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ABSTRACT	

Background.	In	2008,	the	United	States	spent	$2.2	trillion	for	healthcare,	which	was	15.5%	of	its	GDP.	31%	of	this	expenditure	is	attributed	to	hospital	care.	Evidently,	even	modest	 reductions	 in	 hospital	 care	 costs	matter.	 A	 2009	 study	 showed	 that	nearly	$30.8	billion	 in	hospital	care	cost	during	2006	was	potentially	preventable,	with	heart	diseases	being	responsible	for	about	31%	of	that	amount.		
Methods.	Our	goal	is	to	accurately	and	efficiently	predict	heart‐related	hospitaliza‐tions	 based	 on	 the	 available	 patient‐specific	 medical	 history.	 To	 the	 best	 of	 our	knowledge,	the	approaches	we	introduce	are	novel	for	this	problem.	The	prediction	of	hospitalization	 is	 formulated	as	a	supervised	classification	problem.	We	use	de‐identified	Electronic	Health	Record	(EHR)	data	from	a	large	urban	hospital	in	Boston	to	 identify	 patients	with	 heart	 diseases.	 Patients	 are	 labeled	 and	 randomly	 parti‐tioned	 into	 a	 training	 and	 a	 test	 set.	We	 apply	 five	machine	 learning	 algorithms,	namely	Support	Vector	Machines	(SVM),	AdaBoost	using	trees	as	the	weak	learner,	Logistic	Regression,	a	naïve	Bayes	event	classifier,	and	a	variation	of	a	Likelihood	Ra‐tio	Test	adapted	to	the	specific	problem.	Each	model	is	trained	on	the	training	set	and	then	tested	on	the	test	set.		
Results.	All	five	models	show	consistent	results,	which	could,	to	some	extent,	indicate	the	limit	of	the	achievable	prediction	accuracy.	Our	results	show	that	with	under	30%	false	alarm	rate,	 the	detection	rate	could	be	as	high	as	82%.	These	accuracy	 rates	translate	to	a	considerable	amount	of	potential	savings,	if	used	in	practice.		 	
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1. INTRODUCTION	

The	US	health	care	system	is	considered	costly	and	highly	inefficient,	devoting	sub‐stantial	 resources	 to	 the	 treatment	of	acute	conditions	 in	a	hospital	 setting	 rather	than	focusing	on	prevention	and	keeping	patients	out	of	the	hospital.	According	to	a	recent	study,[1]	nearly	$30.8	billion	in	hospital	care	cost	during	2006	was	preventa‐ble.	Leading	contributors	were	heart‐related	diseases	accounting	for	more	than	$9	billion,	or	about	31%.	Clearly,	even	modest	percentage	reductions	in	these	amounts	matter.	This	motivates	our	research	to	predict	heart‐related	hospitalization.	Two	key	enablers	to	such	research	are:	the	availability	of	patient	EHRs	and	the	existence	of	sophisticated	(machine	learning)	algorithms	that	can	process	and	learn	from	the	data.				The	adoption	of	EHRs	into	medical	practices	started	more	than	two	decades	ago	and	EHRs	have	found	diverse	uses	[20]	e.g.,	in	assisting	the	quality	management	in	hospi‐tals,[2]	in	detecting	adverse	drug	reactions,[3]	and	in	general	primary	care.[4]	These	early	applications	use	EHRs	for	record	keeping	and	information	sharing	and	merely	scratch	the	surface	of	what	may	be	possible.	Our	belief	 is	 that	the	true	potential	of	
EHRs	lies	in	their	predictive	ability	of	future	acute	health	episodes	and	in	guiding	de‐cision	making.		Foreseeing	future	hospitalizations	for	a	large	population	of	patients	can	drive	preventive	actions,	such	as	scheduling	a	visit	to	the	doctor,	more	frequent	and	exhaustive	screening,	 calls	by	case	nurses	 to	assure	medication	adherence,	or	other	mild	interventions.	All	of	these	actions	are	much	less	costly	than	a	hospitaliza‐tion	and,	if	successful,	can	drastically	reduce	hospital	care	costs.	To	that	end,	machine	
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learning	methods	seem	to	be	promising	tools	and	we	extensively	explore	them	for	our	problem.		Machine	learning	techniques	have	recently	found	use	in	various	health‐care	applica‐tions.	Vaithianathan	et	al.[5]	uses	multivariate	logistic	regression,	a	supervised	learn‐ing	method,	to	predict	re‐admissions	in	the	12	months	following	the	date	of	discharge.	Kim	et	al.[6]	also	employs	two	supervised	learning	algorithms	and	additionally	incor‐porates	interpretability	of	the	models	into	consideration.	This	interpretability	of	re‐sults	is	also	what	we	emphasis	as	an	important	criterion	of	method	evaluation.	Based	on	insurance	claims	data,	Bertsimas	et	al.[7]	combine	spectral	clustering	(unsuper‐vised	method)	with	classification	trees	(supervised	method)	to	first	group	similar	pa‐tients	into	clusters	and	then	make	more	accurate	predictions	about	the	near‐future	health‐care	 cost.	More	 closely	 related	 to	 our	work	 are	 the	prediction	of	 re‐admis‐sions[8,	 9]	 and	 the	prediction	of	 either	death	or	hospitalization	due	 to	 congestive	heart	failure.[10,	11]	However,	we	differ	from	this	line	of	work	in	that	we	do	not	limit	our	study	to	patients	who	are	already	admitted	or	to	patients	with	a	specific	heart	ailment.	This	makes	our	setting	novel	and	broader.			Our	algorithms	consider	the	history	of	a	patient’s	records	and	predict	whether	each	individual	 patient	will	 be	 hospitalized	 in	 the	 following	 year,	 thereby,	 alerting	 the	health	 care	 system	 and	 potentially	 triggering	 preventive	 actions.	 An	 obvious	 ad‐vantage	of	our	algorithmic	approach	is	that	it	can	easily	scale	to	a	very	large	number	of	monitored	patients;	such	scale	is	not	possible	with	human	monitors.	Our	results	
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suggest	that	with	about	30%	false	positives,	82%	of	heart‐related	hospitalizations	can	be	accurately	predicted.	An	important	contribution	is	that	these	accuracy	rates	sur‐pass	what	is	possible	with	more	empirical	but	well	accepted	risk	metrics,	such	as	a	heart	disease	risk	factor	that	emerged	out	of	the	Framingham	study.[12]	We	show	that	even	a	more	sophisticated	use	of	the	features	used	in	the	Framingham	risk	factor,	still	 leads	to	results	 inferior	to	our	approaches.	This	suggests	that	the	entirety	of	a	
patient’s	EHR	is	useful	in	the	prediction	and	this	can	only	be	achieved	with	a	systematic	

algorithmic	approach.				The	remainder	of	the	paper	is	organized	as	follows.	Section	2	contains	a	detailed	de‐scription	of	the	data	set,	the	preprocessing	steps,	the	methods	we	propose	for	hospi‐talization	prediction,	and	the	criteria	we	apply	for	evaluating	the	performance	of	the	methods.	Section	3	contains	our	experimental	results.	A	discussion	of	the	results	is	in	Section	4.		We	end	with	some	concluding	remarks	in	Section	5.			
2. DATA	AND	METHODS	

2.1 Detailed	Data	Description	and	Objective	The	data	we	used	are	from	the	Boston	Medical	Center	(BMC)	–	the	largest	safety‐net	hospital	 in	New	England.	The	study	 is	 focused	on	patients	with	at	 least	one	heart‐related	diagnosis	or	procedure	record	in	the	period	01/01/2005‒12/31/2010.	For	each	patient	in	the	above	set,	we	extract	the	medical	history	(demographics,	visit	his‐tory,	problems,	medications,	labs,	procedures	and	limited	clinical	observations)	for	the	period	01/01/2001‒12/31/2010,	which	contains	relevant	medical	factors	and	
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from	which	the	features	of	the	dataset	will	be	formed.	Data	were	available	from	the	hospital	EHR	and	billing	systems	(which	record	admissions	or	visits	and	the	primary	diagnosis/reason).	The	various	categories	of	medical	factors,	along	with	the	number	of	factors	and	some	examples	corresponding	to	each,	are	shown	in	Table	1.	We	note	that	some	of	the	Diagnoses	and	Admissions	are	not	directly	heart‐related,	but	may	be	good	 indicators	of	a	heart	problem.	Overall,	our	data	set	contains	45,579	patients.	60%	of	that	set	forms	our	training	set	–	used	for	training	algorithms	–	and	the	remain‐ing	40%	is	designated	as	 the	 test	set	 and	used	exclusive	 for	evaluating	 the	perfor‐mance	of	the	algorithms.			Our	objective	is	to	leverage	past	medical	factors	for	each	patient	to	predict	whether	she/he	will	be	hospitalized	or	not	during	a	target	year	which	could	be	different	for	each	patient.		
Table	I.	Medical	Factors.		

Category	 Number	of	

Factors	

Examples

Demographics	 4	 Sex,	Age,	Race,	Zip	CodeDiagnoses	 22	 e.g.,	Acute	Myocardial	Infarction (ICD9:	410),	Cardiac	Dysrhyth‐mias	(ICD9:	427),	Heart	Failure	(ICD9:	428),	Acute	Pulmonary	Heart	Disease	(ICD9:	415),	Diabetes	Mellitus	with	Complications	(ICD9:	250.1‐250.4,	250.6‐250.9),	Obesity	(ICD9:	278.0)	Procedures	CPT	 3	 Cardiovascular	Procedures (including	CPT	93501,	93503,	93505,	etc.),	Surgical	Procedures	on	the	Arteries	and	Vein	(including	CPT	
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35686,	35501,	35509,	etc.),	Surgical	Procedures	on	the	Heart	and	Pericardium	(including	CPT	33533,	33534,	33535)	Procedures	ICD9	 4	 Operations	on	the	Cardiovascular	System (ICD9:	35‐39.99),	Cardiac	Stress	Test	and	pacemaker	checks	(ICD9:	89.4),	Angiocardiography	and	Aortography	(ICD9:	88.5),	Diagnostic	Ultrasound	of	Heart	(ICD9:	88.72)	Vitals	 2	 Diastolic	Blood	Pressure,	Systolic	Blood	Pressure	Lab	Tests	 4	 CPK	(Creatine	phosphokinase) (LOINC:2157‐6),	CRP	Cardio	(C‐re‐active	protein)	(LOINC:30522‐7),	Direct	LDL	(Low‐density	lipopro‐tein)	(LOINC:2574‐2),	HDL	(High‐density	lipoprotein)	(LOINC:9830‐1)	Tobacco	 2	 Current	Cigarette	Use,	Ever	Cigarette	UseVisits	to	the	Emergency	Room	
1	 Visits	to	the	Emergency	Room

Admissions	 17	 e.g.,	Heart	Transplant	or	Implant	of	Heart	Assist	System	(MSDRG:	001,	002),	Cardiac	Valve	and	Other	Major	Cardiothoracic	proce‐dures	(MSDRG:	216‐221),	Coronary	Bypass(MSDRG:	231‐234),	Acute	Myocardial	Infarction	(MSDRG:	280‐285),	Heart	Failure	and	Shock	(MSDRG:	291‐293),	Cardiac	Arrest	(MSDRG:	296‐298),	Chest	Pain	(MSDRG:	313),	Respiratory	System	related	admissions	(MSDRG:	175‐176,	190‐192)		In	order	to	organize	all	the	available	information	in	some	uniform	way	for	all	patients,	some	preprocessing	of	the	data	is	needed	to	summarize	the	information	over	a	time	interval.	Details	will	be	discussed	in	the	next	subsection.	We	will	refer	to	the	summa‐rized	information	of	the	medical	factors	over	a	specific	time	interval	as	features.		
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	Each	feature	related	to	Diagnoses,	Procedures	CPT,	Procedures	ICD9	and	Visits	to	the	Emergency	Room	is	an	integer	count	of	such	records	for	a	specific	patient	during	the	specific	time	interval.	Zero	indicates	absence	of	any	record.	Blood	pressure	and	lab	tests	features	are	continuous‐valued.		Missing	values	are	replaced	by	the	average	of	values	of	patients	with	a	record	at	the	same	time	interval.	Features	related	to	tobacco	use	are	indicators	of	current‐	or	past‐smoker	in	the	specific	time	interval.	Admission	features	contain	the	total	number	of	days	of	hospitalization	over	the	specific	time	in‐terval	the	feature	corresponds	to.	Admission	records	are	used	both	to	form	the	Ad‐mission	 features	 (past	admission	records)	and	 in	order	 to	calculate	 the	prediction	variable	(existence	of	admission	records	in	the	target	year).	We	treat	our	problem	as	a	classification	problem	and	each	patient	is	assigned	a	label:	1	if	there	is	a	heart‐re‐lated	hospitalization	in	the	target	year	and	0	otherwise.			
2.2 Data	Preprocessing	In	this	subsection	we	discuss	several	data	organization	and	preprocessing	choices	we	make.	For	each	patient,	a	target	year	is	fixed	(the	year	in	which	a	hospitalization	pre‐diction	is	sought)	and	all	past	patient	records	are	organized	as	follows.	

 

 Summarization	of	the	medical	factors	in	the	history	of	a	patient:	Based	on	ex‐perimentation,	an	effective	way	to	summarize	each	patient’s	medical	history	is	to	form	four	time	blocks	for	each	medical	factor	with	all	corresponding	rec‐ords	summarized	over	one,	two,	and	three	years	before	the	target	year	and	all	
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earlier	records	being	summarized	in	a	fourth	block.	For	blood	pressure	and	tobacco	use,	only	the	year	before	the	target	year	is	kept.	This	process	results	to	a	vector	of	212	features	for	each	patient.	
 Selection	of	the	target	year:		As	a	result	of	the	nature	of	the	data,	the	two	classes	are	highly	imbalanced.	When	we	fix	the	target	year	for	all	patients	to	be	2010,	the	number	of	hospitalized	patients	 is	about	2%	of	 the	 total	number	of	pa‐tients,	which	makes	the	classification	problem	much	more	challenging.	Thus,	and	to	increase	the	number	of	hospitalized	patient	examples,	if	a	patient	had	only	one	hospitalization	throughout	2007‐2010,	the	year	of	hospitalization	is	set	as	the	target	year	for	that	patient.	If	a	patient	had	multiple	hospitalizations,	a	 target	 year	 between	 the	 first	 and	 the	 last	 hospitalization	 is	 randomly	 se‐lected.		
 Setting	the	target	time	interval	to	be	a	year:	A	year	has	been	proven	to	be	an	appropriate	time	interval	for	prediction	for	our	data	set.	We	conducted	trials	setting	the	time	interval	for	prediction	to	be	1,	3,	6	and	12	months	and	used	a	Support	Vector	Machine	classifier	―	a	method	described	later	in	more	detail.	Setting	the	target	time	interval	to	one	year	yielded	the	best	results.	Moreover,	given	that	hospitalization	occurs	roughly	uniformly	within	a	year,	we	take	the	prediction	time	interval	to	be	a	calendar	year.		
 Removing	noisy	samples:	Patients	who	have	no	records	before	the	target	year	are	impossible	to	predict	and	are	thus	removed.		
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After	preprocessing,	the	samples	are	labeled	as	belonging	to	the	hospitalized	or	non‐hospitalized	class.	The	ratio	between	the	two	classes	is	14:1,	which	is	highly	imbal‐anced.	More	specifically,	the	number	of	patients	from	the	hospitalized	class	in	our	dataset	is	3,033	which	is	large	enough	to	accommodate	sufficient	training	and	test‐ing.	This	imbalance	prevents	us	to	later	report	a	single	classification	error	number,	because	one	class	would	dominate	the	other.	Instead,	we	consider	two	types	of	per‐formance	rates	separately,	namely,	false	alarm	rates	and	detection	rates,	which	are	presented	later	in	detail.	It	is	also	worth	mentioning	that	this	disproportion	of	the	two	classes	also	affects	the	design	of	our	new	algorithm	(K‐LRT)	described	in	the	next	section.	
	

2.3 Proposed	Methods	To	predict	whether	patients	are	going	to	be	hospitalized	in	the	target	year	given	their	medical	history,	we	experiment	with	five	different	methods.	All	five	are	typical	exam‐ples	of	supervised	machine	learning.	We	adapt	the	last	one	to	better	fit	the	specific	application	we	examine.	The	first	three	methods	fall	into	the	category	of	discrimina‐
tive	learning	algorithms,	while	the	latter	two	are	generative	algorithms.	Discrimina‐tive	algorithms	directly	partition	the	input	space	into	label	regions	without	modeling	how	the	data	are	generated,	while	generative	algorithms	assume	a	model	that	gener‐ates	the	data,	estimate	the	model’s	parameters	and	use	it	to	make	classifications.	Dis‐criminative	methods	are	likely	to	give	higher	accuracy,	but	generative	methods	pro‐vide	more	interpretable	models	and	results.	This	is	the	reason	we	experiment	with	
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methods	from	both	families	and	the	trade‐off	between	accuracy	and	interpretability	is	observed	in	our	results.		
 

2.3.1 Support	Vector	Machines	 (SVM).	 An	 SVM	 is	 a	 very	 efficient	 two‐category	classifier.[13]	Intuitively,	the	SVM	algorithm	attempts	to	find	a	separating	hy‐perplane	in	the	feature	space,	so	that	data	points	from	different	classes	reside	on	different	sides	of	that	hyperplane.	We	can	calculate	the	distance	of	each	in‐put	data	point	from	the	hyperplane.	The	minimum	over	all	these	distances	is	called	margin.	The	goal	of	SVM	is	to	find	the	hyperplane	that	has	the	maximum	margin.	In	many	cases	data	points	are	neither	linearly	nor	perfectly	separable.	To	that	end,	one	can	make	the	classifier	tolerant	to	some	misclassification	er‐rors	and	leverage	kernel	functions	to	“elevate”	the	features	into	a	higher	di‐mensional	 space	 where	 linear	 separability	 is	 possible.[13]	We	 employ	 the	widely	used	Radial	Basis	Function	(RBF)[14]	as	the	kernel	function	in	our	ex‐periment	settings.	Tuning	parameters	are	the	misclassification	penalty	coeffi‐cient	and	the	kernel	parameter;	we	used	the	values	[0.3,	1,	3]	and	[0.5,	1,	2,	7	15,	25,	35,	50,	70,	100],	respectively.	Optimal	values	of	1	and	7,	respectively,	were	selected	by	cross‐validation.			
2.3.2 AdaBoost	with	Trees.	Boosting[15]	provides	an	effective	way	of	combining	decisions	of	not	necessarily	strong	classifiers	to	produce	highly	accurate	pre‐dictions.	 The	AdaBoost	 algorithm	 iteratively	 adjusts	 the	weights	 of	 various	training	data	points	through	an	exponential	up‐weighting	or	down‐weighting	
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procedure.	Specifically,	starting	with	equal	weights,	the	algorithm	generates	in	every	iteration	a	new	base	classifier	to	best	fit	the	current	weighted	sam‐ples.	Then,	the	weights	are	updated	so	that	the	misclassified	samples	are	as‐signed	higher	weights	so	as	to	influence	the	training	of	the	next	base	classifier.	At	termination,	a	weighted	combination	of	the	base	classifiers	is	the	output	of	AdaBoost.	In	our	study	we	use	stumps,	which	are	two‐level	Classification	and	
Regression	Trees	(CART),	 as	 the	base	classifier.[16]	This	method	recursively	partitions	the	space	into	a	set	of	rectangles	and	then	fits	a	prediction	within	each	partition.		

	 There	is	an	extra	preprocessing	step	applied	to	the	data.	The	zip	code	values	are	clustered	into	4	clusters	using	the	k‐means	algorithm[16]	and	this	feature	is	 treated	 as	 a	 categorical	 one.	 The	 number	 of	 iterations	 in	 the	 Adaboost	method	is	a	model	parameter	which	can	be	tuned	by	cross‐validation.	In	our	case,	this	tuning	led	to	setting	to	100,000	the	number	of	Adaboost	iterations.				
2.3.3 Logistic	 Regression.	 Logistic	 Regression[19]	 is	 a	 popular	 classification	method	used	in	many	applications.	This	method	models	the	posterior	proba‐bility	that	a	sample	falls	into	a	certain	class	(e.g.,	the	positive	class)	as	a	logistic	function	and	the	input	of	this	logistic	function	is	the	linear	combination	of	the	input	features.	Under	this	model,	the	log‐likelihood	ratio	of	the	posterior	prob‐abilities	of	the	two	classes	is	a	linear	function	of	the	input	features.	Therefore,	the	decision	boundary	that	separates	the	two	classes	is	still	linear.	However,	
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beyond	 the	 classification	decision,	 the	prediction	on	a	 certain	 sample	point	naturally	comes	with	a	probability	value,	which	could	be	meaningful	in	many	applications.	Thus,	logistic	regression	is	widely	used.		
2.3.4 Naïve	Bayes	Event	Model.	Naïve	Bayes	models	are	generative	models	 that	assume	the	features	or	“events”	to	be	generated	independently	(naïve	Bayes	assumption[17]).	Naïve	Bayes	 classifiers	 are	 among	 the	 simplest	models	 in	machine	learning,	but	despite	their	simplicity,	they	work	quite	well	in	real	ap‐plications.	There	are	two	types	of	naïve	Bayes	models.[17]	The	first	one	will	be	presented	extensively	in	the	next	method.	The	second	one,	referred	to	as	the	Naïve	Bayes	Event	Model,	works	as	follows.	To	generate	a	new	patient	from	the	model,	a	label	y	will	first	be	generated	(hospitalized	or	non‐hospitalized)	based	on	a	prior	distribution	p(y).	Then,	for	this	patient,	a	sequence	of	events	(xt’s)	is	generated	by	choosing	each	event	independently	from	certain	multi‐nomial	conditional	distributions	p(x|y).	An	event	can	appear	many	times	for	a	patient	and	the	overall	probability	of	this	newly	generated	patient	is	the	prod‐uct	of	the	class	prior	with	the	product	of	the	probabilities	of	each	event.	In	our	problem,	an	event	is	a	specific	combination	of	the	medical	factors.	We	consider	only	the	medical	factors	from	the	following	six	categories:	Diagnoses,	Admis‐sions,	Emergency,	Procedures	CPT,	Procedures	ICD9,	and	Lab	Tests.	To	gener‐ate	such	a	data	set,	we	aggregate	the	medical	factors	that	belong	to	each	one	of	these	types	and	count	the	total	number	of	records	of	the	same	type	in	each	of	 the	 four	 time	 blocks	 discussed	 earlier	 that	 represent	 a	 patient’s	 history.	



