 // Continue phase
 phaseLength[phaseNumber[objResult->firstPhase]-
1][objResult->firstPhase] += objResult->timeSteps;
 }
 else
 {
 // New phase
 phaseLength[phaseNumber[objResult->firstPhase]][objResult-
>firstPhase] = objResult->timeSteps - para.yellow - para.allred;
 phaseNumber[objResult->firstPhase] += 1;
 }

 x_Time->SetAttribute("length", objResult->timeSteps);
 x_Time->SetAttribute("code", objAlgPODE-
>PhaseCodeToString(objResult->phaseCode, ",").data());

 log.LinkEndChild(x_Time);

 log.AppendFile();
 log.Clear();

 }

/**
**/
 /* Set the traffic lights according to the result
*/

/**
**/
 for (int i = 0; i < para.detConfig->sgNum; i++)
 {
 int resultCode = objAlgPODE->GetPhaseCode(objResult,
(int)(Sim_Time()-sg_start_time))->phaseCodes[i];
 SG_SetState(sc_no, i+1, resultCode, 0);

 // Adjust green extension
 if (resultCode == SG_STATE_GREEN || resultCode ==
SG_STATE_AMBER)
 {

 103

 greenExtension[i] > 0 ? greenExtension[i]-- :
greenExtension[i]=0;
 }
 }

/**
**/
 /* Calculate the green time
*/

/**
**/
 int phase = objAlgPODE->GetPhaseCode(objResult, (int)(Sim_Time()-
sg_start_time))->phase;

 for (ap = 0; ap < para.detConfig->approachNum; ap++)
 {
 for (la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++)
 {
 waitingTime[ap][la]++;
 if (queue[ap][la].queueSize > 0)
 {
 pedWaitingTime[ap][la]++;
 }
 else
 {
 pedWaitingTime[ap][la] = 0;
 }
 greenTime[ap][la]++;

 if (phase >= 0)
 {
 if (objAlgPODE->isLaneInGreen(ap, la, objResult,
para))
 {
 waitingTime[ap][la] = 0;
 pedWaitingTime[ap][la] = 0;
 }
 else
 {
 greenTime[ap][la] = 0;
 }
 }
 }
 }
 //End of PODE
} /* SC_DLL_Calculate */

 104

APPENDIX C

TRAFFIC DATABASE TABLE CREATION SQL FILE

/**/
/** Detections **/
/**/

USE [TrafficNetwork]
GO
/****** Object: Table [dbo].[Detections] Script Date: 11/10/2008
11:00:47 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[Detections](
 [ID] [bigint] IDENTITY(1,1) NOT NULL,
 [IntersectionID] [int] NOT NULL,
 [DetectorID] [int] NOT NULL,
 [ActiveTime] [datetime] NOT NULL,
 [Duration] [int] NOT NULL,
 [Type] [varchar](50) NOT NULL,
 [Memo] [varchar](max) NOT NULL,
 CONSTRAINT [PK_Detections] PRIMARY KEY CLUSTERED
(
 [ID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY
= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF

 105

/**/
/** SignalLogs **/
/**/

USE [TrafficNetwork]
GO
/****** Object: Table [dbo].[SignalLogs] Script Date: 11/10/2008
11:01:44 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[SignalLogs](
 [IntersectionID] [int] NOT NULL,
 [PhaseTime] [datetime] NOT NULL,
 [PhaseCode] [varchar](64) NOT NULL,
 CONSTRAINT [PK_SignalLogs_1] PRIMARY KEY CLUSTERED
(
 [IntersectionID] ASC,
 [PhaseTime] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY
= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF

/**/
/** VehicleMovements **/
/**/

USE [TrafficNetwork]
GO
/****** Object: Table [dbo].[VehicleMovements] Script Date:
11/10/2008 11:02:18 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[VehicleMovements](
 [ID] [bigint] IDENTITY(1,1) NOT NULL,
 [IntersectionID] [int] NOT NULL,
 [Movement] [varchar](255) NOT NULL,
 [EnterActiveTime] [datetime] NOT NULL,
 [EnterDeactiveTime] [datetime] NOT NULL,
 [ExitActiveTime] [datetime] NOT NULL,
 [ExitDeactiveTime] [datetime] NOT NULL,
 [Type] [tinyint] NOT NULL,

 106

 CONSTRAINT [PK_VehicleMovements_IntersectionID] PRIMARY KEY CLUSTERED
(
 [ID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY
= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF

