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ABSTRACT 

Traffic congestion due to increased travel demands is a common problem in urban 

areas across the United States. Among the many solutions to traffic congestion, 

operational treatment providing more efficient traffic operation is attractive due to its 

relatively low cost. Besides traditional operation treatments such as actuated control and 

signal coordination, adaptive signal control strategies have becoming increasingly 

popular since 1980s. The advantages of the existing adaptive control strategies, such as 

SCATS, SCOOT, OPAC and RHODES, over the actuated control scheme are reviewed 

and their limitations are used as the basis for improvement in this research. Two adaptive 

control logics, PODE and GABNOR, are proposed for isolated intersection and traffic 

network optimization. By using real-time traffic as input, PODE dynamically searches 

movement combinations for phasing and timing decisions that minimize piecewise 

system delay. In GABNOR, the obstacles preventing the application of Genetic 

Algorithm in real-time have been addressed and possible solutions have been presented. 

Implemented as computer programs, PODE and GABNOR are compared with other 

control logics and show competitive optimization ability. The results have been analyzed 

with statistic tools and the system sensitivity to traffic arrival pattern and system 

parameters are also analyzed. Future works are introduced to further examine and 

improve the performance of PODE and GABNOR. 
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1 I. INTRODUCTION  

CHAPTER I 

INTRODUCTION 

Traffic congestion due to increasing travel demands is a common problem in 

urban areas across the United States. According to the Texas Transportation Institute's 

report (1), the total delay that U.S. drivers experienced has reached 4.2 billion hours in 

2005, which was 0.8 billion hours in 1982 correspondingly. Along with 2.9 billion 

gallons of fuel wasted by delay, nation-wide vehicle delay costs $78.2 billion dollars for 

drivers. Among the many solutions to traffic congestion, operational treatment providing 

more efficient traffic operation is becoming increasingly attractive due to its relatively 

low cost. In 2005, 292 million hours of delay and $5.4 billion of congestion cost were 

saved by signal modifications. 

Besides traditional operation treatments such as actuated control and signal 

coordination, adaptive signal control strategies have been increasingly popular since 

1980s. Among the adaptive control strategies, Sydney Coordinated Adaptive Traffic 

System (SCATS) and Split Cycle Offset Optimisation Technique (SCOOT) are two 

outstanding strategies for traffic network optimization. In early 1980's, SCATS was 

introduced in Sydney, Australia (2) and became known for its implementation of 

Divorce-Marriage method which select intersections for coordination dynamically. Since 

its introduction, SCATS has been deployed in over 16,000 intersections in 93 cities in 21 
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counties by June, 2007 (3). Almost at the same time, SCOOT was presented as a third 

generation adaptive traffic signal control system in United Kingdom (4). The SCOOT 

uses gradient search to incrementally adjust the green split, cycle length and offset of 

each intersection in the traffic network. In nearly three decades, SCOOT has been 

deployed in over 200 cities and towns world widely and its ability in improving traffic 

condition has been widely evaluated. Other famous adaptive control systems such as 

Optimization Policies for Adaptive Control (OPAC) (5) with rolling horizon optimization 

and Real-Time Hierarchical Optimized Distributed and Effective System (RHODES) (6) 

with hierarchical optimization have also been developed and tested in recent years in the 

United States sponsored by the Federal Highway Administration. OPAC was first 

presented by N. H. Gartner in 1983, and uses a simplified Dynamic Programming (DP) 

method and Rolling Horizon approach to optimize signal control for isolated intersection. 

OPAC was later expanded to include a coordination/synchronization strategy suitable for 

arterials and networks control (7). Similarly, RHODES is a hierarchical strategy 

introduced by Head and Mirchandani in 1992 (6). RHODES has different algorithms for 

intersection control and network control. At the intersection control level, RHODES 

applies a procedure called Controlled Optimization of Phases (COP) (8) which optimizes 

phasing and timing by using a DP method. For network control, RHODES uses the 

REALBAND model (9) based on platoon flow prediction. According to previous studies 

(10), the decline of vehicle delay in OPAC varies from 3.9% to 15.94% compared with 

the actuated control logic in three field tests. The software simulation performed for 

RHODES (11) also showed significant vehicle delay reduction for both low and high 

levels of traffic demand against actuated control. 
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However, current adaptive control logic has several limitations including 

uncertain traffic flow prediction, difficulty in estimating the arrival time, and lack of a 

self-adjusting mechanism; all are discussed in the next chapter. Rapid developments of 

recent years in other fields, such as artificial intelligence, information and computer 

science, have revealed cutting-edge approaches in adaptive traffic signal control. 

Motivated by the need for improvement in adaptive control logic, this research has 

developed and tested a novel adaptive control strategy and tested its effectiveness in 

comparison with other existing signal control algorithms. 
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2 LITERATURE REVIEW  

CHAPTER II 

LITERATURE REVIEW 

Adaptive control logic for isolated intersection is different from the one for traffic 

arterial and network. It is necessary to discuss the control logic in two different levels 

(intersection and network) individually. The following section reviews the current 

practice of adaptive control logic in each level and discusses the possibility of 

improvement. 

2.1 Adaptive Control Logic for Isolated Intersection 

Adaptive traffic signal control for isolated intersection is advantageous over the 

conventional type of control because no preset plans are specified in advance. The 

algorithms dynamically compute the signal timing plan based on real-time data obtained 

from upstream detectors. These timing plans continuously adjust cycle length, green split 

and phase sequence to provide better progression and minimize delay. From previous 

studies, adaptive control logic provides comparable or better performance than actuated 

control (12). In spite of those advantages, application of adaptive control is still 

characterized by some limitations which warrant improvement. 
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2.1.1 Uncertainty in Predicting Future Traffic Flows 

Adaptive control strategies rely mainly on the prediction of the arriving flow (13). 

There are two types of prediction. The first is based on the real-time data measured in the 

field to estimate the movement of vehicles detected. The other is based upon historical 

data to predict the future arriving flow. For convenience of referencing, we call the 

former estimation and the latter prediction. While long-term optimization is ideal for 

reaching the global optimums, the real-time data based control relies on a number of 

short-term optimizations to reduce uncertainty in traffic demand and improve accuracy in 

computation. The short-term optimization, usually in the order of 30 to 60 seconds, 

makes it possible for all the optimizing processes to be based on estimation rather than 

prediction. For example, the COP algorithm used in RHODES optimizes the phase 

sequence every 30 to 40 seconds depending on the upstream detector’s location. The 

OPAC strategy relies on data from the past 50 to 100 seconds (14), therefore its 

effectiveness is largely dependent on the accuracy of flow prediction. No matter how the 

traffic information is obtained, there will always be some difference between the 

predicted and the field condition. Hence, a desirable adaptive control strategy should 

reduce reliance on prediction as much as possible. 

2.1.2 Difficulty in Arrival Time Estimation 

A reliable estimation model must be developed to provide real-time traffic 

information for adaptive control. Vehicle arrival information is typically obtained from 

detectors placed upstream of the intersection, and the objective of estimation is to obtain 

the vehicle travel time between the upstream detector and the intersection stop line 
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er (5, 14). For system optimization, the ability to estimate traffic conditions for a long

duration is desirable, but because of geometric constraints and uncertainties in vehicle 

arrivals, there is most always a tradeoff between the estimation duration and data 

accuracy. The geometric layout of the travel time estimation is shown in Figure 2.1. 

dA dU

A

Stop Line

 

Figure 2.1 Geometric Layout for Vehicle Arrival Time Estimation 

RHODES (15) splits travel time into two parts, the time between upstream 

detector dU and arrival detector dA, and the time from dA to intersection A. Detector dA is 

located several hundred feet upstream of intersection A in order to provide long enough 

“reaction time” for the system to adjust the signals. In heavy traffic conditions, however, 

the travel time from dA to intersection A cannot be easily determined because it is largely 

affected by the existing queue and the signal status at intersection A. Let us consider two 

cases shown in Figure 2.2: 



t1

dA

t2

A

t1

dA

t2

A

 
               (a) Vehicle arrival without existing queue  (b) Vehicle arrival with existing queue 

Figure 2.2 Travel Time between dA and A with Different Queue Sizes 

 

iii τδμ +=         (2.1) 

Where,  

I: Index for vehicles arriving at intersection A, 

ȝi: Estimated arrival time of vehicle i to intersection A, 

δi: Estimated arrival time of vehicle i at detector dA, 

τi: Estimated travel time between dA and intersection A. 

In Equation 2.1, δi is affected by where the vehicle is detected (dU in Figure 2.1) 

and the distance to reach dA. On the one hand, there are errors in predicting δi (15), on the 

other hand, the travel time τi is not merely to divide the distance between dA and 

intersection A by the approaching speed of the vehicle. Different queue lengths 

remaining in the approach will affect τi, as depicted in Figure 2.2. In addition, the 

approaching speed is likely to change as the arriving vehicle gets close to the queue, 

which also affects the estimated vehicle arrival time to the intersection. 
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Similarly, OPAC defines travel time as the time for the vehicle to travel between 

the upstream and the downstream signals (14) and the difficulty in travel time estimation 

must also be dealt with in congested traffic. This problem exists in the optimization 

process of every adaptive control system today. However, very limited up to date work is 

reported in the literature as to how the varying queue length will affect the arrival time 

estimation. 

 

2.1.3 Lack of Self-adjusting Mechanism 

The effectiveness of adaptive control strategies also relies on reasonable 

estimation of system parameters governing queue formation/dissipation, start-up delay, 

and vehicle clearance. The start-up delay and the vehicle releasing rate may be different 

from time to time due to the influence of construction, incident, and even the weather 

condition. The differences cannot be accounted for if static parameters are used in the 

model, and the cumulated error can become large enough to offset any systems advantage 

over other types of control. However, most of the existing adaptive control strategies do 

not contain a self-adjusting mechanism. 

In summary, improvements over adaptive control logic for isolated intersection 

should include the following: 

1. Data used in optimization come from real-time detection and estimation. Use of long-

term based prediction from historical data is not desired; 

2. The arrival time estimation model is reliable and adaptive to a variety of traffic 

conditions; and 
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3. The control logic must contain a self-adjusting mechanism to monitor system 

operation and make corrections. 

2.2 Adaptive Control Logic for Traffic Network 

Compared with isolated intersections, traffic networks prefer coordinated timing 

plans usually determined by four parameters: cycle length, green split, offset and phase 

sequence. Since the number of possible signal timing plans increased exponentially 

against the incremental number of intersections involved in the network, the algorithm 

finding the global best solution, such as Dynamic Programming, cannot yield an optimal 

result in a short time. Most adaptive control strategies employed near-optimal searching 

algorithms provide the approximate best solution in real-time. 

Among the near-optimal searching algorithms, Genetic Algorithm (GA) has 

shown its compatible ability in many areas. Although GA became popular through the 

work of Holland in 1975 (16), practical application of it started in the late 1980s with the 

dramatic increase in desktop computational power. The application of GA in traffic 

signal timing optimization started from the early 1990s. Foy et al. (17) introduced a 

method using GA to optimize a four-intersection network by minimizing vehicle delay. 

Hadi and Wallace presented a similar GA problem in 1993 (18) and suggested to 

combine with TRANSYT-7F to optimize all four parameters which are cycle time, phase 

sequence, green split and offset. Park et al. proposed in 1999 a GA approach to optimize 

traffic network, especially in oversaturated conditions (19). In Park's model, the 

fractional values are first used to represent all the four parameters of signal timing. His 

model was later combined with CORSIM simulation to optimize a 31 nodes traffic 



 10

network (20).  Though the ability of GA to optimize signal timing has been demonstrated, 

the above efforts are all focused on offline optimization, in which the computation burden 

generally is too large to prevent applications in real-time. For example, in Park's model, 

the optimization time in each step (update interval) varies from several minutes to several 

hours depending on the complexity of the traffic network and the calculation speed of the 

computer processor. Another obstacle prevents the offline system to be applied in real-

time is data collection. The traffic information used in optimization, such as the traffic 

demand, should be obtained in real-time from field instead of using prerecorded data. 

Other problems such as how to shift from one timing plan to another should also be 

addressed. In 2004, Lee et al. (21) introduced a real-time application to provide optimized 

acyclic signal operation through rolling horizon method based on the Genetic Algorithm. 

While this work represents an improvement, the model is relatively simple in details to 

collect and process data for only a 3-intersection linear system.  

In short, GA has shown its ability in off-line traffic network optimization but its 

application in real-time traffic control is very limited. To implement adaptive control 

logic with GA, the following obstacles should be overcome: 

1. Optimization should be finished in relatively short time to fulfill the requirement of 

real-time operation; 

2. Data collection, such as volume, headway and etc., should be accurate enough; and 

3. Switching from one timing plan to another should be smoothly and quickly. 
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3 METHODOLOGY 

CHAPTER III 

METHODOLOGY 

The adaptive control logic described in this proposal is divided into two parts: one 

for the isolated intersection, and the other for the entire traffic network. In an isolated 

intersection optimization, the logic called Piecewise Optimum Delay Estimation (PODE) 

(22) is used while in traffic network optimization, the logic named Genetic Algorithm 

Based Network Optimization in Real-time (GABNOR). The following section will 

discuss the logic in detail. 

3.1 PODE for Isolated Intersection 

PODE is a piecewise decision strategy that optimizes signal operations in short-

term intervals based on field detection. Similar to other adaptive control schemes, PODE 

utilizes data input on vehicle arriving, system queue, and at the stop line (Figure 3.1). The 

special features of PODE include flexible interval length and self-adjustment. The length 

of piecewise optimization interval can vary from several seconds to a few dozen, and the 

self-adjusting program is performed at the beginning of each interval to correct 

estimation error and reset system parameters if necessary. All the possible movement 

combinations are treated as candidate phases and will be assigned to each interval. A lane 

group is associated with each phase which is the collection of lanes receiving the green 



signal. For each interval, PODE will exam all possible interval length and phase 

combinations (for instance, there are 120 combinations if the range of interval length is 

15 seconds and in an eight-phase operation). The performance index of each combination 

is compared and optimized phase and length is selected. Interval by interval, the sequence 

of the phases and the length of each interval are dynamically determined by the algorithm 

to achieve system optimization according to real-time traffic data.  

 

Figure 3.1 PODE Detectors 

The objective function of adaptive control strategies is commonly used to 

minimize system wide vehicle delay or to maximize the intersection utilization, such as 

the throughput of the whole intersection. In PODE, either objective function can be 

selected and we chose the former for the model discussion in this paper. The selected 

objective function serves as the basis for comparison among different optimization phase 

sequence and interval lengths. 

The total system delay during the optimization is the summation of vehicle delay 

in the existing queue at each second in each lane at each approach, as shown in 

Equation 3.1. 
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Where, 

j: Optimization interval index, 

Dj: Delay of intersection during interval j, 

cj: Length of interval j (sec), 

t: Time index at one second incremental inside interval, t = 1 to cj, 

Ȝj,t: Queue size at time t in interval j (veh). 

For simplicity of presentation, we use only one lane in an approach to explain the 

modeling details. For any optimization interval j, we can get the following equation: 

tjtjtjtj ,,1,, γαλλ −+= −         (3.2) 

Where 

αj,t: Estimated arriving vehicles at the t second in interval j (veh), 

γj,t: Estimated vehicle releases at the t second in interval j (veh). 

Through iteration, we can rewrite the delay calculation equation as the following: 

( ) (∑∑
==

−⋅+−+⋅=
jj c
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t
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1

, 1 γαλλ )     (3.3) 

Clearly, the system wide delay is dependent on the estimation of Ȝj,0, αj,t and γj,t. 

The research explains the estimation process of these parameters one by one. 

3.1.1 Initial Queue Size 

Ȝj,0 is the initial queue size at the beginning of each optimization interval. It is also 

the final queue size at the end of last optimization interval, that is 

1,10, −−=
jcjj λλ .         (3.4) 
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When the system is first initialized, the queue size is set to zero, that is Ȝ1,0 = 0. 

As the optimization progresses, the queue size is tracked interval by interval. 

Since the number of arriving and releasing vehicles is each estimated, there is a 

likely difference between the estimate and the actual data. This will result in error in 

queue size estimation. To avoid accumulation of errors, PODE has built in a procedure to 

calibrate the queue size, which is part of the self-adjusting program. 

The queue adjusting procedure is performed with the help of a detector at the stop 

line and a queue detector which is placed in a short distance upstream (usually 200 ft) to 

track the input and output within the section. Our experiments showed that a queue tail 

exceeding the queue detector caused little difference in PODE optimization. The 

adjustment will not be made until the lane group has lost the right of way (from green to 

red) for a time period long enough to allow the queue to be stable. To reduce system 

input and hardware reliance, PODE does not require precise queue length measurement 

and uses only approximate queue size information in the self-adjusting algorithm. 

3.1.2 Vehicle Arrivals 

Because of the difficulty in determining the arrival time at the stop line, we 

estimate the arrival time at the queue tail instead. If there is no waiting vehicle, the stop 

line naturally becomes the queue tail. With the estimated queue size Ȝj,t and vehicle’s 

arrival information, the arrival time at the queue tail is estimated with the help of a car-

following model.  

Once a vehicle is detected by the upstream detector, its speed and location are 

tracked every second by the system according to the following equation: 

1,1,, −− −= tjtjtj vll         (3.5) 

 14



 15

Where: 

lj,t, Distance between the stop line and the arriving vehicle at time t in interval j, 

vj,t, Speed of arriving vehicle at time t in interval j. 

The speed of each vehicle at time t is estimated by the car-following model 

(which is not described here as it is well known to researchers). The time lag of response 

and sensitivity in this model (23) are PODE’s system parameters and are adjusted 

periodically by comparing the estimated versus the actual arrivals obtained from the self-

adjusting program discussed in the previous section. For example, when the estimation is 

consistently larger than the actual for five intervals, the response time lag is reduced and 

the sensitivity increased. By means of this model, the location of the arriving vehicle at 

any time t is determined. 

At the same time, as the queue is being released the length of queue is tracked by 

using a pre-established queue releasing wave speed obtained from field observations. A 

function is established to determine queue length with the input of queue size and time. 

At any time t of optimization interval j, we will compare the queue length qj,t with each 

arriving vehicle’s location lj,t and update the arrivals. For example, if the vehicle’s 

location has not reached the queue tail, no additional vehicle will be counted to join the 

queue. 

3.1.3 Vehicle Releases 

Vehicle releases γj,t are determined at each second depending on the queue size Ȝj,t, 

the arrivals αj,t, and the selected phase pj for the optimization interval j. The number of 

vehicles that can be released into the intersection is constrained by the following: 



1. If no green time is assigned, the releases γj,t for the corresponding movements will be 

zero; 

2. If green time is assigned and there is an existing queue that cannot be cleared in this 

second by estimation, the release γj,t for the corresponding lane will be determined by 

the maximum queue release rate r; and 

3. If the queue size Ȝj,t is small (including zero) and can be cleared in this second by 

estimation, the number of released vehicles will be the summation of queue size Ȝj,t-1 

and vehicle arrivals αj,t during the same second. 

Similarly, the basic vehicle releasing rate r is measured from the field considering 

the start-up delay. Collectively, the calculation of vehicle releases can be written as 

( )⎩
⎨
⎧

+
=

− j,1,

j

, p phase of group lane in the,min

p phase of group lane in the NOT         0

tjtj

tj r αλ
γ  (3.6) 

Where, 

r: Maximum queue release rate measured from field, 

pj: Selected phase for optimization interval j. 
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)

3.1.4 Optimization Process 

For any given interval length cj and selected phase pj, Equation 3.3 can be 

rewritten as 

(
jj

c

t

tj pc
j

,Delay 
1

, =∑
=

λ        (3.7) 

Since the selected objective of PODE algorithm is to find the minimum system 

wide delay among different possible interval lengths, the measure of performance, Mj, is 



the system delay Dj divided by the optimization interval length cj. The objective function 

for Mj can be written as follows: 
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By varying cj and pj in Equation 3.8, Mj is calculated sequentially for all possible 

combinations of cj and pj. In each iteration, Mj is recorded as it relates to cj and pj 

(exemplified in Table 3.1). At the end of the iterations, a comparison is made in the last 

row (maximum cj) of the table to select the best phase pj corresponding to the minimum 

performance index. Next, the Mj values within the selected phase column are compared 

and the cj from the cell having the minimum Mj value will selected as the next interval to 

use. 

Table 3.1 Sample Performance Index Table 

  pj   
1 2 3 4 5** 6 7 8 

cj (sec)   

5 N/A N/A N/A N/A 110.26 N/A N/A N/A 

6 N/A N/A N/A N/A 110.30 N/A N/A N/A 

7 N/A N/A N/A N/A 110.31 N/A N/A N/A 

8 N/A N/A N/A N/A 110.33 N/A N/A N/A 

9 N/A N/A N/A N/A 110.36 N/A N/A N/A 

10 N/A N/A N/A N/A 110.38 N/A N/A N/A 

11 123.67 91.99 129.67 86.63 110.43 116.58 104.59 99.72 

12 123.80 92.07 129.83 86.32 110.55 116.73 104.67 99.80 

13 124.01 92.32 129.99 86.00 110.62 116.89 104.73 99.85 

14 124.27 92.88 130.34 85.85 110.86 117.22 104.97 100.10

15 124.44 93.03 130.62 85.59 111.04 117.47 105.11 100.23

16 124.65 93.26 130.91 85.37 111.31 117.70 105.35 100.29

17 124.73 93.51 131.03 85.23* 111.67 117.91 105.52 100.31

18 124.96 93.77 131.27 85.34 111.92 118.06 105.74 100.24

19 125.37 94.01 131.49 85.48 112.20 118.28 105.98 100.18

20 125.51 94.34 131.77 85.60 112.48 118.43 106.12 100.09

* Selected Cj and Pj 
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The basic steps in PODE are as follows: 

1. Collect and record vehicle arrival information from the upstream detector at each 

second; 

2. Adjust the initial queue size Ȝj,0 at the beginning of each optimization interval, 

according to detection by the queue detector and stop line detector; 

3. Adjust system parameters, such as maximum queue release rate, etc., if necessary; 

4. Design possible combinations of phase pj and interval length cj; 

5. Estimate the vehicle arrivals αj,t by means of tracking vehicle location lj,t and queue 

length qj,t; 

6. Estimate the vehicle releases γj,t with selected phase pj, queue size Ȝj,t and vehicle 

arrivals αj,t; 

7. Repeat steps 5 and 6 till the vehicle arrivals and releases at any second in interval j 

have been determined; 

8. Calculate the performance index Mj based on estimated Ȝj,0, αj,t and γj,t; 

9. Repeat step 5-9 until all the feasible combinations of pj and cj have been checked; 

10. Compare performance index Mj among different pj at the maximum cj, choose the pj 

with minimum Mj; 

11. Compare performance index Mj among different cj within the chosen pj. Select cj with 

minimum Mj; and 

12. Return selected cj and pj as optimized result. 
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A flow chart is shown in Figure 3.2 to help understand the PODE optimization 

process. A sample optimization result is shown in Figure 3.3. There are eight potential 

phases to choose from in each optimization interval. It can be seen from the chart that 

interval j and interval j+1 are both adopting phase 2 which gives the lane group in north 

and south bound the right of the way. After that, phase 7 is assigned to the interval where 

the north bound left turn and through movements are given the green indication. Notice 

that a switch between phase 2 and phase 7 occurred when optimization interval shifted 

from j+1 to j+2. This means a clearance time (yellow plus red) is given at the beginning 

of interval j+2 to end the green for the south bound traffic while the green is continued 

for the north bound through movement. Notice that the interval length is flexible and the 

length of a phase is not limited by the interval length. For instance, the length of phase 2 

is 20 seconds since it is selected by both intervals j and j+1. 



Start

Collect vehicle information based on upstream detector

Is the end of last optimized interval j-1?

Adjust queue λj,0 based on queue detector information

Adjust system parameters

For all the possible combination 

of phase pj and length cj

Estimate the vehicle arrivals αj,t and releases γj,t

with given pj and cj for 1 ≤ t ≤ cj

Calculate the performance index Mj

Compare at max. cj to select pj with min. Mj

Compare at selected pj to choose cj with min. Mj

Return selected cj and pj

No

Yes
Self-adjusting

 

Figure 3.2 Flow Chart of PODE Algorithm 
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Figure 3.3 Sample Optimization Result 

3.2 GABNOR for Traffic Network 

Similar to other traffic optimization systems, the objective function of GABNOR 

is to minimize the total vehicle delay of the traffic network in the evaluation time horizon. 

Briefly, GABNOR optimize traffic network by searching among possible timing plans 

and select the optimal one. Since different timing plans differ in cycle length and offset, 

the length of evaluation time horizon will be different also. In order to compare different 

timing plans, we adopt the average vehicle delay per second as the objective to be 

minimized as shown in equation 3.9 
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n.Delay(p)
MinimizeP, p        (3.9) 

Where,  

P: collection of all possible timing plans, 

p: timing plan object, 

n: network object, 

n.Delay(p): method of network n to calculate delay with given p, 

p.length: the length of evaluation time horizon for timing plan p, 

t: time index, 

n.intersections: the collection of all intersections in network n, 

i: intersection object, 

i.movements: the collection of all movements in intersection i, 

m: movement object, 

m.delay[t]: delay of movement m at time t. 

As the growth of possible number of timing plans is exponential to the increase of 

number of intersections in the network, exhausting search is impossible to solve this 

problem with current computing power. GA, in this case, can perform better searching 

result in limited time. 

Similar to other GA based algorithms, GABNOR includes a GA Engine to 

optimize signal timing and evaluate each timing plan by using a Mesoscopic Internal 

Simulator. A special process to help GABNOR shift from one timing plan to another is 

also included. We will introduce these key components in the following section.  

 22
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3.2.1 Data Collection and Analysis 

To perform on-line optimization, vital information including volume for each 

movement, vehicle headway, startup delay and etc. should be collected in real-time 

continuously. Among these data, the volume for each movement of an intersection is the 

most difficult one to obtain. In GABNOR, we will calculate vehicle turning movements 

by tracking detectors' status and traffic signal code second-by-second. To illustrate the 

very basic idea of this method, we will take a four-leg intersection as an example. As 

shown in Figure 3.4, there is only one lane in each leg for each direction, which means 

each lane is shared by left turn, right turn and through vehicles. Detectors are placed at 

the stop bar in all approaches of this intersection. There are two types of detectors: input 

detectors (white) which provide the detection of vehicles approaching the intersection 

and output detectors (gray) which provide the detection of vehicles leaving the 

intersection. For each turning movement, a fixed detector pair is activated. For example, 

any northbound left turn vehicle will first activate detector 1 then detector 8. Thus, we 

can get a table of detection sequence for each turning movement as shown in Table 3.2. 

The basic idea of this method is to find out vehicle turning movements based on detection 

sequence table according to the recorded detections and signal status. 
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Figure 3.4 Detector Configuration for Typical Four-leg Intersection 

Table 3.2 Turning Movement Detection Sequence Table 

Input 
Detector 

Output 
Detector 

Movement Abbreviation 

1 7 Northbound Through NT 

1 6 Northbound Right Turn NR 

1 8 Northbound Left Turn NL 

2 8 Westbound Through WT 

2 7 Westbound Right Turn WR 

2 5 Westbound Left Turn WL 

3 5 Southbound Through ST 

3 8 Southbound Right Turn SR 

3 6 Southbound Left Turn SL 

4 6 Eastbound Through ET 

4 5 Eastbound Right Turn ER 

4 7 Eastbound Left Turn EL 

 

At signalized intersection, only part of the vehicles approaching the intersection 

can get the right of way at any moment. The signal information can help us to filter the 

candidate movements. However, the process to identify turning movements by searching 

detection pairs can still be very complicated when there are multiple combinations 

available caused by shared lane or other factors. To identify the turning movements under 

any circumstance, there are three modules in the process, Input Detection Recording 
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Module, Output Detection Matching Module and Input Detection Cleanup Module. As 

shown in, the detail processes of these three modules are introduced below in Figure 3.5. 

 

Figure 3.5 Flowchart of Turning Movement Identification Process 
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3.2.1.1 Input Detection Recording Module 

This module is trigged by the detection from input detectors. Once the status of an 

input detector changes from activated to deactivated, which means that a vehicle has left 

the detector. The detector's ID and the deactivation timestamp will be recorded and saved 

in the waiting list. The saved records will be used in the other two modules. 

3.2.1.2 Output Detection Matching Module 

This module is trigged by the detection from output detectors. An output detection 

means a vehicle left the intersection and there should be one and only one input detection 

matched with it. However, in practice, it will not always just return one input detection 

from the waiting list. As shown in Figure 3.5, there are three possible cases need to be 

taken care of. 

Case I: There is no matched detection in the waiting list. 

This situation can be caused by either a miss detection on input detectors or false 

detection from output detectors. Since any detection in the future will not be helpful to 

solve this problem, we will not output anything except mark the output detection as an 

error. 

Case II: There is only one matched detection in the waiting list. 

This is the best condition for detection match. We will simply search the turning  
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movement table and find the corresponding movement based on the detection pair. 

System will output this movement as the result and mark the input and output detection 

as identified. 

Case III: There is more than one matched detection in the waiting list 

This is the most complicated situation we need to handle in the algorithm. It can 

be caused by many reasons, such as false detections of input detector, vehicles not 

cleared in the intersection and etc. To illustrate the process when we have more than one 

candidate, a simple example will be discussed. Consider a four-leg intersection with one 

lane on each direction as shown in Figure 3.6. There is a vehicle moving from south to 

east (northbound right turn) and another vehicle moving from north to south (southbound 

through). At any moment, the vehicles' position is shown in Figure 3.6 (a). There are two 

candidate input detections both available for the output detection. The system will then 

hold all detections and not make a decision until the southbound vehicle leaves the 

intersection. As shown in Figure 3.6 (b), there are now two output detections, one from 

detector 5 and the other from detector 6. Though there are still two possible matches for 

output detection 6, there is only one input detection to match with output detection 5. The 

algorithm will output the movement as southbound through. Consequently, we only have 

one input detection to match with output detector 6. The algorithm will then output 

northbound right turn and all the output detections have been matched and the turning 

movements are determined. 
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(a) Unsolvable Situation Caused by Vehicle not Cleared the Intersection 

 
(b) Solvable Situation when Vehicle Cleared the Intersection 

Figure 3.6 Example of Multiple Matches 
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3.2.1.3 Input Detection Cleanup Module 

This module is an independent process which cleanups the expired input 

detections in the detection waiting list. Input detections which have no matched output 

detection for a given time should be removed from the waiting list to keep the system 

working properly. These non-matched detections may be caused by false detection from 

input detectors or miss detection on output detectors. The expiration time is preset by the 

system (usually the length of phase in experience) and the cleanup process is performed 

every second. This module is very crucial in helping solve the problem of multiple 

matches in the algorithm. 

3.2.2 Genetic Algorithm Engine 

A GA engine is built in GABNOR to help optimizing traffic networks. The 

encoding method of this engine and its parameter selection are introduced in the 

following. 

3.2.2.1 Signal Timing Plan Encoding 

Before introducing the GA used in GABNOR, we will introduce the encoding 

mechanism to help understand the modeling process. To avoid generating an unsuitable 

timing plan and reduce the optimization time, a green split is calculated from the traffic 

volume information instead of being encoded. The other parameters, such as cycle length, 

offset and phase sequence, are encoded in a binary string using fractional value. In 

addition, half cycle is supported in GABNOR and is encoded also. An example of 

encoding for a timing plan of a two-intersection traffic network is shown in Figure 3.7. In 

this example, six bits are used to represent the common cycle length of the intersections 



in the network. For each intersection, 12 bits are used to encode half cycle, offset and 

phase sequence. Among these 12 bits, one bit is used to represent whether this 

intersection is half cycle or not, seven bits are used to represent the offset, and the last 

four bits are used to represent the phase sequence (lead or lag). With the encoded binary 

string shown in Figure 3.7, we can interpret to a signal timing plan for the whole network. 

The cycle length of the first intersection is 128 seconds and the offset is 74 seconds, 

while the cycle length of second intersection is 64 seconds due to half cycle and the offset 

is 37 seconds. The phase sequences are as shown in the figure. With this encoding 

mechanism, we can easily convert between a signal timing plan and its corresponding 

binary string. 

 

Figure 3.7 Sample Timing Plan Encoding 

3.2.2.2 Genetic Algorithm and its Parameters 

Generally, Genetic Algorithm includes the following processes: 

1. Initialization 
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2. Evaluation 

3. Reproduction 

4. Termination 

 Initialization process randomly establishes the first generation of chromosomes, 

which is a collection of different traffic timing plans in GABNOR. After that, GA will 

perform the Evaluation process which will evaluate the fitness of each chromosome. In 

GABNOR, the fitness value is the total delay of traffic network estimated by a 

mesoscopic internal simulator. After all the chromosomes have been evaluated, the 

Reproduction process will produce a new generation based on the fitness value of each 

chromosome. There are three operations in the reproduction process: Selection, 

Crossover and Mutation. Selection will pick up two chromosomes according to a given 

scheme. In GABNOR, we adopted the commonly used Rank Selection plus Elitism 

approach to perform this operation. Crossover will generate child chromosome(s) with 

parent chromosomes selected in Selection operation. In GABNOR, Uniform Crossover is 

used to generate new timing plans with given crossover probability. The Mutation 

operation will randomly change the bits in chromosome by given mutation probability to 

keep variations in the chromosomes. Once a new generation has been built, the 

Evaluation operation will be repeated until the termination criteria are fulfilled. In 

GABNOR, the major termination criteria is whether the calculation time has exceed a 

given upper limit or not, which will ensure the optimal result can be applied in real-time. 

Three major parameters are used in the optimization process of GA, population 

size, crossover probability and mutation probability. Population size is the number of 
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individual chromosomes in each generation. Since we are doing real-time optimization, a 

trade-off must be made between larger populations that may not converge in time and 

smaller populations that may converge to local optimum. The population size in 

GABNOR is selected according to a general rule of thumb that the population size is 

close to the length of binary string of chromosome. We also set the crossover probability 

as 0.7 and mutation probability as 0.1 according to Kovvali and Messer's study (24). We 

noticed that in Park’s work (19) the optimized results are found insensitive to the 

parameters of GA for traffic network optimization and there is no exception in GABNOR. 

3.2.3 Parallel Fitness Evaluation 

The most time-complex process in GA is the fitness evaluation. For a real-time 

optimization system, GABNOR must optimize signal timing in a very short time span. 

With the help of the potential parallel feature of GA, we designed and implemented a 

Parallel Fitness Evaluation process to calculate the fitness value of multiple 

chromosomes simultaneously. 

Parallel Fitness Evaluation is a client-server based program. The server will 

maintain a pool of unevaluated chromosomes (timing plans) and the client will send the 

request to the server asking for evaluating. If there is any chromosome available in the 

pool, the server will select one and send it to the client. The result will be sent back to the 

server after the client finishes the evaluation. With the help of multi-threading (25) and 

asynchronous socket communication (26), the server can handle multiple clients' requests 

at the same time. Theoretically, the evaluation speed will increase linearly to the number 

of clients.  
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3.2.4 Mesoscopic Internal Evaluator 

To evaluate different timing plans, an internal mesoscopic evaluator is used in 

GABNOR. With given phase codes of evaluation time horizon, the evaluator estimates 

vehicle delay based on input-output modeling. From Equation 3.9, the total network 

delay is the summary of delay at each movement of each intersection. To calculate the 

delay, we track the arrival flow, departure flow and delayed vehicles of each movement 

second by second. The arrival flow is determined by the upstream movements' departure 

flow, the travel condition on the feed approach and it will not be affected by the signal 

timing or queue in the approach. The departure flow means the vehicle release at each 

second of the movement. It is determined by signal timing, delayed vehicles, capacity of 

lanes and etc. As shown in Figure 3.8, with given arrival flows and signal timing (phase 

codes), the departure flow can be estimated second by second. The delayed vehicles at 

each second mean the vehicles slowed down by signal timing, queue or other factors. The 

summary of delay at each second is the total delay of that movement as shown in Figure 

3.8. The estimation of each variable will be discussed in the next part. 



 

Figure 3.8 Delay Calculation in GABNOR 

3.2.4.1 Arrival Flow 

The arrival flow is determined by the departure flow of upstream movements and 

the travel condition of its feed approach and upstream movements. If there is no upstream 

movement exists, the arrival flow will follow the Poisson distribution. Platoon dispersion 

used in equation 3.10 will not be introduced here in order to keep the simplicity of the 

model. The calculation of arrival flow is as follows 
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where, 

m: movement object, 
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m.feedapporach: the feed approach of movement m, 

t: time index, 

m.arrival[t]: the arrival flow of movement m at time t, 

app.feedmovements: the collection of feed movements of feed approach app 

of movement m, 

u: movement object for upstream movement, 

u.departure[t]: the departure flow of u at time t, 

app.traveltime: the average travel time on approach app from field data, 

u.traveltime: the average travel time of movement u from field data, 

rand(t): random value between 0 and 1 generated by random 

seed t, 

m.volume: the volume of movement m from field data, 

Г(ț,Ȝ): Incomplete gamma function which is . ∫
∞ −−

λ

κ dxex x1

 35

3.2.4.2 Departure Flow 

The departure flow is determined by the phase code, delayed vehicles, the 

capacity of lanes and other factors. The calculation of departure flow can be described by 

a series of criteria. Suppose we need to determine the departure flow of movement m at 

time t, or m.departure[t], the criteria are as follows: 

0  for tt]        m.arrival[1]m.delay[te[t]m.departur

0]m.arrival[e[0]m.departur

>+−≤
≤

  (3.11) 

where, 

m.delay[t]: the delayed vehicles of movement m at time t, 

m.arrival[t]: the arrival flow of movement m at time t. 



Besides the above criteria, the departure flow is also limited by the feed approach 

capacity, which can be presented by 

∑≤
sm.feedlane

l

onflowratel.saturatie[t]m.departur      (3.12) 

Where, 

l: lane object, 

m.feedlanes: the collection of feed lanes of movement m, 

l.saturationflowrate: the saturation flow rate of lane l from field data. 

If the phase code of the intersection at time t doesn't allow movement m to release 

vehicles, the following criteria needs to be added: 

0e[t]m.departur ≤         (3.13) 

The departure flow is the maximum value that accomplishes all the above criteria. 

3.2.4.3 Delayed Vehicles 

Delayed vehicles means the number of vehicle being delayed at each movement. 

It is determined by the arrival flow and the departure flow as follows: 

0  te[t]   form.departurt]m.arrival[1]m.delay[tm.delay[t]

e[0]m.departur0]m.arrival[m.delay[0]

>−+−=
−=

 (3.14) 

Where, 

m: movement object, 

t: time index, 

m.delay[t]: the delayed vehicles of movement m at time t, 

m.arrival[t]: the arrival flow of movement m at time t, 

m.departure[t]: the departure flow of movement m at time t. 
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3.2.5 Signal Transition between Timing Plans 

Whenever a new timing plan is generated, switching from the current timing plan 

to the new one is necessary. There are two major methods used in practice, one called 

Dwell and the other called Shortway. Dwell will hold the current signal status until 

synchronized. It is faster than Shortway method that most transition can be finished in 

one cycle. However, since the signal is held, it will block other directions traffic until it is 

synchronized. According to the study performed by Shelby, Bullock and Gettman (27), 

Dwell transition is the most disruptive transition method over a range of conditions. 

Shortway, on the contrast, provides superior performance compared with Dwell, but 

usually needs longer transition time. With advanced computing technology, we can 

choose a transition method intelligently to reduce the effect of transition period to traffic 

flow. 

Since GABNOR is a real-time optimizer, moving smoothly and quickly from one 

timing plan to another is essential for traffic operation. On the other hand, the transition 

will cost time and affect the performance of the whole traffic network. To evaluate the 

timing plan, the transition time should also be included, thus the phase codes for the 

transition time needs to be calculated. To illustrate the determination of phase codes for 

transition, let us consider the transition of one intersection as shown in Figure 3.9 with 

the following notations: 

C1: Cycle length of current timing plan, 

F1: Offset of current timing plan, 

C2: Cycle length of new timing plan, 

F2: Offset of new timing plan, 



X: Length of time interval where phase codes needs to be decided. 

 

Figure 3.9 Transition between Two Timing Plans 

As shown in the figure, the horizontal axis is time. The cycle length of current 

timing plan for this intersection is C1 and the offset is F1. Suppose the timing plan needs 

to be switched to a new one with C2 as the cycle length and F2 as the offset at time 0. The 

gray area in the figure represents the region in which phase codes are already determined.  

For instance, time F1-C1 to time F1 represents a complete cycle of current timing plan 

without offset, while time C1+F2 to time C1+F2+C2 represents the complete cycle of new 

timing plan without offset. The phase codes in the blank area shown in Figure 3.9 needs 

to be filled in. Now the problem of generating phase codes for entire transition period has 

been narrowed down to the blank area X. 

Since the start time of X is at the end of one complete cycle of current timing plan, 

the phase codes in X are independent to the current timing plan. Similarly the phase 

codes in X are independent to the new timing plan. Thus, we can apply the same green 

split and phase sequence of new timing plan in X with different cycle length and no offset. 

According to different lengths of X, we have different schemes as follows: 

Scheme I: CMin ≤ X ≤ CMax 
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In this case, X fulfills the criteria of cycle length and the phase codes can be as 

long as one complete cycle with length X. 

Scheme II: 2CMin < X ≤ 2CMax and CMax < X 

When X is larger than maximum cycle length but located between two times the 

minimum cycle length and two times the maximum cycle length, we can divide X into 

two complete cycles. When X is an even number, the cycle length is
2

X
; if X is an odd 

number, the lengths of two new cycles will be 
2

1−X
 and

2

1+X
, respectively. 

Scheme III: 0< X < CMax – C2 and X < CMin 

When X is smaller than the minimum cycle length, we can extend the blank area 

with C2 and fill it with one cycle. In this case, X+C2 must be less than the maximum 

cycle length. 

Since X=C1+F2-F1, the possible value of X is in the range of [0, 2CMax]. Besides 

the above three situations, the value of X could also be located in (CMax - C2, CMin) or 

(CMax, 2CMin). In practice, the maximum cycle length is usually larger than two times the 

minimum cycle length, thus the only exception of X will be (CMax - C2, CMin). Since this 

situation will be very rare in the optimization, we can just discard it by considering the 

new timing plan as invalid. 

Considering the above schemes, we get the phase codes for transition time. 

Combined with the phase codes of new timing plan, the evaluation time horizon is 

prepared for evaluation. 
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4 IMPLEMENTATION 

CHAPTER IV 

IMPLEMENTATION 

To evaluate the performance of the optimization system, a microscopic simulation 

program is adopted as evaluation platform in our experiment. Its developed programming 

interface enables the user to interact with the simulation model. Our algorithms are then 

implemented as computer program to be tested with the microscopic evaluation platform. 

In this chapter, we will discuss the detail of the implementation. 

4.1 Microscopic Evaluation Platform 

Microscopic simulation software is widely used in transportation engineering. It 

not only assists the engineer to evaluate the timing plan before applying it in the field, but 

also be helpful in travel time study, traffic safety and many other areas. Besides 

simulation function, some software also provides programming interface for users to 

interact with it during the simulation to perform complex studies. Among these 

interactive simulation programs, VISSIM (28) is an outstanding one. VISSIM is a leading 

microscopic simulation program developed by PTV AG in Germany for multi-modal 

traffic flow modeling. It is used world widely because of its efficient network editing, 

sophisticated vehicle behavior modeling and detailed analysis options. Besides the above 

features, VISSIM also provides a well developed Application Programming Interface 



(API) for users to apply their own logic in traffic signal control. The structure of VISSIM 

API is shown in Figure 4.1. In our research, we use VISSIM 4.30-05 as our microscopic 

evaluation platform. 

 

Figure 4.1 Structure of VISSIM API 

4.2 PODE 

The algorithm of PODE is integrated and implemented with VISSIM API. In 

order to keep the algorithm independent to specific intersection, we use a configuration 

file to save the geometric and signal timing information of the intersection. The initial 

values of parameters used in the algorithm are also saved in the configuration file. 

4.2.1 Configuration File 

An Extensible Markup Language (XML) formatted configuration file is used to 

describe the target intersection and the parameters. For the target intersection, signal 

timing information (candidate phases) and the geometric information such as approaches, 

lanes and detectors are saved in the configuration file. The algorithm will first read the 

document and parse it with an XML engine, such as Microsoft XML DOM (Document 

Object Model). The parsed value will then be used during the optimization calculation. 

The full text of a sample configuration file for PODE is attached in Appendix A and the 

comments are shown in Table 4.1. 
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Table 4.1 XML Configuration File Comments 

XML Configuration File Comments 

Element approach 

 

Attributes Type Meaning 

index integer Sequence index 

laneNum integer Number of lanes in this approach 

type string Type of this approach, such as "veh" or "ped" 

Sub Elements   

lane   

Element lane 

 

Attributes Type Meaning 

index integer Sequence index 

queueDetNum integer Number of queue detectors in it 

lane integer ID of lane in the approach 

queueLeaveCars float Queue release rate in this lane 

weight float Weight of this lane in optimization 

Sub Elements   

countDet   

queueDet   

Element countDet 

 

Attributes Type Meaning 

id integer ID of count detector 

distance float Position of this detector 

Element queueDet 

 

Attributes Type Meaning 

id integer ID of queue detector 

index integer Sequence index 

distance float Position of this detector 

queuemin integer Min. number of queue when detector is occupied 

queuemax integer Max. number of queue when detector is occupied 

Element sg 

 

Attributes Type Meaning 

index integer Sequence index 

minGreen integer Minimum green of signal group 

approachNum integer 
Number of approaches with right of the way when 

the signal group is in green 

Element Phase 

 

Attributes Type Meaning 

index integer Sequence index 

Sub Elements   

sg   
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4.2.2 Algorithm 

The algorithm of PODE is implemented with Microsoft Visual Studio 2003 in 

C++ language. In order to simplify the internal data sharing, the data collection module 

and optimization algorithm are integrated together. The algorithm first read the 

configuration file to initialize the system and then optimizes the signal timing in real time. 