14		

Thus,	each	patient	is	represented	as	a	sequence	of	four	events.	To	make	events	more	intuitive	and	to	reduce	the	total	number	of	possible	events,	the	data	just	formed	are	quantized	into	binary	values	and	then	the	tuples	of	the	six	binary	values	(one	for	each	category)	are	encoded	into	 	single	values.	We	estimate	the	prior	distribution	of	 labels	p(y)	 and	 the	conditional	distributions	p(x|y)	from	the	training	set	and	make	predictions	for	the	test	set	based	on	the	likeli‐hoods	calculated	from	these	distributions.		
2.3.5 K‐Likelihood	Ratio	Test.	 The	Likelihood	Ratio	Test	(LRT)	 is	a	Naïve	Bayes	classifier	and,	as	described	before,	assumes	that	features	xi	are	independent.	For	this	method	as	well,	we	quantize	the	data	as	shown	in	Table	2.		

	

Table	II.	Quantization	of	Features.		
Features	 Levels	of	

quantization

Comments	

Sex	 3 0	represents	missing	information	Age	 6 Thresholds	at	40,	55,	65,	75	and	85	years	oldRace	 10Zip	Code	 0 Removed	due	to	its	vast	variation	Tobacco	(Current	and	Ever	Cigarette	Use)	
2 Indicators	of	cigarette	use

Diastolic	Blood	Pres‐sure	(DBP)	 3 Level	1	if	DBP	<	60mmHg,	Level	2	if	60mmHg	≤	DBP	≤	90mmHg	and	Level	3	if	DBP	>	90mmHg	

26
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Systolic	Blood	Pres‐sure	(SBP)	 3 Level	1	if	SBP	<	90mmHg,	Level	2	if	90mmHg	≤	SBP	≤	140mmHg	and	Level	3	if	SBP	>	140mmHg	Lab	Tests	 2 Existing	lab	record	or	Non‐Existing	lab	record	in	the	specific	time	period	All	other	dimensions	 7 Thresholds	are	set	to	0.01%,	5%,	10%,	20%,	40%	and	70%	of	the	maximum	value	of	each	dimen‐sion		In	the	quantized	data	set,	the	LRT	algorithm	(see	also	[21])	empirically	esti‐mates	the	distribution	p(xi|y)	of	each	feature	for	the	hospitalized	and	the	non‐hospitalized	class.	Given	a	new	test	sample	z={z1,	z2,	…	,	zn},	LRT	calculates	the	two	likelihoods	p(z|y=1)	and	p(z|y=0)	(y=0	corresponds	to	non‐hospitalized	and	 y=1	 to	 hospitalized)	 and	 then	 classifies	 the	 sample	 based	 on	 the	 ratio	
p(z|y=1)/	p(z|y=0).	Due	to	independence,	the	ratio	p(z|y=1)/	p(z|y=0)	is	the	product	of	p(zi|y=1)/	p(zi|y=0)	over	i.	In	our	variation	of	the	method,	which	we	will	call	K‐LRT,	instead	of	taking	into	account	the	ratios	of	the	likelihoods	of	all	features,	we	consider	only	the	K	features	with	the	largest	ratios.	This	type	of	method	is	closely	related	to	the	anomaly	detection	methods	in	[18]	and	[22].	The	purpose	of	this	“feature	selection”	is	to	identify	the	K	most	significant	fea‐tures	for	each	individual	patient.	Thus,	each	patient	is	actually	treated	differ‐ently.	After	experimentation,	the	best	performance	is	achieved	by	setting	K=4.	The	prediction	accuracy	for	K=1	is	also	reported	in	the	experimental	results	section.		It	is	worth	mentioning	that	the	K	most	significant	features	are	with	
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respect	to	the	hospitalized	class.	We	deliberately	chose	this	unbalanced	strat‐egy	(tilting	towards	the	hospitalized	class)	mainly	because	of	two	reasons.	The	first	one	is	that	the	sample	size	of	the	hospitalized	class	is	much	smaller	than	the	non‐hospitalized	class	(1:14).	As	a	result,	a	strong	non‐hospitalized	signal	(i.e.,	a	small	value	of	p(zi|y=1)/	p(zi|y=0)	 	for	some	feature)	could	simply	be	due	to	underestimating	the	tail	of	the	distribution	of	feature	i	for	the	hospital‐ized	class.	The	second	reason	is	actually	drawn	from	the	results	in	Figure	2.	The	accuracies	of	1‐LRT,	4‐LRT	and	LRT	(the	latter	using	all	features)	are	al‐most	the	same,	which	validates	the	proposed	method.				
2.4 Evaluation	Criteria	Typically,	the	primary	goal	of	learning	algorithms	is	to	maximize	the	prediction	accu‐racy	or	equivalently	minimize	the	error	rate.	However,	in	the	specific	medical	appli‐cation	problem	we	study,	the	ultimate	goal	is	to	alert	and	assist	doctors	in	taking	fur‐ther	actions	to	prevent	hospitalizations	before	they	occur,	whenever	possible.	Thus,	our	models	and	results	should	be	accessible	and	easily	explainable	to	doctors	and	not	only	machine	learning	experts.	With	that	in	mind,	we	examine	our	models	from	two	aspects:	prediction	accuracy	and	interpretability.		
2.4.1 Prediction	Accuracy	The	prediction	accuracy	is	captured	in	two	metrics:	the	False	Alarm	Rate	(the	fraction	of	false	positives	out	of	the	negatives)	and	the	Detection	Rate	(the	fraction	of	true	pos‐itives	out	of	the	positives).	Note	that	in	the	medical	literature,	the	detection	rate	is	
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often	referred	to	as	sensitivity	and	the	term	specificity	is	used	for	one	minus	the	false	alarm	rate.	For	a	binary	classification	system,	the	evaluation	of	the	performance	using	these	two	metrics	 is	typically	 illustrated	with	the	Receiver	Operating	Characteristic	
(ROC)	curve,	which	plots	the	Detection	Rate	versus	the	False	Alarm	Rate	at	various	threshold	settings.		

