
THIE INCREMENTAL DEVELOPMENT OF A MUMPS-BASED

CLINICAL LABORATORY INFORMATION SYSTEM

Philip Blume, Jerry Burns, and Lynn Hyde

Department of Pathology
Good Samaritan Hospital and Medical Center

Portland, Oregon 97210 U.S.A

Abstract

Modules to produce cumulative clinical pathology
reports, index and report surgical pathology data,
maintain a patient demographic database, and index

literature references have been added to our labora-
tory information system. MUMPS facilitates the modu-
lar incremental approach used to develop these ap-
plications. Each module is created, evaluated, and
modified until logically correct and acceptable to

the user. Our library of programs is being adapted
to establish systems in medical records, biomedical
physics, radiology, and the pharmacy.

Int roduct io'

*
In 1980, at this symposium, we described our

approach to the development of a clinical laboratory
information system. By that time we had dealt with
many aspects regarding the foundation of the system.
The principal feature was the comprehensive test

directory which contains test-specific information
necessary for the system to execute functions which
existed then and those which could be anticipated.
For ease of development we began by producing a num-

ber of peripheral functions, such as those which
process billing information and those which compile
workload statistics. The development of these func-
tions and manager-level support functions provides a

base upon which all future functions may stand.

Perhaps the most significant feature of our sys-
tem is the "modular incremental approach" we have

taken. We isolate discrete problems and solve them
in a manner whlich, while relatively circumscribed,
retains design features which allow all of the

modules to form a large integrated package. Typi-
cally, but not necessarily, these modules involve
computer-based functions. We have chosen not to use

any of the commercially available systems we have
seen, largely because we feel that an automated re-

porting system must function at least as well as our
manual one. We have, instead, created a module which
closely emulates our manual system and actually im-
proves upon it.

C Proceedings, Fourth Annual Symposium on Computer
Applications in Medical Care, Washington, D.C., 2-5
November 1980, Volume 1, p. 495.

0195-4210/82/0000/0297$00.75 1982 IEEE

Modular development is significant also in that
it may be accomplished incrementally. New software
is developed and tested on existing equipment. Hard-
ware is purchased only when the programs are logi-
cally correct and acceptable to the user. Functional
modules are developed and tested, and accepted or

rejected with minimal risk of capital loss and in-
stability of the system. This approach may be viewed
in contradistinction to the common employment of
large, expensive and functionally monolithic systems
which by their size, complexity, cost and attempted
initial scope, tend to dominate the organization in
which they are located. Despite limited flexibility
and susceptibility to modification, in the event of
incompatibilities between such systems and the needs
of the users whom the system is intended to serve,
there is likely to be a tendency to force compliance
with demands and constraints of the large system on
economic grounds alone.

MUMPS is significant in facilitating this modular
approach to system development. We are using Digital
Equipment Corporation's DSM-11 running on PDP 11/34
(copyright) processors. Because MUMPS affords great
ease in the creation and modification of major disk
databases, it is not necessary to anticipate ini-
tially the total design of every module which even-
tually will constitute the total system package. One
is free to design a database structure for an appli-
cation, knowing that data fields may be added or
that current file structure may be changed with
minimal effort. (System performance is affected by
the structure of the global files.) While a thorough
analysis of any system is certainly desirable, it is
not possible to anticipate every subtlety of an im-
plementation or every user requirement. With MUMPS,
we create new application programs with extreme ra-
pidity and constantly hone them. Creation of the
system as a whole consists of writing new code,
evaluating it in a real environment, modifying it,
and repeating the sequence. By the time the programs
are completed they have been evaluated. Assuming
satisfactory response time with increasing use of
the system, their success is assured. As our library
of general-purpose subroutines grows, each new major
function becomes easier to develop because much of
the logic and code can be drawn from previous work.

Since our earlier report we have developed a va-
riety of additional modules, including a literature
reference indexing system which we use for research
references. This indexing system has been adopted by
the pharmacy for handling their drug information

297

file. We have produced a surgical pathology report-
ing and indexing system. We are presently involved
in the creation of a clinical pathology cumulative

reporting system which will be the most significant
feature of the package until we can use the computer
to aid directly in diagnosis.

Literature Reference Indexi

The literature reference index module, or the
BIBLIOGRAPHY function, allows the storage, selective
retrieval and display of literature references in

standard journal citation format. In addition, it
handles a wide variety of other information sources
such as books and slides. Each item is assigned an

identification number in sequence. By means of a
reference entry dialog, the user creates a record in
the computer containing the necessary information
about that reference.