Part of the source code is available in Appendix B. 

4.3 GABNOR 

For network optimization, GABNOR is much more complicated than PODE. 

Since multiple intersections are optimized simultaneously, the data collection and 

algorithm module should be separated rather than integrated as in PODE. As shown 

in Figure 4.2, GABNOR is mainly composed with a traffic information database and 

three cooperated modules, which are Traffic Data Collection and Analysis (TDCA) 

module, Traffic Network Optimization (TNO) module, and Evaluation Platform Interfac

(EPI) module. Evaluation platform is a microscopic simulation program with the functio

of interactive signal control usually provided as an API. EPI module will utilize the AP

function to collect information from the detectors and traffic signals in the simulation 

program and forward to TDCA module. Another major task of EPI is applying optimized 

timing plan received from TNO in the evaluation platform. The independence of EPI to 

evaluation platform makes it possible to perform seamless transition among different 

simulation programs or even hardware equipment. Once the raw data sent from EPI has 

been received by TDCA module, it will analyze the data and extract useful information to 

be saved in the database. One example of such useful information is vehicle turning 
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movements. Traffic information database in Figure 4.2 saves all vital traffic information 

and gets ready for querying requests by TNO module or any other traffic data analysis 

program. TNO module will optimize the traffic network periodically based on the traffic 

information obtained from the database and the optimal timing plan generated will then 

be sent to EPI module for application. All three modules and database are connected with 

each other in an Ethernet network. The detailed implementation of these modules is 

introduced in the following chapter. 
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Figure 4.2 GABNOR System Architecture 

4.3.1 Configuration File and Visual Tool 

Similar to PODE, there is a configuration file in XML format saving the initial 

parameter values and geometric and signal information of the whole traffic network. 

Since the complexity of the configuration file will increase along with the increment of 
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the traffic network scale, it is inefficient to configure this file in text format manually. A 

visual tool is then needed to assist the configuration of the whole network. In GABNOR, 

a visual configuration assistant program is developed with Microsoft Visual Basic .NET 

2008 as shown in Figure 4.3. The traffic network editing method is similar to VISSIM 

and a well trained user can build up a nine-intersection traffic network in couple hours. 

 

Figure 4.3 Visual Configuration Tool  

4.3.2 Traffic Information Database 

Traffic information collected and extracted in real-time is essential to 

optimization. In order to provide simplistic method to save and load the data, a database 
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is created to store the useful traffic information. Microsoft SQL Server 2005 is used as 

the existing computational drivers in our programming language. The diagram of the 

database model is shown in Figure 4.4. There are three tables in the database, 

VehicleMovements, Detections and SignalLogs. The VehicleMovements table saves 

vehicle turning movements identified from the detection data. Each turning movement 

record consists of the intersection where it belongs to, the name of this movement, the 

detectors' activation and deactivation time, and the type of movement. User can later 

query statistical information such as volume, average travel time and etc. The queried 

data will then be used by TNO to perform optimization. Detections table saves detections 

records for all the detectors in the system. IntersectionID and DetectorID are used to help 

identify the detector while each detection's active time and its duration are also saved in 

the database. Type and memo are used to mark the detection either an error or part of an 

identified movement. The data saved in Detections table can be used to update system 

parameters such as average headway, start-off delay and etc. SignalLogs table records the 

signal status of each intersection at each second. These signal data will be helpful in both 

network optimization and system parameters updating. The SQL file for creation of the 

three tables is listed in APPENDIX C. 
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Figure 4.4 Diagram of Traffic Information Database 
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4.3.3 Evaluation Platform Interface Module 

EPI is implemented with Microsoft Visual Studio 2003 in C++ language 

according to the API provided by VISSIM. The main function of EPI is linking 

GABNOR with microscopic simulation software to perform the evaluation. A socket 

client is built in EPI to communicate with TDCA module to transfer detection and signal 

data. Every second, EPI will send a message to TDCA containing the data collected from 

the simulation software. This message is a string with the following format: 

Time:Type:Signal Update:Cycle Index:Phase Code[:Detector ID: 

Activation Num[:ms|speed|length]:Deactivation Num[:ms|speed|length]] 

Where: 

Time:   Time on the client, 
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Type:  Type of message, such as "INIT" or "DETECTION", 

Signal Update:  Indicator of whether need update timing plan or not, 

Cycle Index:  Current time index in the cycle, 

Phase Code:  An encoded string to save the signal status information, 

Detector ID:  Identification number of detector with detection reported, 

Activation Num: Number of vehicles arrived at (activate) the detector, 

Deactivation Num: Number of vehicles left (deactivate) the detector, 

ms:  Million second of the detection, 

speed:  Speed of the vehicle (optional), 

length:  Length of the vehicle (optional). 

4.3.4 Traffic Data Collection and Analysis Module 

After the message sent from EPI received by TDCA module, an analysis 

procedure will be executed to filter useful information. Some information, such as signal 

status and detections, can be stored in the database without much process, while the 

others need further computation such as vehicle turning movement. TDCA module 

implements the vehicle identification process and other data analysis functions. Interfaces 

shown in Figure 4.5 are also provided for users to monitor the status of TDCA module. 



     
   (a) Message Sending/Receiving Interface   (b) Signal and Detector Status Monitor 

Figure 4.5 TDCA Module Interface 

4.3.5 Traffic Network Optimization Module 

TNO is a client-server structured module with parallel computation capability. 

The server maintains a pool of connections with all the clients and another pool of timing 

plans needs to be evaluated. The evaluation will be performed on the client side and the 

server will dynamically assign timing plans to the clients. Through the given interface 

shown in Figure 4.6, user can check the status of the clients, track the optimization status 

and setup the optimization parameters, such as population, crossover rate and mutation 

rate. 
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             (a) Clients List    (b) Status Monitor       (c) Parameters Configuration 

Figure 4.6 Optimization Server Interface 

Client program shown in Figure 4.7 will receive the timing plan sent from the 

server and send back the evaluation result. Besides evaluation function, auto-updating is 

another feature of the client program. Any update package released in the server will be 

downloaded by the clients automatically. This feature will not only ensure that all the 

clients using the same function to evaluate the timing plan, but also save substantial time 

during the system developing where the evaluation function usually updated frequently. 

 

Figure 4.7 Optimization Client Program 
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5 SIMULATION EVALUATION 

CHAPTER V 

SIMULATION EVALUATION 

After the algorithms have been implemented, we investigate their performance on 

the simulation evaluation platform. 

5.1 PODE 

As adaptive control logic for isolated intersection, PODE was evaluated with 

different traffic load compared with well-adjusted actuated control at an isolated 

intersection. The detail of the evaluation is discussed in the following part. 

5.1.1 Evaluation Scenario 

PODE system testing and evaluation is performed on a four-legged intersection. 

Each approach of the intersection has two lanes for the through movements with a left 

turn pocket while the curb lane is shared with right turn vehicles. A screen snapshot of 

the operation is shown in Figure 5.1. During the evaluation, we changed the traffic 

demand of the whole intersection from 1600 veh/hr to near 7000 veh/hr at the intervals of 

400 veh/hr. The high volume represents an oversaturated situation because the theoretical 

and practical capacity for this intersection is reported in the range of 6000 to 6400 veh/hr 

considering start-up delay and clearance time (29). Many testing runs were made at each 
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. 

volume level with different traffic load distributions on each approach, as exemplified 

in Table 5.1

 

Figure 5.1 Screen Snapshot of PODE Evaluation 

Table 5.1 Sample Traffic Demand Distribution on Each Approach 

Traffic Demand Load Distribution (veh/hr) 

Approach 1 Approach 2 Approach 3 Approach 4 Total Demand 

… 

800 800 800 800 3200 

700 900 700 900 3200 

600 1000 600 1000 3200 

600 600 1000 1000 3200 

700 700 900 900 3200 

900 900 900 900 3600 

800 1000 800 1000 3600 

700 1100 700 1100 3600 

700 700 1100 1100 3600 

800 800 1000 1000 3600 

1000 1000 1000 1000 4000 

900 1100 900 1100 4000 

800 1200 800 1200 4000 

800 800 1200 1200 4000 

900 900 1100 1100 4000 

… 
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5.1.2 Benchmark 

We used the actuated control logic as the benchmark for comparison. The setup 

for phasing and timing in actuated control follows the standard of National Electrical 

Manufacturers Association (NEMA) for a fully actuated eight-phase dual-ring controller. 

Different locations for placing the actuating detector are tested in each run in order to 

give a fair consideration of the actuated control, and the best result is included as the 

benchmark performance. The parameters of actuated control are also adjusted at different 

traffic demand levels and load distributions to get the best performance. One (and the 

most important) such parameters is the maximum green for each phase. As shown 

in Table 5.2, each row represents different traffic demand and distribution. The maximum 

green for each phase is the one which produced minimum vehicle delay. From the table 

we can see that the best maximum green varies for different traffic demands and 

distributions. 
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Table 5.2 Best Maximum Green Affected by Traffic Demand and Distribution in 

Actuated Control 

Traffic Demand (veh/hr) Maximum Green for Phase (sec) 

App. 1 App. 2 App. 3 App. 4 1 2 3 4 5 6 7 8 

… 

800 800 800 800 10 16 10 16 10 16 10 16 

700 900 700 900 10 16 10 18 10 16 10 18 

600 1000 600 1000 10 14 10 22 10 14 10 22 

600 600 1000 1000 10 20 10 20 10 20 10 20 

700 700 900 900 10 20 10 20 10 20 10 20 

900 900 900 900 10 18 10 18 10 18 10 18 

800 1000 800 1000 10 18 10 22 10 18 10 22 

700 1100 700 1100 10 16 10 22 10 16 10 22 

700 700 1100 1100 10 24 10 24 10 24 10 24 

800 800 1000 1000 10 22 10 22 10 22 10 22 

1000 1000 1000 1000 10 22 10 22 10 22 10 22 

900 1100 900 1100 10 22 10 24 10 22 10 24 

800 1200 800 1200 10 18 10 26 10 18 10 26 

800 800 1200 1200 10 28 10 28 10 28 10 28 

900 900 1100 1100 10 28 10 28 10 28 10 28 

… 

 

5.1.3 Evaluation Results 

PODE is tested next at this intersection under the same traffic and geometric 

conditions. With input from the upstream detector (placed 1000 ft upstream), queue 

detector (placed 200 ft upstream) and stop line detector, PODE optimized the intersection 

operation at the interval range of five to 20 seconds. The clearance time for each phase 

includes three seconds yellow plus two seconds red which is the same with the one in 

actuated control. There are eight candidate phases for selection and 128 length and phase 

combinations for each interval to compare and choose. The simulation results with PODE 

are shown in Figure 5.2 based on seventy runs which include fourteen levels of traffic 
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demands with five different loading distributions at each level. We can see from this 

figure that PODE consistently outperforms the actuated control logic, and the vehicle 

delay from PODE is notably reduced in high volume situations. Specifically, in the low to 

medium demand range, from 1600 veh/hr to 4800 veh/hr, the saving in vehicle delay by 

PODE against the best performance of actuated control is within ten seconds/veh. In high 

traffic demand, from 5200 veh/hr to 6400 veh/hr (actuated control cannot handle higher 

demand), actuated control begins to increasingly show large “jumps” in delay, which 

means its performance is unstable with different traffic load distributions. In comparison, 

although vehicle delay in PODE also goes up with the increase in traffic demand, the 

change is much smoother and the increments are much smaller compared with actuated 

control. In addition, PODE can handle a larger volume (exceeding 6800 veh/hr) whereas 

actuated control breaks down (rapid and continuous queue growth) when volume reaches 

6400 veh/hr. It should be pointed out that there is no need to manually adjust the PODE 

system parameters during the seventy runs, whereas in the actuated control logic the 

location of the detectors and the maximum green have to be changed in order to obtain its 

best performance as discussed earlier. 
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Figure 5.2 Vehicle Delay Comparison between Actuated Control and PODE 

Table 5.3 shows the percentage of reduction in vehicle delay. The range of 

reduction varies from 20% to 45%. With the increase of traffic demand, the percentage of 

reduction also increases indicating that PODE works very well in heavy to oversaturated 

traffic situations. The reduction of average vehicle delay for high traffic demand (larger 

than 5200 veh/hr) starts at 11 seconds and goes up to 40 seconds or 45%. The phase 

duration in PODE changes with traffic demand. We used a minimum green to handle 

extremely low volumes, and the system extended the green to as long as 50 seconds to 

accommodate very high volumes. In comparison, the phase duration in actuated control 

went up to 80 seconds in order to obtain best operation results. Most cycle lengths in 

 57

PODE are between 45 and 80 seconds while in actuated control are from 60 to 200 

seconds. 
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 Demand 
(veh/hr) 

Average Delay (sec/veh) Reduction 
(seconds) 

Reduction 
Percentage 

Table 5.3 Delay Reduction in PODE Against Actuated Control 

Traffic

Actuated Control PODE 

1 6% 600 13.94 10.28 3.66 26.2

2000 14.73 11.86 2.87 19.48% 

2400 16.30 13.02 3.28 20.12% 

2800 18.51 14.84 3.67 19.83% 

3200 21.78 16.78 5.00 22.96% 

3600 24.85 18.54 6.31 25.39% 

4000 27.14 20.76 6.38 23.51% 

4400 30.45 23.00 7.45 24.47% 

4800 33.19 24.44 8.75 26.36% 

5200 39.29 28.10 11.19 28.48% 

5600 48.03 33.50 14.53 30.25% 

6000 61.14 39.04 22.10 36.15% 

6400 88.78 48.80 39.98 45.03% 

6800 N/A 62.10 N/A N/A 

Overall A eduction Percentage verage R 26.79% 

 

C ed with othe ol logic, PODE has also showed that it is

further im  system optim ion. According to OPAC field tests (10) and lation 

results (30), the reduction percentage is from 0% to 20% against actuated control. There 

is very little reported work of RHODES at a single intersection. Sen and Head (8) 

presented a chart to show the difference of delay between COP (algorithm used at 

intersection control level in RHODES) and actuated control for an isolated intersection 

with three through lanes plus one right turning bay and one (some approaches have two) 

left turning bay. From this chart, the average delay from COP increased from 15 sec/veh 

to 35 sec/veh as the traffic demand increased from 4500 veh/hr to 4800 veh/hr. In the 

case of PODE, however, the delay is around 20 sec/veh to 25 sec/veh at the same level of 

traffic demand according to Figure 5.2. Nevertheless, we believe the model 

implementation and testing has shown the competitive strength of PODE to perform well 

ompar r contr  able to 

prove izat  simu

 1
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irectly 

continuously performed well independent 

to external factors, such as vehicle arrival pattern. To verify whether PODE is sensitive to 

vehicle c 

consistently, especially in heavy and oversaturated traffic. Since we did not d

implement the aforementioned models, one should be cautions when citing the above 

statistics in comparison. 