2.4.2 Interpretability	With	SVM,	the	features	are	mapped	through	a	kernel	function	from	the	original	space	into	a	higher‐dimensional	space.	This,	however,	makes	the	features	in	the	new	space	not	interpretable.	In	AdaBoost	with	trees,	while	a	single	tree	classifier	which	is	used	as	the	base	learner	is	explainable,	the	weighted	sum	of	a	large	number	of	trees	makes	it	relatively	complicated	to	find	the	direct	attribution	of	each	feature	to	the	final	deci‐sion.	The	naïve	Bayes	Event	model	is	in	general	interpretable,	but	in	our	specific	prob‐lem	each	patient	has	a	relatively	small	sequence	of	events	(four)	and	each	event	is	a	composition	of	medical	factors.	Thus,	again,	to	find	the	direct	attribution	of	each	fea‐ture	to	the	final	decision	is	hard.	LRT	itself	and	Logistic	Regression	still	lack	interpret‐ability,	because	we	have	more	than	200	features	for	each	sample	and	there	is	no	direct	relationship	between	prediction	of	hospitalization	and	the	reasons	that	led	to	it.	The	most	interpretable	method	is	K‐LRT.	K‐LRT	highlights	the	top	K	features	that	lead	to	the	classification	decision.	These	features	could	be	of	help	in	assisting	the	physicians	reviewing	the	patient’s	EHR	profile.		
3 RESULTS	
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3.1 Insight	into	the	Data		

	
Figure	1.	Each	point	(i,j)	corresponds	to	the	correlation	coefficient	between	Feature	i	and	Fea‐
ture	j.	There	are	a	few	features	with	zero	variance	(shown	as	white	stripes)	that	are	later	re‐
moved	from	the	feature	set.		The	correlation	coefficient	matrix	of	all	features	is	shown	in	Figure	1.	Most	of	the	fea‐tures	are	weakly	correlated.	There	is	moderate	correlation	between	features	that	re‐fer	to	the	same	medical	factor	but	correspond	to	different	time	blocks	(near‐diagonal	elements)	and	between	few	other	pairs	of	 features	 including:	Diagnosis	of	Chronic	Ischemic	Heart	Disease	with	Diagnosis	of	Diabetes,	Diagnosis	of	Ischemic	Heart	Dis‐
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ease	with	Diagnosis	of	Old	Myocardial	Infarction,	Diagnosis	of	Heart	Failure	with	Ad‐mission	due	to	Heart	Failure,	and	Operations	on	Cardiovascular	System	with	Ultra‐sound	of	the	Heart.	
	

3.2 Prediction	Accuracy	results	We	first	compare	the	performance	of	LRT	using	all	features	and	K‐LRT	under	different	values	of	K.	Figure	2	shows	the	prediction	accuracy	for	LRT,	1‐LRT	and	4‐LRT.	In	Fig‐ure	3,	a	comparison	of	the	performance	of	all	five	methods	we	presented	is	illustrated.	We	also	generate	the	ROC	curve	based	on	patients’	10‐year	risk	of	General	Cardiovas‐cular	Disease	defined	 in	 the	Framingham	Heart	Study	 (FHS).[12]	FHS	 is	a	 seminal	study	on	heart	diseases	that	has	developed	a	set	of	risk	factors	for	various	heart	prob‐lems.	The	10‐years	risk	we	are	using	is	the	closest	to	our	purpose	and	has	been	widely	used.	We	calculate	this	risk	value	(which	we	call	the	Framingham	Risk	Factor‐FRF)	for	every	patient	and	make	the	classification	based	on	this	risk	factor	only.	We	also	gen‐erate	an	ROC	by	applying	 the	AdaBoost	with	 trees	method	 just	 to	 the	 features	 in‐volved	in	FRF.	The	generated	ROC	serves	as	a	baseline	for	comparison. 
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Figure	2.	Comparison	of	LRT,	1‐LRT	and	4‐LRT. 	
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Figure	3.	Comparison	of	all	five	methods	and	the	methods	based	on	the	Framingham	Heart	Study.		
3.3 Interpretability	results	Below	we	present	the	features	highlighted	by	two	of	our	methods:	1‐LRT	and	Ada‐boost.	We	remind	the	reader	that	in	1‐LRT,	each	test	patient	is	essentially	associated	with	a	single	feature.	For	all	features,	we	count	how	many	times	they	were	selected	as	the	primary	feature	and	we	report	 in	Table	3	(left	column)	the	10	features	that	were	the	most	popular	as	primary.	Adaboost,	on	the	other	hand,	yields	a	linear	com‐bination	of	decision	trees	and	is	hard	to	interpret.	However,	we	can	calculate	a	varia‐ble	Importance	Score	(IS)1[16]	for	each	feature,	which	highlights	the	most	significant	
																																																								1	The	‘Importance	score’	in	Adaboost	is	calculated	by	summing	changes	in	the	risk	(difference	be‐tween	the	risk	for	the	parent	node	and	the	total	risk	for	the	two	children)	due	to	splits	on	every	pre‐dictor	and	dividing	the	sum	by	the	number	of	branch	nodes.	The	sum	is	taken	over	the	best	splits	
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features.	 Table	 3	 also	 lists	 the	 top	 10	 important	 features	 indicated	 by	 their	 im‐portance	score	(right	column).	Features	that	appear	in	both	columns	are	in	bold.			
Table	III.	Top	10	significant	features	for	1‐LRT	and	AdaBoost	with	Trees.		