5.1.4 Sensitivity of Vehicle Arrival Pattern 

Reliable adaptive control logic should 

 arrival pattern or not, we run the evaluation model five times with the same traffi

demand in Table 5.1 but different seeds for vehicle generation. The test results shown 

in Figure 5.3 indicate that the PODE performs well consistently when different vehicle 

generating seeds are used. 
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Figure 5.3 PODE Sensitivity Test of Vehicle  
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5.2 GABNOR 

e control logic for traffic network, GABNOR was evaluated with 

differen sed 

Parallel Computation Evaluation 

putation of GABNOR is tested. There are total 

37 desk

) 

l 

4 

U 

 

e 

As adaptiv

t scenarios compared with the optimized timing plan generated from widely u

signal timing optimization tool. The detail of the evaluation is discussed in the following 

part. 

5.2.1 

First, the capability of parallel com

top computers involved in this experiment. One of these computers acts as the 

server while the others installed with client program to evaluate chromosomes. The 

computation speed of GABNOR increased up to 54 chromosomes per second (ch/sec

while the number of clients reaches to 36. However, as shown in Figure 5.4, the paralle

computation has met a threshold of 54 ch/sec after the number of computer reaches 24. 

With further investigation of the computation capability of the clients, we find out that 2

computers are Intel Core 2 CPU with 3.00 GB RAM while the other 12 computers are 

Pentium 4 with RAM in the range from 512 MB to 2.00 GB. Computer with Core 2 CP

can calculate up to 3.5 ch/sec while the slowest Pentium 4 computer can only evaluate 

1.5 ch/sec or 700 million seconds per chromosome. Similar to “Wooden Barrel Theory”, 

the performance of parallel computation is determined by the slowest, not the fastest 

computer in the system. Thus we check the number of chromosomes evaluated by the

slowest computer in each generation. In our experiment, we have 75 chromosomes to b

evaluated in each generation and the slowest computer usually evaluates two 

chromosomes, in another word, 1400 ms, in each generation on average. The 
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/sec, which computation speed can be calculated by 75 chromosomes / 1400 ms = 53.5 ch

is very close to the speed we observed. 

53.7653.1954.1
52.0251.32

42.75
38.92

35.88

28.89

22.94

15.84

8.35

0

16

32

48

64

80

96

112

0 6 12 18 24 30 36 42

Number of Computers

S
p

e
e
d

 (
c
h

/s
e
c
)

Measured Speed

Ideal Speed

 

Figure 5.4 Parallel Computation Speed Experiment with 36 Clients 

T e s

chromo wer of the 

which only 

o increase th peed of evaluation, we can either limit the number of 

somes evaluate by the slowest computer or increase the computation po

slowest client in the system. Since we have 24 computers which have similar 

computation power in range from 3.0 ch/sec to 3.5 ch/sec, we did another test 

includes these 24 computers. As shown in Figure 5.5, the test results show the calculation 

speed continuously increased along with the increment of the computer number. When 

the computer number increases, the difference between the ideal speed and measured 

speed also increases. This may be caused by the non-parallelizable part in the 
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unication optimization program, such as reproduction process, and the time lost in comm

between server and clients. With the help of parallel computation, we can evaluate the 

performance of GABNOR in real-time. 
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Figure 5.5 Parallel Computation Speed Experiment with 24 Clients 

 

5.2.2 Evaluation Scenarios 

There are two scenarios tested during the evaluation of GABNOR. Each of them 

composed with nine intersections while one is an arterial highway and the other is a grid 

urban traffic network. The two different scenarios are selected to evaluate the 

performance of GABNOR under different network configurations. 



5.2.2.1 Arterial 

The first scenario is a nine-intersection arterial located at Green, Ohio. The 

geometric layout of this arterial is shown in Figure 5.6. Besides regular at-grade 

intersections, this corridor also includes a diamond interchange. The main street, 

Massillon Rd, is a 1.76 mile two-way arterial and the speed limit varies from 35 mph to 

45 mph. Afternoon peak hour volume is modeled in the evaluation program. 
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Figure 5.6 Arterial of Massillon Rd in Green, Ohio 

5.2.2.2 Grid Network 

To verify the capability of optimizing grid traffic network of GABNOR, we also 

tested it in a 3x3 grid network in downtown Akron, Ohio. As shown in Figure 5.7, the 

grid traffic network consists of two one-way streets and four two-way streets. The length 

of each block is shown in the figure and the traffic volume information is randomly 

assigned. 
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Figure 5.7 Grid Traffic Network in Downtown Akron, Ohio 

5.2.3 Benchmark 

To evaluate the performance of GABNOR, SYNCHRO is chosen to generate 

benchmark timing plan of the comparison. Both the nine-intersection arterial and grid 

network with their volume information was modeled in SYNCHRO. After that, 

recommended optimization procedure from SYNCHRO has been applied. The signal 

timing plan was then optimized with the network cycle length varying from 50 to 150 

seconds. The increment was two seconds due to half cycle option. The best timing plan 

was exported to and evaluated by VISSIM. 
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5.2.4 Evaluation Results 

Meanwhile, the arterial and grid network was also modeled in GABNOR. 

Because of GABNOR’s adaptive capability, it doesn’t require the volume information. 

The population size of GA was set to 50 and the maximum generation was 150. 

Crossover and mutation probability were 0.7 and 0.1 typically. The minimum cycle 

length and the maximum cycle length were the same with SYNCHRO which were 50 and 

150 seconds. The optimization interval was set to 15 minutes and the maximum GA 

calculation time was limited to 200 seconds. Evaluations of GABNOR and benchmark 

timing plan from SYNCHRO were finished in VISSIM through ten randomly seeded 

simulation runs. Each simulation lasted 70 minutes including ten minutes for warm up 

time. The performance of the arterial was sampled in the last 45 minutes of the simulation 

which was after the first optimization of GABNOR (at 25 minutes). 

5.2.4.1 Arterial 

Generally, the average delay of whole arterial is 15% lower in GABNOR among 

those ten simulation runs. From the average delay of each intersection shown in Figure 

5.8, we can find that the timing plan generated in GABNOR tends to balance the vehicle 

delay among those intersections. As shown in Table 5.4, delay, stops and queue length of 

each simulation run have been listed and the data are tested with statistic tools. The 

Shapiro-Wilk test (31) shows that all six groups of data are normally distributed with 

95% confidence level. The improvements of the delay, stops and queue length in 

GABNOR are all statistical significant according to the T-Test. 
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Figure 5.8 Average Delay of Intersections in the Arterial 

Table 5.4 Evaluation Results of Arterial in City of Green, Ohio 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

Synchro GABNOR Synchro GABNOR Synchro GABNOR 

1 17.10 14.10 0.51 0.40 25.40 18.70 

2 15.60 13.40 0.46 0.37 21.40 18.40 

3 16.20 13.60 0.48 0.39 22.90 17.60 

4 19.40 15.90 0.59 0.42 33.10 23.40 

5 17.70 15.10 0.53 0.42 26.90 21.20 

6 16.80 14.50 0.51 0.42 25.40 19.70 

7 17.30 14.90 0.51 0.42 26.50 20.40 

8 16.90 14.00 0.51 0.42 25.60 20.90 

9 16.50 13.80 0.49 0.39 24.60 20.10 

10 17.20 15.90 0.51 0.45 26.90 22.90 

Average 17.07 14.52 0.51 0.41 25.87 20.33 

Standard Deviation 1.0133 0.9041 0.0343 0.0226 3.0862 1.8679 

Difference 14.94% 19.61% 21.41% 

Shapiro-
Wilk Test 

p-value* 0.2594 0.3266 0.1410 0.2721 0.1707 0.9645 

Normal Dist YES YES YES YES YES YES 

F-Test 
p-value* 0.3698 0.1148 0.0754 

Homo. Vari. YES YES YES 

T-Test 
p-value* 0.0000 0.0000 0.0000 

Diff. Sig. YES YES YES 

* Reject the null hypothesis when p-value < 0.05 

 

 66



5.2.4.2 Grid Network 

For grid network optimization, as shown in Figure 5.7, GABNOR yields very 

close result to the benchmark timing plan and the difference in delay is less than 1%. 

When observing the simulation in detail, we found that the timing plan generated by 

GABNOR is similar to the one from SYNCHRO except for shorter cycle length. This 

may be caused by relatively small dimension (3 intersections at each direction) of the 

network allows both SYNCHRO and GABNOR approach to the global best timing plan. 
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Figure 5.9 Average Delay of Intersections in Grid Network 

Comparison of detailed performance between SYNCHRO and GABNOR is 

shown in Table 5.5. From the results, GABNOR has almost the same result of 

SYNCHRO. T-Test results also show that the difference of delay and queue length 

between two methods is not significant. Mann-Whitney U test is used to examine the 

difference in stops since the F-Test doesn't support the homogeneity of variance in stops. 

As shown in Figure 5.10, the result indicates that the difference is not significant. 
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Another interesting finding is that GABNOR prefer to reduce the queue length instead of 

the stops. This is supported by the observation that GABNOR usually generates smaller 

cycle length than SYNCHRO. 

Table 5.5 Evaluation Results of Grid Network in City of Akron, Ohio 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

Synchro GABNOR Synchro GABNOR Synchro GABNOR 

1 10.20  10.20  0.39  0.39  9.60  9.60  

2 10.20  10.40  0.39  0.41  9.80  9.80  

3 10.20  10.20  0.39  0.43  9.80  9.30  

4 10.30  10.10  0.40  0.41  9.70  9.40  

5 10.60  10.60  0.41  0.41  10.10  10.10  

6 10.20  10.20  0.39  0.39  9.60  9.60  

7 10.00  10.00  0.39  0.39  9.40  9.40  

8 10.10  10.10  0.39  0.39  9.90  9.90  

9 9.90  9.90  0.38  0.38  9.30  9.30  

10 10.60  10.40  0.40  0.41  10.30  10.00  

Average 10.23  10.21  0.39  0.40  9.75  9.64  

Standard Deviation 0.2263  0.2079  0.0082  0.0152  0.3028  0.2951  

Difference 0.20% -2.04% 1.13% 

Shapiro-
Wilk Test 

p-value* 0.1864 0.7376 0.1275 0.1201 0.9329 0.2944 

Normal Dist YES YES YES YES YES YES 

F-Test 
p-value* 0.4022 0.0404 0.4704 

Homo. Vari. YES NO YES 

T-Test 
p-value* 0.5911  0.0932 

Diff. Sig. NO  NO 

* Reject the null hypothesis when p-value < 0.05 

 

 

 

 

 



Ranks
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10 11.95 119.50

20
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1.00
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Test Statisticsb

35.500

90.500

-1.182

.237

.280
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Stops

Not corrected for ties.a. 

Grouping Variable: Groupb. 

 

Figure 5.10 Mann-Whitney U Test for Stops in Grid Network Optimization 

 

5.2.5 Detector Error Impact Study 

In practice, it is difficult to reach 100% detector accuracy. In the field experiment 

of visual detection, the detector’s accuracy is affected by many factors, including the 

height and angle of the camera, weather and traffic volume. In some cases, the detection 

error can reach as high as 20%. There are primarily two types of detections error, miss 

count and double count. Miss count means a vehicle passed over a detector without 

detection reported. On the contrast, double count means detection reported without a 

vehicle passed over the detector or two detections reported when there is only one vehicle. 

The turning movement identification process is designed to reduce the impact from the 

detector error. To evaluate the performance of this process, we intensively generate 

detection errors in the EPI module to simulate the field situation. The turning movement 
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count identified is then compared with the one without detection error. The performance 

of GABNOR with detection error is also examined to test its fault tolerance of input data. 

In this experiment, EPI randomly generate 10% detection errors which include 

5% double count and 5% miss count. The same vehicle arrival pattern is used in this test 

and the result is listed in Table 5.6. From this table, we can find that the error percentage 

of turning movement count has been reduced to 3.68% and the difference of system 

performance compared with no error situation is not statistical significant. 

Table 5.6 Results of Detection Error Tolerance Experiment with 10% Error 

Random Seed 
Turning 

Movement Error 
Delay (sec) Stops 

Queue 
Length (ft) 

1 3.99% 15.30 0.41 23.40 

2 2.39% 14.70 0.40 21.40 

3 4.34% 14.30 0.40 20.10 

4 3.87% 14.60 0.43 21.50 

5 2.96% 13.90 0.39 17.90 

6 3.34% 15.50 0.43 22.00 

7 4.29% 13.80 0.38 19.90 

8 3.60% 14.40 0.40 21.80 

9 2.43% 13.50 0.37 18.70 

10 5.62% 14.10 0.41 19.50 

Average 3.68% 14.41 0.40 20.62 

Standard Deviation 0.9760% 0.6385 0.0193 1.6844 

Difference with 0% Error 0.76% 1.95% -1.43% 

Shapiro-
Wilk Test 

p-value* 0.7053 0.7975 0.6244 0.9106 

Normal Dist. YES YES YES YES 

F-Test 
p-value* 0.1574 0.3237 0.3816 

Homo. Variance YES YES YES 

T-Test 
p-value* 0.7731 0.3353 0.7513 

Diff. Sig. NO NO NO 

* Reject the null hypothesis when p-value < 0.05 
 

Next, the error percentage is raised to 20% including 10% double count and 10% 

miss count. As shown in Table 5.7, the error percentage of turning movement count has 

been controlled around 6% and the system can still yield good performance. T-Test 
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shows there is not significant difference between 20% error and no error. That means 

GABNOR can keep almost the same performance even under high detection data error. 

Table 5.7 Results of Detection Error Tolerance Experiment with 20% Error 

Random Seed 
Turning 

Movement Error 
Delay (sec) Stops 

Queue 
Length (ft) 

1 7.36% 15.20 0.41 22.20 

2 5.45% 15.60 0.44 21.60 

3 6.01% 14.60 0.42 19.70 

4 7.82% 14.60 0.42 19.50 

5 7.44% 13.50 0.37 18.40 

6 5.62% 13.70 0.39 18.60 

7 4.99% 15.10 0.44 19.80 

8 5.48% 16.40 0.49 23.40 

9 3.98% 15.00 0.42 21.50 

10 6.00% 14.30 0.41 18.90 

Average 6.01% 14.80 0.42 20.36 

Standard Deviation 1.2043% 0.8641 0.0321 1.7005 

Difference with 0% Error -1.93% -2.68% -0.15% 

Shapiro-
Wilk Test 

p-value* 0.5373 0.9299 0.3295 0.3213 

Normal Dist. YES YES YES YES 

F-Test 
p-value* 0.4475 0.1549 0.3921 

Homo. Variance YES YES YES 

T-Test 
p-value* 0.5760 0.4292 0.9746 

Diff. Sig. NO NO NO 

* Reject the null hypothesis when p-value < 0.05 

 

5.2.6 Sensitivity of System Parameters 

There are three key parameters for GA, population size, crossover rate and 

mutation rate. The default testing value is 50 for population, 0.7 for crossover rate and 

0.1 for mutation rate. To examine the sensitivity of GABNOR to these system parameters, 

we have tried different parameter values in the optimization of arterial network 

respectively. 
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5.2.6.1 Population Size 

The larger population size will expand the searching space while the limited 

calculation power restricts the selection of the size. According to the calculation power in 

our experiment, we have nearly 60 ch/sec computation speed while the optimization time 

should be limited in one or two cycles at most, which is around 100 seconds. That means 

we can evaluate 6,000 chromosomes in total. Finding a balance between the population 

size and the number of generations is the primary focus. 