1‐LRT	 AdaBoost	with	Trees	

Counts	 Feature	Name	 IS	(x10‐4) Feature	Name	
1591	 Age	 0.6462 Diagnosis	of	diabetes	mellitus	w/o	

complications,	1	year	before	the	tar‐

get	year	

548	 Visit	to	the	Emergency	Room,	1	

year	before	the	target	year	

0.5498 Diagnosis	of	heart	failure,	1	year	

before	the	target	year	

525	 Diagnosis	of	hematologic	disease,	1	year	before	the	target	year	 0.4139 Age

523	 Diagnosis	of	heart	failure,	1	year	

before	the	target	year	

0.3187 Symptoms	involving	respiratory	

system	and	other	chest	symptoms,	

1	year	before	the	target	year	

514	 Symptoms	involving	respiratory	

system	and	other	chest	symp‐

toms,	1	year	before	the	target	

year	

0.2470 Admission	due	to	other	circulatory	system	diagnoses,	1	year	before	the	target	year	

																																																								found	at	each	branch	node.	The	risk	of	a	node	is	the	node	error	weighted	by	the	probability	of	that	node.	
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486	 Diagnosis	of	diabetes	mellitus	

w/o	complications,	1	year	before	

the	target	year	

0.2240 Visit	to	the	Emergency	Room,	4	years	before	the	target	year	and	the	rest	of	the	history	
474	 Lab	test	CPK,	1	year	before	the	tar‐get	year	 0.1957 Operations	on	cardiovascular	system	(heart	and	septa	OR	vessels	of	heart	OR	heart	and	pericardium),	4	years	before	the	target	year	and	the	rest	of	the	history	
451	 Lab	test	CPK,	4	years	before	the	target	year	and	the	rest	of	the	his‐tory	

0.1578 Visit	to	the	Emergency	Room,	1	

year	before	the	target	year	

408	 Diagnosis	of	heart	failure,	2	

years	before	the	target	year	

0.1543 Symptoms	involving	respiratory	sys‐tem	and	other	chest	symptoms,	4	years	before	the	target	year	and	the	rest	of	the	history	
356	 Diagnosis	of	diabetes	mellitus	w/o	complications,	2	years	before	the	target	year	

0.1124 Diagnosis	of	heart	failure,	2	year	

before	the	target	year	

		To	provide	additional	insight	into	the	algorithms,	Table	4	presents	five	more	medi‐cally	 significant	 features	highlighted	by	 each	method	 and	 two	 interesting	 features	with	low	significance	in	both	methods.		For	1‐LRT,	features	with	low	significance	are	the	ones	with	a	likelihood	ratio	p(zi|y=1)/	p(zi|y=0)	close	to	1.	For	Adaboost,	non‐sig‐nificant	features	have	a	low	IS.		
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Table	IV.	Other	significant	and	non‐significant	features	with	1‐LRT	and	AdaBoost	with	Trees.		
Another	5	significant	features	in	1‐LRT Another	5	significant	features	in	AdaBoost	

with	Trees	Lab	Test	High‐density	lipoprotein	(HDL) Lab	Test	High‐density	lipoprotein	(HDL),	1	year	before	the	target	year	Lab	Test	Low‐density	lipoprotein	(LDL) Angiography	and	Aortography	procedures,	4	years	before	the	target	year	and	the	rest	of	the	history	Systolic	Blood	Pressure	 Cardiac	Catheterization Procedures,	4	years	be‐fore	the	target	year	and	the	rest	of	the	history	Diagnosis	of	Heart	Failure	 RaceDiagnosis	of	Other	Forms	of	Chronic	Ischemic	Heart	Diseases	 Cardiac	Dysrhythmias,	1	year	before	the	target	year	
2	non‐significant	features	in	1‐LRT 2 non‐significant	features	in	AdaBoost	with	