Besides the default 50 population size, we evaluate the performance of GABNOR 

with the population size 75 and 100. According to the results of T-Test shown in Table 

5.8, there is no significant difference in delay and queue length between 75 and 50 as the 

population size. Mann-Whitney U test is used to examine the difference in stops between 

two different population sizes since the F-Test yield failed result on homogeneity of 

variance. The result also indicates no significant difference in stops as shown in Figure 

5.11. 

 

 

 

 

 

 

 

 



Table 5.8 Evaluation Results with 75 Population Size 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

75 Default 75 Default 75 Default 

1 14.80 14.10 0.41 0.40 19.70 18.70 

2 14.00 13.40 0.39 0.37 19.40 18.40 

3 13.80 13.60 0.39 0.39 19.60 17.60 

4 15.80 15.90 0.41 0.42 24.60 23.40 

5 15.90 15.10 0.41 0.42 25.20 21.20 

6 15.30 14.50 0.42 0.42 22.10 19.70 

7 14.10 14.90 0.41 0.42 21.00 20.40 

8 15.50 14.00 0.41 0.42 22.70 20.90 

9 14.90 13.80 0.41 0.39 20.50 20.10 

10 14.80 15.90 0.42 0.45 20.30 22.90 

Average 14.89 14.52 0.41 0.41 21.51 20.33 

Standard Deviation 0.7460 0.9041 0.0103 0.0226 2.0830 1.8679 

Difference -2.55% 0.49% -5.80% 

Shapiro-
Wilk Test 

p-value* 0.4837 0.3266 0.0053 0.2721 0.1249 0.9645 

Normal Dist YES YES NO YES YES YES 

F-Test 
p-value* 0.2881 0.0144 0.3753 

Homo. Vari. YES NO YES 

T-Test 
p-value* 0.1897  0.0550 

Diff. Sig. NO  NO 

* Reject the null hypothesis when p-value < 0.05 

 

Ranks

10 9.60 96.00

10 11.40 114.00

20

Groups

1.00

2.00

Total

Stops

N Mean Rank Sum of Ranks

 

Test Statisticsb

41.000

96.000

-.708

.479

.529
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Stops

Not corrected for ties.a. 

Grouping Variable: VAR00003b. 

 

Figure 5.11 Mann-Whitney U Test for Stops with Different Population Size 
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e 

We then increase the population size to 100, the evaluation results are shown 

in Table 5.9. The delay and stops have no obvious difference from the one with 50 as th

population size. However, the queue length increased about 10% and the difference is 

statistically significant. This may caused by insufficient generations to obtain well 

optimized results when the population size is too large. From these results, we can find 

this program prefers 50 or 75 in population size and no obvious difference in 100 with the 

current computation capability. 

Table 5.9 Evaluation Results with 100 Population Size 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

100 Default 100 Default 100 Default 

1 15.70 14.10 0.44 0.40 23.60 18.70 

2 13.90 13.40 0.39 0.37 19.10 18.40 

3 14.70 13.60 0.40 0.39 23.40 17.60 

4 14.80 15.90 0.38 0.42 24.50 23.40 

5 16.00 15.10 0.40 0.42 23.10 21.20 

6 15.00 14.50 0.43 0.42 22.40 19.70 

7 15.30 14.90 0.42 0.42 21.10 20.40 

8 16.10 14.00 0.46 0.42 22.80 20.90 

9 15.00 13.80 0.41 0.39 21.30 20.10 

10 13.70 15.90 0.36 0.45 22.20 22.90 

Average 15.02 14.52 0.41 0.41 22.15 20.33 

Standard Deviation 0.8039 0.9041 0.0296 0.0226 1.5400 1.8679 

Difference -3.44% -0.24 % -8.95% 

Shapiro-
Wilk Test 

p-value* 0.6016 0.3266 0.9995 0.2721 0.7788 0.9645 

Normal Dist YES YES YES YES YES YES 

F-Test 
p-value* 0.3660 0.2169 0.3809 

Homo. Vari. YES YES YES 

T-Test 
p-value* 0.2464 0.9385 0.0372 

Diff. Sig. NO NO YES 

* Reject the null hypothesis when p-value < 0.05 

 

5.2.6.2 Crossover Rate 

According to Kovvali and Messer's study (24), crossover rate is recommended 

from 0.5 to 0.8 in traffic signal optimization. A higher crossover factor may yield a faster 
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convergence. However, if it is too high, premature convergence becomes a problem. 

Besides the default value, we also tried 0.6 and 0.8 for crossover rate in GABNOR to 

assess its sensitivity to this parameter. 

The results of GABNOR with crossover rate at 0.6 are shown in Table 5.10. From 

the result, we can find that GABNOR has no statistical significant difference in delay and 

stops, while the average queue length is 10% longer statistically significant compared 

with the one in default. 

Table 5.10 Evaluation Results with 0.6 Crossover Rate 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

0.6 Default 0.6 Default 0.6 Default 

1 13.70 14.10 0.38 0.40 17.80 18.70 

2 15.30 13.40 0.43 0.37 21.50 18.40 

3 14.90 13.60 0.41 0.39 20.40 17.60 

4 16.00 15.90 0.38 0.42 24.30 23.40 

5 16.30 15.10 0.41 0.42 27.10 21.20 

6 14.80 14.50 0.42 0.42 22.00 19.70 

7 15.30 14.90 0.42 0.42 23.10 20.40 

8 14.40 14.00 0.38 0.42 22.50 20.90 

9 14.80 13.80 0.37 0.39 20.90 20.10 

10 15.10 15.90 0.42 0.45 24.30 22.90 

Average 15.06 14.52 0.40 0.41 22.39 20.33 

Standard Deviation 0.7442 0.9041 0.0220 0.0226 2.5427 1.8679 

Difference -3.72% 1.95% -10.13% 

Shapiro-
Wilk Test 

p-value* 0.8550 0.3266 0.0672 0.2721 0.9800 0.9645 

Normal Dist YES YES YES YES YES YES 

F-Test 
p-value* 0.2856 0.4688 0.1859 

Homo. Vari. YES YES YES 

T-Test 
p-value* 0.0669 0.4280 0.0056 

Diff. Sig. NO NO YES 

* Reject the null hypothesis when p-value < 0.05 

 

The results of evaluation with crossover rate at 0.8 are listed in Table 5.11. All the 

three performance measurements, delay, stops and queue length, are similar to the one in 

default crossover rate. According to T-Test, the difference is not statistically significant. 
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From these results, the crossover rate can be chosen among 0.6, 0.7 and 0.8 without 

obvious difference on system performance. 

Table 5.11 Evaluation Results with 0.8 Crossover Rate 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

0.8 Default 0.8 Default 0.8 Default 

1 14.90 14.10 0.41 0.40 20.30 18.70 

2 13.70 13.40 0.39 0.37 18.90 18.40 

3 14.10 13.60 0.42 0.39 18.50 17.60 

4 15.20 15.90 0.41 0.42 22.50 23.40 

5 16.20 15.10 0.44 0.42 23.30 21.20 

6 15.50 14.50 0.43 0.42 23.80 19.70 

7 16.80 14.90 0.41 0.42 22.60 20.40 

8 14.90 14.00 0.40 0.42 23.80 20.90 

9 14.70 13.80 0.40 0.39 19.90 20.10 

10 14.00 15.90 0.40 0.45 20.10 22.90 

Average 15.00 14.52 0.41 0.41 21.37 20.33 

Standard Deviation 0.9764 0.9041 0.0152 0.0226 2.0434 1.8679 

Difference -3.31% -0.24% -5.12% 

Shapiro-
Wilk Test 

p-value* 0.7374 0.3266 0.4406 0.2721 0.1607 0.9645 

Normal Dist YES YES YES YES YES YES 

F-Test 
p-value* 0.4112 0.1278 0.3967 

Homo. Vari. YES YES YES 

T-Test 
p-value* 0.1880 0.8971 0.1343 

Diff. Sig. NO NO NO 

* Reject the null hypothesis when p-value < 0.05 

 

5.2.6.3 Mutation Rate 

Mutation assists in preventing the Genetic Algorithm from local convergence. 

However, if the mutation rate is too high, it will prevent convergence and destroy 

successful genotypes. Besides 0.1 mutation rate used in the evaluation, other three values, 

0.05, 0.15 and 0.20, are also examined in our experiment. As shown in Table 5.13, there 

is no significant difference in delay by using 0.05 instead of 0.1 as the mutation rate 

though the queue length is longer in 0.05 mutation rate. Since the variances in stops are 

not homogeneous, we use Mann-Whitney U test instead of T-Test to check the difference. 
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As shown in Figure 5.12, the difference is significant. This means using 0.05 as the 

mutation rate can further reduce vehicle stops without affect the performance of delay. 

Table 5.12 Evaluation Results with 0.05 Mutation Rate 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

0.05 Default 0.05 Default 0.05 Default 

1 14.20 14.10 0.37 0.40 21.70 18.70 

2 13.50 13.40 0.37 0.37 19.10 18.40 

3 13.70 13.60 0.39 0.39 20.30 17.60 

4 15.50 15.90 0.38 0.42 23.50 23.40 

5 15.00 15.10 0.38 0.42 22.10 21.20 

6 15.00 14.50 0.40 0.42 21.60 19.70 

7 15.50 14.90 0.40 0.42 23.90 20.40 

8 14.00 14.00 0.38 0.42 21.30 20.90 

9 14.60 13.80 0.39 0.39 22.10 20.10 

10 15.00 15.90 0.40 0.45 23.50 22.90 

Average 14.60 14.52 0.39 0.41 21.91 20.33 

Standard Deviation 0.7180 0.9041 0.0117 0.0226 1.4940 1.8679 

Difference -0.55% 5.85% -7.77% 

Shapiro-
Wilk Test 

p-value* 0.3727 0.3266 0.1239 0.2721 0.6021 0.9645 

Normal Dist YES YES YES YES YES YES 

F-Test 
p-value* 0.2516 0.0320 0.2581 

Homo. Vari. YES NO YES 

T-Test 
p-value* 0.6209  0.0025 

Diff. Sig. NO  YES 

* Reject the null hypothesis when p-value < 0.05 

 

 

 

 

 

 



Ranks
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20
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N Mean Rank Sum of Ranks

 

Test Statisticsb

18.500

73.500

-2.425

.015

.015
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Stops

Not corrected for ties.a. 

Grouping Variable: VAR00008b. 

 

Figure 5.12 Mann-Whitney U Test for Stops with 0.05 and 0.10 Mutation Rate 

 

As mutation rate raise to 0.15, there is no significant difference in delay and stops, 

though the queue length is longer as shown in Table 5.13. Since the objective function of 

GABNOR is minimizing the vehicle delay, 0.15 can still be considered as acceptable 

mutation rate. 
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Table 5.13 Evaluation Results with 0.15 Mutation Rate 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

0.15 Default 0.15 Default 0.15 Default 

1 14.40 14.10 0.38 0.40 19.70 18.70 

2 13.20 13.40 0.37 0.37 18.70 18.40 

3 15.00 13.60 0.41 0.39 19.70 17.60 

4 15.80 15.90 0.41 0.42 24.30 23.40 

5 15.00 15.10 0.42 0.42 20.90 21.20 

6 15.20 14.50 0.44 0.42 20.70 19.70 

7 15.90 14.90 0.43 0.42 23.40 20.40 

8 14.70 14.00 0.39 0.42 20.90 20.90 

9 14.20 13.80 0.36 0.39 20.30 20.10 

10 15.50 15.90 0.41 0.45 23.40 22.90 

Average 14.89 14.52 0.40 0.41 21.20 20.33 

Standard Deviation 0.8130 0.9041 0.0262 0.0226 1.8643 1.8679 

Difference -2.55% 1.95% -4.28% 

Shapiro-
Wilk Test 

p-value* 0.6240 0.3266 0.7176 0.2721 0.2171 0.9645 

Normal Dist YES YES YES YES YES YES 

F-Test 
p-value* 0.3785 0.3353 0.4978 

Homo. Vari. YES YES YES 

T-Test 
p-value* 0.0750 0.2695 0.0231 

Diff. Sig. NO NO YES 

* Reject the null hypothesis when p-value < 0.05 

 

For 0.20 mutation rate, the system performance dropped down significantly as 

shown in Table 5.14. Though the difference in stops is not significant according to Mann-

Whitney U test, 0.20 mutation rate is not yield the same performance compared to other 

mutation rates. This is also supported by Kovvali and Messer's study (24) in which the 

maximum recommended mutation rate is 0.19 for GA in traffic signal optimization. 

 

 

 

 

 



Table 5.14 Evaluation Results with 0.20 Mutation Rate 

Random Seed 
Delay (sec) Stops Queue Length (ft) 

0.20 Default 0.20 Default 0.20 Default 

1 16.30 14.10 0.42 0.40 27.70 18.70 

2 13.40 13.40 0.39 0.37 18.00 18.40 

3 15.00 13.60 0.40 0.39 21.10 17.60 

4 15.70 15.90 0.41 0.42 22.00 23.40 

5 15.70 15.10 0.42 0.42 26.10 21.20 

6 15.50 14.50 0.41 0.42 24.10 19.70 

7 15.90 14.90 0.41 0.42 23.30 20.40 

8 15.50 14.00 0.43 0.42 24.70 20.90 

9 15.70 13.80 0.42 0.39 22.30 20.10 

10 15.30 15.90 0.41 0.45 23.50 22.90 

Average 15.40 14.52 0.41 0.41 23.28 20.33 

Standard Deviation 0.7832 0.9041 0.0114 0.0226 2.6968 1.8679 

Difference -6.06% -0.49% -14.51% 

Shapiro-
Wilk Test 

p-value* 0.0743 0.3266 0.4788 0.2721 0.9753 0.9645 

Normal Dist YES YES YES YES YES YES 

F-Test 
p-value* 0.3379 0.0262 0.1445 

Homo. Vari. YES NO YES 

T-Test 
p-value* 0.0146  0.0121 

Diff. Sig. YES  YES 

* Reject the null hypothesis when p-value < 0.05 

 

Ranks
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Test Statisticsb

50.000

105.000

.000

1.000

1.000
a

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

Stops

Not corrected for ties.a. 

Grouping Variable: Groupb. 

 

Figure 5.13 Mann-Whitney U Test for Stops with 0.20 and 0.10 Mutation Rate 
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According to the above tests, the recommended values for the parameters of GA 

in GABNOR are summarized in Table 5.15. It could be the guide for future experiments 

of GABNOR. 