Trees	Sex	 SexHypertensive	Heart	Disease,	1	year	before	the	target	year	 Hypertensive	Heart	Disease,	1	year	before	the	target	year			
4 DISCUSSION	Based	on	the	experimental	results	regarding	the	accuracy	of	our	methods	(Section	3.1),	we	draw	the	following	conclusions:	1. LRT,	1‐LRT	 and	4‐LRT	 achieve	 very	 similar	 performance	 (the	 corresponding	ROC	curves	of	the	three	methods	are	close	to	each	other).	This	indicates	that	
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using	only	the	most	significant	or	several	significant	features	with	the	largest	likelihood	ratios,	is	sufficient	in	making	an	accurate	prediction.	It	also	suggests	that	our	problem	is	close	to	an	“anomaly	detection”	problem	and	identifying	the	most	anomalous	feature	captures	most	of	the	information	that	is	useful	for	clas‐sification.	2. From	the	comparison	of	all	 five	methods	in	Figure	3,	 it	can	be	seen	that	Ada‐Boost	is	the	most	powerful	one	and	performs	the	best	except	for	situations	that	require	very	low	false	alarm	rates.	Put	it	differently,	if	we	fix	the	false	alarm	rate,	AdaBoost	 achieves	 the	 highest	 detection	 rate	 among	 all	 methods,	 and	 con‐versely,	if	we	fix	the	detection	rate,	AdaBoost	yields	the	lowest	false	alarm	rate.	On	 the	 other	 hand,	 the	 Naïve	 Bayes	 Event	 classifier	 generally	 performs	 the	worst	due	to	its	simplicity.	3. The	performance	of	RBF	SVM,	Logistic	Regression,	AdaBoost	with	trees,	and	4‐LRT	 is	 quite	 similar	 in	 general	 (the	 corresponding	 ROC	 curves	 do	 not	 differ	much).	However,	these	methods	have	very	different	assumptions	and	underly‐ing	mathematical	formulation.	Based	on	this	observation,	we	conjecture	that	we	have	 approached	 the	 limit	 of	 the	prediction	accuracy	 that	 could	be	 achieved	with	the	available	data.	4. All	of	our	proposed	methods	perform	better	than	utilizing	the	FRF,	except	for	the	naïve	Bayes	event	classifier	for	high	false	alarms	rates	(i.e.,	the	ROC	curves	that	correspond	to	FRF	features	are	worse	in	the	sense	described	above	com‐pared	to	the	rest	of	the	methods).	Even	applying	AdaBoost	with	trees	(the	best	method	so	far)	to	the	features	involved	in	calculating	the	FRF,	does	not	seem	to	
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help	a	lot.	This	suggests	that	it	is	valuable	to	have	and	leverage	a	multitude	of	patient‐specific	features	obtained	from	EHRs.	Using	these	data,	however,	ne‐cessitates	the	use	of	the	algorithmic	approach	we	advocate.	Based	on	the	results	in	Table	III,	it	is	clear	that	the	two	sets	of	features	highlighted	by	the	two	methods	have	several	features	in	common,	indicating	that	the	results	from	the	different	methods	are	consistent.	This	consistency	supports	 the	validity	of	our	methods	from	a	stability/sensitivity	perspective	as	well.			From	a	medical	point	of	 view,	 the	 features	 listed	 in	Table	 III	 are	 reasonably	high‐lighted.	 ER	 visits,	 a	 diagnosis	 of	 heart	 failure,	 and	 chest	 pain	 or	 other	 respiratory	symptoms	are	often	pre‐cursors	of	a	major	heart	episode.	The	CPK	test	is	also	viewed	as	one	of	the	most	important	tests	for	diagnosing	Acute	Myocardial	Infarction	(AMI)	and	AMI,	among	all	heart	diseases,	is	the	most	probable	to	lead	to	hospitalization.		What	is	interesting	to	note	in	Table	V	is	that	Hypertensive	heart	disease	is	considered	non‐significant	by	both	methods.	This	is	probably	due	to	the	fact	that,	once	diagnosed,	it	is	usually	well‐treated	and	the	patient’s	blood	pressure	is	well‐controlled.		
	

5 CONCLUSIONS		Our	research	is	a	novel	attempt	to	predict	hospitalization	due	to	heart	disease	using	various	machine	learning	techniques.	Our	results	show	that	with	a	30%	false	alarm	
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rate,	we	can	successfully	predict	82%	of	the	patients	with	heart	diseases	that	are	go‐ing	to	be	hospitalized	in	the	following	year.	We	examine	methods	that	have	high	pre‐diction	accuracy	(Adaboost	with	trees),	as	well	as	methods	that	can	help	doctors	iden‐tify	features	to	help	them	when	examining	patients	(K‐LRT).	One	could	choose	which	one	to	use	depending	on	the	ultimate	goal	and	the	desirable	target	for	detection	and	false	alarm	rates.	If	coupled	with	case	management	and	preventive	interventions,	our	methods	have	 the	potential	 to	prevent	a	 significant	number	of	hospitalizations	by	identifying	patients	at	greatest	risk	and	enhancing	their	outpatient	care	before	they	are	hospitalized.	This	can	lead	to	better	patient	care,	but	also	to	potentially	substan‐tial	health	care	cost	savings.	In	particular,	even	if	a	small	fraction	of	the	$30.8	billion	spent	annually	on	preventable	hospitalizations	can	be	realized	in	savings,	this	would	offer	significant	benefits.	Our	methods	also	produce	a	set	of	significant	features	of	the	patients	that	lead	to	hospitalization.	Most	of	these	features	are	well‐known	precur‐sors	of	heart	problems,	a	fact	which	highlights	the	validity	of	our	models	and	analysis.	The	methods	are	general	enough	and	can	easily	handle	new	predictive	variables	as	they	become	available	in	EHRs,	to	refine	and	potentially	improve	the	accuracy	of	our	predictions.		Furthermore,	methods	of	this	type	can	also	be	used	in	related	problems	such	as	predicting	re‐hospitalizations.		
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