Table 5.15 Suggested Values for Parameters of GABNOR 

Parameters Suggested Values 

Population Size 50, 75 or 100 

Crossover Rate 0.6, 0.7 or 0.8 

Mutation Rate 0.05, 0.10 or 0.15 
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6 CONCLUSIONS AND FUTURE WORKS 

CHAPTER VI 

CONCLUSIONS AND FUTURE WORKS 

Adaptive signal control strategy for isolated intersection and traffic network has 

been introduced in this dissertation. The limitation and problems in existing traffic 

optimization strategies are addressed and used as the basis for developing PODE for 

isolated intersection and GABNOR for traffic network. The methodology of PODE and 

GABNOR has been discussed in detail and the implementation of both algorithms is 

presented. Simulation based evaluation has shown the competitive optimization 

capability of both algorithms. For PODE, the results demonstrate the encouraging 

potential in solving traffic congestion problem at isolated intersections, and it is 

supported by the system sensitivity test results. As for GABNOR, it has shown its 

competitive capability to optimize not only arterial, but also grid traffic network. Parallel 

computation feature helps GABNOR optimize the whole traffic network in real-time. 

System sensitivity tests demonstrate its independence to the parameters and its fault 

tolerance feature allows the system works stably under different situations. 

However, both PODE and GABNOR are just a simple prototype of a mature real-

time optimization system. The simulation results are very limited and more scenarios 

should be tested for each system. Some extreme situations, such as traffic accidents or 

oversaturated conditions, should be included in the evaluation. Moreover, additional field 
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tests should be considered to examine the system. Besides the above tasks, using 

microscopic internal evaluator instead of the current mesoscopic could further improve 

the performance of GABNOR as more accurate and detailed information can be obtained. 

To keep advancing PODE and GABNOR, it is important to incorporate the leading edge 

technologies, such as Vehicle Infrastructure Integration (VII) (32), into the system.  
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APPENDIX A  

SAMPLE CONFIGURATION FILE FOR PODE 

<IOMConfig> 
    <minTimeSteps>5</minTimeSteps> 
    <maxTimeSteps>20</maxTimeSteps> 
    <timeSlice>1</timeSlice> 
    <yellow>3</yellow> 
    <allred>2</allred> 
    <startOffDelay>1</startOffDelay> 
    <queueWaveCars>0.8</queueWaveCars> 
    <leaveCars>1</leaveCars> 
    <systemDistance>450</systemDistance> 
    <avgVehQueueSpacing>6</avgVehQueueSpacing> 
    <avgVehLength>16</avgVehLength> 
    <limitSpeed>50</limitSpeed> 
    <maxExceed>0</maxExceed> 
    <maxDifference>100</maxDifference> 
    <maxGreen>100</maxGreen> 
    <changeDifference>0</changeDifference> 
    <reducePara>4</reducePara> 
    <reduceTime>7</reduceTime> 
    <queueMaxSpeedPer>0.8</queueMaxSpeedPer> 
    <queueSpeedupTime>8</queueSpeedupTime> 
    <volume>800 800 800 800</volume> 
    <pedestrian> 
        <highVolume>30</highVolume> 
        <mediumVolume>6</mediumVolume> 
        <highDiff>14</highDiff> 
        <mediumDiff>7</mediumDiff> 
        <lowDiff>0</lowDiff> 
        <maximumOut>30</maximumOut> 
    </pedestrian> 
    <detConfig node=1 sgNum=8 approachNum=4 phaseNum=8 > 
        <approach index=0 laneNum=3 type="veh"> 
            <lane index=0 queueDetNum=3 lane=1 queueLeaveCars=0.59 
weight=1 > 
                <countDet id=33 distance=1000 /> 
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                <queueDet id=1 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                <queueDet id=2 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                <queueDet id=3 index=2 distance=174 queuemin=10 
queuemax=1000 />  
             </lane> 
             <lane index=1 queueDetNum=3 lane=2 queueLeaveCars=0.59 
weight=1 > 
                <countDet id=34 distance=1000 /> 
                <queueDet id=4 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                <queueDet id=5 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                <queueDet id=6 index=2 distance=174 queuemin=10 
queuemax=1000 />  
             </lane> 
             <lane index=2 queueDetNum=3 lane=7 queueLeaveCars=0.59 
weight=1 > 
                     <countDet id=-1 distance=0 /> 
                     <queueDet id=7 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                     <queueDet id=8 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                     <queueDet id=41 index=2 distance=174 queuemin=10 
queuemax=1000 /> 
                 </lane> 
         </approach> 
         <approach index=1 laneNum=3 type="veh" > 
             <lane index=0 queueDetNum=3 lane=1 queueLeaveCars=0.59 
weight=1 > 
                <countDet id=35 distance=1000 /> 
                <queueDet id=9 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                <queueDet id=10 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                <queueDet id=11 index=2 distance=174 queuemin=10 
queuemax=1000 />  
             </lane> 
             <lane index=1 queueDetNum=3 lane=2 queueLeaveCars=0.59 
weight=1 > 
                <countDet id=36 distance=1000 /> 
                <queueDet id=12 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                <queueDet id=13 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                <queueDet id=14 index=2 distance=174 queuemin=10 
queuemax=1000 />  
             </lane> 
             <lane index=2 queueDetNum=3 lane=7 queueLeaveCars=0.59 
weight=1 > 
                 <countDet id=-1 distance=0 /> 
                 <queueDet id=15 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                 <queueDet id=16 index=1 distance=94 queuemin=6 
queuemax=9 /> 
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                 <queueDet id=42 index=2 distance=174 queuemin=10 
queuemax=1000 /> 
             </lane> 
        </approach> 
        <approach index=2 laneNum=3 type="veh" > 
            <lane index=0 queueDetNum=3 lane=1 queueLeaveCars=0.59 
weight=1 > 
                <countDet id=37 distance=1000 /> 
                <queueDet id=17 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                <queueDet id=18 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                <queueDet id=19 index=2 distance=174 queuemin=10 
queuemax=1000 />  
             </lane> 
             <lane index=1 queueDetNum=3 lane=2 queueLeaveCars=0.59 
weight=1 > 
                <countDet id=38 distance=1000 /> 
                <queueDet id=20 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                <queueDet id=21 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                <queueDet id=22 index=2 distance=174 queuemin=10 
queuemax=1000 />  
             </lane> 
             <lane index=2 queueDetNum=3 lane=7 queueLeaveCars=0.59 
weight=1 > 
                 <countDet id=-1 distance=0 /> 
                 <queueDet id=23 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                 <queueDet id=24 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                 <queueDet id=43 index=2 distance=174 queuemin=10 
queuemax=1000 /> 
             </lane> 
        </approach> 
        <approach index=3 laneNum=3 type="veh" > 
            <lane index=0 queueDetNum=3 lane=1 queueLeaveCars=0.59 
weight=1 > 
                <countDet id=39 distance=1000 /> 
                <queueDet id=25 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                <queueDet id=26 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                <queueDet id=27 index=2 distance=174 queuemin=10 
queuemax=1000 />  
             </lane> 
             <lane index=1 queueDetNum=3 lane=2 queueLeaveCars=0.59 
weight=1 > 
                <countDet id=40 distance=1000 /> 
                <queueDet id=28 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                <queueDet id=29 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                <queueDet id=30 index=2 distance=174 queuemin=10 
queuemax=1000 />  



 91

             </lane> 
            <lane index=2 queueDetNum=3 lane=7 queueLeaveCars=0.59 
weight=1 > 
                 <countDet id=-1 distance=0 /> 
                 <queueDet id=31 index=0 distance=12 queuemin=1 
queuemax=5 /> 
                 <queueDet id=32 index=1 distance=94 queuemin=6 
queuemax=9 /> 
                 <queueDet id=44 index=2 distance=174 queuemin=10 
queuemax=1000 /> 
            </lane> 
        </approach> 
        <sg index=0 minGreen=6 approachNum=1 clearance=0 > 
            <approach index=0 laneNum=2 > 
                 <lane index=0 /> 
                 <lane index=1 /> 
             </approach> 
        </sg> 
        <sg index=1 minGreen=6 approachNum=1 clearance=0 > 
            <approach index=0 laneNum=1 > 
                <lane index=2 /> 
            </approach> 
        </sg> 
        <sg index=2 minGreen=6 approachNum=1 clearance=0 > 
            <approach index=1 laneNum=2 > 
                 <lane index=0 /> 
                 <lane index=1 /> 
             </approach> 
        </sg> 
        <sg index=3 minGreen=6 approachNum=1 clearance=0 > 
            <approach index=1 laneNum=1 > 
                <lane index=2 /> 
            </approach> 
        </sg> 
        <sg index=4 minGreen=6 approachNum=1 clearance=0 > 
            <approach index=2 laneNum=2 > 
                 <lane index=0 /> 
                 <lane index=1 /> 
             </approach> 
        </sg> 
        <sg index=5 minGreen=6 approachNum=1 clearance=0 > 
            <approach index=2 laneNum=1 > 
                <lane index=2 /> 
            </approach> 
        </sg> 
        <sg index=6 minGreen=6 approachNum=1 clearance=0 > 
            <approach index=3 laneNum=2 > 
                 <lane index=0 /> 
                 <lane index=1 /> 
             </approach> 
        </sg> 
        <sg index=7 minGreen=6 approachNum=1 clearance=0 > 
            <approach index=3 laneNum=1 > 
                <lane index=2 /> 
            </approach> 
        </sg> 
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        <phase index=0 > 
            <sg index=0 code=2 /> 
            <sg index=1 code=1 /> 
            <sg index=2 code=2 /> 
            <sg index=3 code=2 /> 
            <sg index=4 code=2 /> 
            <sg index=5 code=1 /> 
            <sg index=6 code=2 /> 
            <sg index=7 code=2 /> 
        </phase> 
        <phase index=1 > 
            <sg index=0 code=1 /> 
            <sg index=1 code=2 /> 
            <sg index=2 code=2 /> 
            <sg index=3 code=2 /> 
            <sg index=4 code=1 /> 
            <sg index=5 code=2 /> 
            <sg index=6 code=2 /> 
            <sg index=7 code=2 /> 
        </phase> 
        <phase index=2 > 
            <sg index=0 code=2 /> 
            <sg index=1 code=2 /> 
            <sg index=2 code=2 /> 
            <sg index=3 code=1 /> 
            <sg index=4 code=2 /> 
            <sg index=5 code=2 /> 
            <sg index=6 code=2 /> 
            <sg index=7 code=1 /> 
        </phase> 
        <phase index=3 > 
            <sg index=0 code=2 /> 
            <sg index=1 code=2 /> 
            <sg index=2 code=1 /> 
            <sg index=3 code=2 /> 
            <sg index=4 code=2 /> 
            <sg index=5 code=2 /> 
            <sg index=6 code=1 /> 
            <sg index=7 code=2 /> 
        </phase> 
        <phase index=4 > 
            <sg index=0 code=1 /> 
            <sg index=1 code=1 /> 
            <sg index=2 code=2 /> 
            <sg index=3 code=2 /> 
            <sg index=4 code=2 /> 
            <sg index=5 code=2 /> 
            <sg index=6 code=2 /> 
            <sg index=7 code=2 /> 
        </phase> 
        <phase index=5 > 
            <sg index=0 code=2 /> 
            <sg index=1 code=2 /> 
            <sg index=2 code=1 /> 
            <sg index=3 code=1 /> 
            <sg index=4 code=2 /> 
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            <sg index=5 code=2 /> 
            <sg index=6 code=2 /> 
            <sg index=7 code=2 /> 
        </phase> 
        <phase index=6 > 
            <sg index=0 code=2 /> 
            <sg index=1 code=2 /> 
            <sg index=2 code=2 /> 
            <sg index=3 code=2 /> 
            <sg index=4 code=1 /> 
            <sg index=5 code=1 /> 
            <sg index=6 code=2 /> 
            <sg index=7 code=2 /> 
        </phase> 
        <phase index=7 > 
            <sg index=0 code=2 /> 
            <sg index=1 code=2 /> 
            <sg index=2 code=2 /> 
            <sg index=3 code=2 /> 
            <sg index=4 code=2 /> 
            <sg index=5 code=2 /> 
            <sg index=6 code=1 /> 
            <sg index=7 code=1 /> 
        </phase> 
    </detConfig> 
</IOMConfig> 
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 APPENDIX B 

SAMPLE SOURCE CODE 

sc_dll_main.cpp 
 
 
/*---------------------------------------------------------------------
-----*/ 
 
void  SC_DLL_Calculate (unsigned long sc_no) 
{ 
    /* Executes one pass through the controller logic of SC no. <sc_no>.  
*/ 
    /* This function is called from VISSIM once per SC at the end of 
each */ 
    /* signal control interval, after the (detector) data for all SC's    
*/ 
    /* has been passed to the controller DLL.                             
*/ 
 
    /* ### */ 
 
    
/**********************************************************************
**/ 
    /* Init the parameter                                                   
*/ 
    
/**********************************************************************
**/ 
    int l = 0;    // Loop for Link 
    int p = 0;    // Loop for Phase 
    int ap = 0; // Loop for Approach 
    int la = 0; // Loop for Lane 
    int d = 0;    // Loop for Detector 
 
    double initQueueMin[MAX_APPROACH_NUM][MAX_LANE_NUM]; 
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    double initQueueMax[MAX_APPROACH_NUM][MAX_LANE_NUM]; 
 
    for ( ap = 0; ap < MAX_APPROACH_NUM; ap++ ) { 
        for ( la = 0; la < MAX_LANE_NUM; la++ ) { 
            for ( d = 0; d < MAX_QUEUE_DET; d++ ) { 
                detState[ap][la][d] = false; 
                detAct[ap][la][d] = false; 
            } 
            initQueueMin[ap][la] = 0; 
            initQueueMax[ap][la] = FLT_MAX; 
        } 
    } 
 
 
    
/**********************************************************************
**/ 
    /* Process the node and adjust the queue                                
*/ 
    /* Use the PODE algorithm to get the result                             
*/ 
    
/**********************************************************************
**/ 
 
    
/**********************************************************************
**/ 
    /* Get the detectors' information and calculate the limitation of 
queue */ 
    
/**********************************************************************
**/ 
    for ( ap = 0; ap < para.detConfig->approachNum; ap++ ) { 
        for ( la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++ ) { 
            // Check the count detector, get the speed 
            Lane* lane = &objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->lanes[la]; 
            if ( lane->countDet.id > 0 ) 
            { 
                double speed = Det_VehSpeed(sc_no, lane->countDet.id) * 
FT_SPEED; 
                if ( speed > 0 && Det_FrontEnds(sc_no, lane-
>countDet.id) > 0 ) 
                { 
                    
/**********************************************************************
**/ 
                    /* Deal with the pedestrian queue                               
*/ 
                    
/**********************************************************************
**/ 
                    if ( objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->type == T_APP_PED ) 
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                    { 
                        queue[ap][la].queueSize += 1; 
                    } 
                    else 
                    { 
                        
/**********************************************************************
**/ 
                        /* Calculate the arriving vehicle to estimate 
the queue length          */ 
                        
/**********************************************************************
**/ 
                        int intArrivingVeh = arrivalNumber[ap][la]; 
                        for ( int i = (int)(objResult->timeSteps - 
(Sim_Time() - sg_start_time)); i < MAX_ARRIVAL_BUFFER_STEP; i++ ) 
                        { 
                            if ( input[i][ap][la] > 0 ) 
                            { 
                                intArrivingVeh++; 
                            } 
                        } 
                         
                        
/**********************************************************************
**/ 
                        /* Calculate the estimated arrival time                     
*/ 
                        
/**********************************************************************
**/ 
                        double queueLength = queue[ap][la].queueLength 
+ intArrivingVeh * ( para.avgVehLength + para.avgVehQueueSpacing ); 
                        int time = 0; 
                        if ( lane->countDet.distance > queueLength ) 
                        { 
                            if ( speed > para.limitSpeed * 0.2 || 
queueLength < para.systemDistance ) 
                            { 
                                if ( queueLength < para.systemDistance ) 
                                { 
                                    time = (int)(( lane-
>countDet.distance - para.systemDistance ) / ( speed  * 
para.timeSlice )); 
                                } 
                                else 
                                { 
                                    time = (int)(( lane-
>countDet.distance - queueLength ) / ( speed  * para.timeSlice ) + 
para.reduceTime / 2); 
                                } 
                                 
                            } 
                        } 
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/**********************************************************************
**/ 
                        /* No two vehicles arrive at the same second                
*/ 
                        
/**********************************************************************
**/ 
                        while ( input[time][ap][la] > 0 ) //|| 
Sim_Time() - sg_start_time + time <= objResult->timeSteps+5 ) 
                        { 
                            time++; 
                        } 
                        if ( time >= MAX_ARRIVAL_BUFFER_STEP ) { 
                            time = MAX_ARRIVAL_BUFFER_STEP - 1; 
                        } 
 
                        input[time][ap][la] = speed; 
                        totalInput[(int)(time+Sim_Time())][ap][la] = 
speed; 
                    }                     
                } 
            } 
             
            // Check the Queue Detector 
            for ( d = 0; d < lane->queueDetNum; d++ ) { 
                int detPres = Det_Presence(sc_no, lane-
>queueDets[d].id); 
                if( detPres > 0 )  
                { 
                    detAct[ap][la][d] = true; 
                    if( Det_FrontEnds(sc_no, lane->queueDets[d].id) == 
0 ) detState[ap][la][d] = true; 
                } 
            } 
        } 
    } 
     
    
/**********************************************************************
**/ 
    /* Adjust the queue size                                                
*/ 
    
/**********************************************************************
**/ 
    for ( ap = 0; ap < para.detConfig->approachNum; ap++ ) { 
        for ( la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++ ) { 
            Lane* lane = &objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->lanes[la]; 
            for ( d = lane->queueDetNum - 1; d >= 0; d-- ) { 
                if ( detState[ap][la][d] ) { 
                    for ( int tempD = 0; tempD < d; tempD++ ) { 
                        if ( detAct[ap][la][tempD] ) { 
                            break; 
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                        } 
                    } 
                    if ( tempD < d || d == 0 ) { 
                        initQueueMin[ap][la] = lane-
>queueDets[d].queuemin; 
                        initQueueMax[ap][la] = lane-
>queueDets[d].queuemax; 
                        break; 
                    } 
                } 
            } 
        } 
    } 
 
 
    
/**********************************************************************
**/ 
    /* Roll up the input array                                              
*/ 
    
/**********************************************************************
**/ 
     
    for ( int i = 0; i < MAX_ARRIVAL_BUFFER_STEP - 1; i++ ) { 
        for ( ap = 0; ap < MAX_APPROACH_NUM; ap++ ) { 
            for ( la = 0; la < MAX_LANE_NUM; la++ ) { 
                input[i][ap][la] = input[i+1][ap][la]; 
            } 
        } 
    } 
 
    for ( ap = 0; ap < MAX_APPROACH_NUM; ap++ ) { 
        for ( la = 0; la < MAX_LANE_NUM; la++ ) { 
            input[MAX_ARRIVAL_BUFFER_STEP-1][ap][la] = 0; 
        } 
    } 
 
 
 
    
/**********************************************************************
**/ 
    /* Adjust the queue information                                         
*/ 
    /* and calculate the new result                                         
*/ 
    
/**********************************************************************
**/ 
 
    if ( Sim_Time() - sg_start_time >= objResult->timeSteps ) 
    { 
        sg_start_time = Sim_Time(); 
        //initialize input file as 0 in each horizon for next 
prediction 



 99

 
        for ( ap = 0; ap < para.detConfig->approachNum; ap++ ) { 
            for ( la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++ ) { 
                if ( objAlgPODE->GetIntersectionApproach(para.detConfig, 
ap)->type == T_APP_PED || ( !objAlgPODE->isLaneInPhase(ap, la, 
objResult->firstPhase, para) && waitingTime[ap][la] > 
para.maxTimeSteps ) ) { 
                    if( queue[ap][la].queueSize < initQueueMin[ap][la] ) 
queue[ap][la].queueSize = initQueueMin[ap][la]; 
                    if( queue[ap][la].queueSize > initQueueMax[ap][la] ) 
queue[ap][la].queueSize = initQueueMax[ap][la]; 
                    queue[ap][la].queueLength = queue[ap][la].queueSize 
* (para.avgVehQueueSpacing + para.avgVehLength); 
                    queue[ap][la].queueStatic = queue[ap][la].queueSize; 
                    queue[ap][la].queueSpeed = 0; 
                } 
            } 
        } 
 
        
/**********************************************************************
**/ 
        /* Output the current system situation                                  
*/ 
        
/**********************************************************************
**/ 
        TiXmlDocument log( "log.xml" ); 
 
        TiXmlElement* x_Time = new TiXmlElement("Time"); 
        x_Time->SetAttribute("index", (int)Sim_Time()); 
 
        for ( int i = 0; i < para.detConfig->approachNum; i++ ) 
        { 
            TiXmlElement* x_Approach = new TiXmlElement("Approach"); 
            x_Approach->SetAttribute("index", i); 
            x_Approach->SetAttribute("laneNum", objAlgPODE-
>GetIntersectionApproach(para.detConfig, i)->laneNum); 
 
            for ( int j = 0; j < objAlgPODE-
>GetIntersectionApproach(para.detConfig, i)->laneNum; j++ ) 
            { 
                TiXmlElement* x_Lane = new TiXmlElement("Lane"); 
                x_Lane->SetAttribute("index", j); 
                x_Lane->SetAttribute("sysNum", arrivalNumber[i][j]); 
 
                TiXmlElement* x_Queue = new TiXmlElement("Queue"); 
                x_Queue->SetAttribute("length", 
(int)queue[i][j].queueLength); 
                x_Queue->SetAttribute("size", 
(int)queue[i][j].queueSize); 
                x_Queue->SetAttribute("static", 
(int)queue[i][j].queueStatic); 
                x_Queue->SetAttribute("speed", 
(int)queue[i][j].queueSpeed); 
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                x_Lane->LinkEndChild(x_Queue); 
 
                for ( int k = 0; k < arrivalNumber[i][j]; k++ ) 
                { 
                    TiXmlElement* x_SysVeh = new TiXmlElement("SysVeh"); 
                    x_SysVeh->SetAttribute("speed", 
(int)queueArrival[i][j][k].speed); 
                    x_SysVeh->SetAttribute("distance", 
(int)queueArrival[i][j][k].distance); 
                    x_Lane->LinkEndChild(x_SysVeh); 
                } 
 
                for ( int k = 0; k < MAX_ARRIVAL_BUFFER_STEP; k++ ) 
                { 
                    if ( input[k][i][j] > 0 ) 
                    { 
                        TiXmlElement* x_ArrVeh = new 
TiXmlElement("ArrVeh"); 
                        x_ArrVeh->SetAttribute("arrTime", k); 
                        x_ArrVeh->SetAttribute("speed", 
(int)input[k][i][j]); 
                        x_Lane->LinkEndChild(x_ArrVeh); 
                    } 
                } 
 
                x_Approach->LinkEndChild(x_Lane); 
            } 
 
            x_Time->LinkEndChild(x_Approach); 
        } 
 
         
        
/**********************************************************************
**/ 
        /* Optimize Next Time Slice                                             
*/ 
        
/**********************************************************************
**/ 
        if ( Sim_Time() > 30 ) 
        { 
            int a = 0; 
        } 
        objLastResult = objResult; 
        objResult = objAlgPODE->PODE(input, queue, queueArrival, 
arrivalNumber, initDelay, para, greenTime, sgGreenTime, greenExtension, 
pedWaitingTime, pingpongSwitch, objResult, &fDiff, (int)Sim_Time()); 
         
 
        totalDelay += objResult->delay; 
 
        for ( int i = 0; i < objResult->timeSteps; i++ ) 
        { 
            for ( ap = 0; ap < para.detConfig->approachNum; ap++ ) 
            { 
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                for ( la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++ ) 
                { 
                    if ( input[i][ap][la] > 0 ) 
                    { 
                        totalVehicle += 1; 
                        totalDelay -= para.systemDistance / 
input[i][ap][la]; 
                    } 
                } 
            } 
        } 
 
        
/**********************************************************************
**/ 
        /* Find out ping pong switch SGs                                        
*/ 
        
/**********************************************************************
**/ 
        bool bolRemain = false; 
        int* lastResultCode = objAlgPODE->GetPhaseCode(objLastResult, 
objLastResult->timeSteps-1)->phaseCodes; 
        int* resultCode = objAlgPODE->GetPhaseCode(objResult, 
objResult->timeSteps-1)->phaseCodes; 
        if ( lastResultCode != NULL && resultCode != NULL ) 
        { 
            for ( int i = 0; i < para.detConfig->sgNum; i++ ) 
            { 
                if ( lastResultCode[i] == SG_STATE_GREEN &&  
resultCode[i] == SG_STATE_GREEN ) 
                { 
                    // We have same signal group remain green in the 
new phase 
                    bolRemain = true; 
                    break; 
                } 
            } 
             
        } 
 
        for ( int i = 0; i < para.detConfig->sgNum; i++ ) 
        { 
            if ( bolRemain ) 
            { 
                if ( lastResultCode[i] == SG_STATE_GREEN && 
resultCode[i] != SG_STATE_GREEN ) 
                { 
                    pingpongSwitch[i] = true; 
                } 
            } 
            else 
            { 
                pingpongSwitch[i] = false; 
            } 
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        } 
 
        
/**********************************************************************
**/ 
        /* Record the phase and length                                          
*/ 
        
/**********************************************************************
**/ 
        if ( objLastResult->firstPhase == objResult->firstPhase ) 
        { 
            // Continue phase 
            phaseLength[phaseNumber[objResult->firstPhase]-
1][objResult->firstPhase] += objResult->timeSteps; 
        } 
        else 
        { 
            // New phase 
            phaseLength[phaseNumber[objResult->firstPhase]][objResult-
>firstPhase] = objResult->timeSteps - para.yellow - para.allred; 
            phaseNumber[objResult->firstPhase] += 1; 
        } 
         
         
        x_Time->SetAttribute("length", objResult->timeSteps); 
        x_Time->SetAttribute("code", objAlgPODE-
>PhaseCodeToString(objResult->phaseCode, ",").data()); 
 
        log.LinkEndChild(x_Time); 
         
        log.AppendFile(); 
        log.Clear(); 
 
    } 
 
 
    
/**********************************************************************
**/ 
    /* Set the traffic lights according to the result                       
*/ 
    
/**********************************************************************
**/ 
    for ( int i = 0; i < para.detConfig->sgNum; i++ ) 
    { 
        int resultCode = objAlgPODE->GetPhaseCode(objResult, 
(int)(Sim_Time()-sg_start_time))->phaseCodes[i]; 
        SG_SetState(sc_no, i+1, resultCode, 0); 
         
        // Adjust green extension 
        if ( resultCode == SG_STATE_GREEN || resultCode == 
SG_STATE_AMBER ) 
        { 
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            greenExtension[i] > 0 ? greenExtension[i]-- : 
greenExtension[i]=0; 
        } 
    } 
 
    
/**********************************************************************
**/ 
    /* Calculate the green time                                             
*/ 
    
/**********************************************************************
**/ 
    int phase = objAlgPODE->GetPhaseCode(objResult, (int)(Sim_Time()-
sg_start_time))->phase; 
 
    for ( ap = 0; ap < para.detConfig->approachNum; ap++ ) 
    { 
        for ( la = 0; la < objAlgPODE-
>GetIntersectionApproach(para.detConfig, ap)->laneNum; la++ ) 
        { 
            waitingTime[ap][la]++; 
            if ( queue[ap][la].queueSize > 0 ) 
            { 
                pedWaitingTime[ap][la]++; 
            } 
            else 
            { 
                pedWaitingTime[ap][la] = 0; 
            } 
            greenTime[ap][la]++; 
 
            if ( phase >= 0 ) 
            { 
                if ( objAlgPODE->isLaneInGreen(ap, la, objResult, 
para) ) 
                { 
                    waitingTime[ap][la] = 0; 
                    pedWaitingTime[ap][la] = 0; 
                } 
                else 
                { 
                    greenTime[ap][la] = 0; 
                } 
            }     
        } 
    } 
    //End of PODE 
} /* SC_DLL_Calculate */ 
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APPENDIX C  

TRAFFIC DATABASE TABLE CREATION SQL FILE 

/****************************************************/ 
/**                  Detections                    **/ 
/****************************************************/ 
 
USE [TrafficNetwork] 
GO 
/****** Object:  Table [dbo].[Detections]    Script Date: 11/10/2008 
11:00:47 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[Detections]( 
 [ID] [bigint] IDENTITY(1,1) NOT NULL, 
 [IntersectionID] [int] NOT NULL, 
 [DetectorID] [int] NOT NULL, 
 [ActiveTime] [datetime] NOT NULL, 
 [Duration] [int] NOT NULL, 
 [Type] [varchar](50) NOT NULL, 
 [Memo] [varchar](max) NOT NULL, 
 CONSTRAINT [PK_Detections] PRIMARY KEY CLUSTERED  
( 
 [ID] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY 
= OFF, ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
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/****************************************************/ 
/**                  SignalLogs                    **/ 
/****************************************************/ 
 
USE [TrafficNetwork] 
GO 
/****** Object:  Table [dbo].[SignalLogs]    Script Date: 11/10/2008 
11:01:44 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[SignalLogs]( 
 [IntersectionID] [int] NOT NULL, 
 [PhaseTime] [datetime] NOT NULL, 
 [PhaseCode] [varchar](64) NOT NULL, 
 CONSTRAINT [PK_SignalLogs_1] PRIMARY KEY CLUSTERED  
( 
 [IntersectionID] ASC, 
 [PhaseTime] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY 
= OFF, ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
 
 
 
 
/****************************************************/ 
/**                VehicleMovements                **/ 
/****************************************************/ 
 
USE [TrafficNetwork] 
GO 
/****** Object:  Table [dbo].[VehicleMovements]    Script Date: 
11/10/2008 11:02:18 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[VehicleMovements]( 
 [ID] [bigint] IDENTITY(1,1) NOT NULL, 
 [IntersectionID] [int] NOT NULL, 
 [Movement] [varchar](255) NOT NULL, 
 [EnterActiveTime] [datetime] NOT NULL, 
 [EnterDeactiveTime] [datetime] NOT NULL, 
 [ExitActiveTime] [datetime] NOT NULL, 
 [ExitDeactiveTime] [datetime] NOT NULL, 
 [Type] [tinyint] NOT NULL, 
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 CONSTRAINT [PK_VehicleMovements_IntersectionID] PRIMARY KEY CLUSTERED  
( 
 [ID] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY 
= OFF, ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 