A numeric code is assigned each journal, author

name and keyword established in a user's file. The
system stores only the appropriate numeric codes as
a part of each reference record. A directory which
is part of the single global array containing the
user' s entire file lists the name of the journal,
author, and keyword assigned to each numeric code.
The keyword file has the format:

^BIBFILE("K",0) - number of keywords in file

^BIBFILE("K",n) - keyword n

^BIBFILE("K",keyword n) - n

The author index, ^BIBFILE("A",...), has the same
structure. The journal index accommodates both the
full name of a journal and an abbreviation and has

the form:

^BIBFILE("J",O) = number of journals in file
"BIBFILE("J",n) - full name of Journal nl abbrevi-

ated name of journal ni
"BIBFILE("J",full name of journal n) - n

^BIBFILE("J",abbreviated name of journal n) - n

The information for each reference is stored as

several different records so that searches are rea-

sonably efficient. The records for a given reference
have the form:

^ BIBFILE("REFERENCE" ,n) - journal numberivolumel
yearlfirst pagellast
pagel

^BIBFILE("TITLE",n) - title of reference n
"BIBFILE("KEYWORDS",n) - Ikeyword code Jlcode 21...
""BIBFILE("AUTHORS",n) - lauthor code licode 21...

The file may be searched to find all references
with any combination of keywords and authors by
using the '$N' function. Similarly, the titles on

file may be searched for a specified string of char-

acters. Searches are not particularly fast, but as

we use the system, speed is not an issue. We have
elected not to expend additional disk space to

create pointer files.

An option exists which allows the specification
of a series of footnote designations and associated
file reference numbers. A bibliography can be

printed in a format suitable for attachment to a

manuscript. A similar option exists which allows
permanent storage of a list of the user's own publi-
cations so that at any time a bibliography may be
produced for a curriculum vitae.

While the BIBLIOGRAPHY function was created for

the individual use of departmental staff members,
its creation had some broader ramifications. The
pharmacy department has a drug information division

to respond to queries from physicians about pharma-
ceutical administration. Each time a particular
question is studied, a file is created for use in

responding to similar future queries. The BIBLIO-
CRAPHY function handled this file without modifica-
tion. Additionally, the file structure and search
logic used in the BIBLIOGRAPHY function were adapted
to accomplish the coding of sites and diagnoses for
the surgical pathology module.

The Patient Demographic Database

The patient demographic database is central to
all functions of the program package which deal with
patient-oriented information. The medical records
department has a master index file containing about
300,000 patient references. Each area applications
package interacts with this central file.

Apart from secondary index and pointer files, all
clinical information is filed according to the pa-

tient's medical record number, 'RNO', presently a

six-digit number with an additional check digit. The
local demographic database consists of two globals.
^DN(, which sorts information by last name, first
nane, and 'RNO', has the structure:

^DN(LN,FN,RNO) - nursing station
^DN(LN,FN,RNO,label) - data

'Label' identifies such data elements as date of
birth, account number, height, weight, etc. ^DR()
is sorted by 'RNO' and serves as a pointer file to

^DNo. It has the structure:

^DR(RNO,"FN") - first name

^DR(RNO,"LN') - last name
^DR(RNO,"NS") - nursing station

There are three functions which deal with the
local patient demographic database and are called as
options from the main menu. The ADMIT option permits
the entry of new patients to the database. It also
permits modification of the demographic data and all
files dependent upon that data. The DEMOGRAPHIIC DIS-

PLAY option permits a query of the database to dis-

play all demographic information associated with a

patient. The DISCHARGE function removes demographic
information from the local database and purges un-

necessary information. It also interacts with the
master patient file to assure the preservation of

information which must be stored permanently.

The ADMIT (and edit) function is handled by a

program which, as indicated above, may be called as

a main menu option. When so called, a switch vari-

able is set to provide for the entry of multiple pa-
tient records. This program may be called also as a

subroutine during execution of any program which al-
lows the entry of information for a patient who is

298

not included in the demographic database. In this
case an alternate setting of the switch variable is
used and effects a return to the calling program
after the entry of demographic data for a single pa-
tient. (We try to employ this dual-function tech-
nique wherever possible.)

Most application programs interact with the demo-
graphic database via a single subroutine which re-
quests entry of 'LN', 'FN' and 'RNO'. The subroutine
then determines if data for the patient exists. A
valid 'RNO' (with check digit) may be entered at any
point to identify the patient. A number, such as a
surgical pathology accession number (with check
digit) which is uniquely associated with a medical
record number, may be entered in selected instances
to identify the patient.

The system uses a series of default medical
record numbers which have an additional, nonnumeric,
leading character and are automatically assigned by
the system. These numbers do not repeat. They are
used to file information before a formal record num-
ber is issued. This technique permits the filing of
laboratory data for specimens submitted on patients
not seen in our hospital. Without this important
feature we would have to bear the expense of assign-
ing and maintaining regular medical record numbers
for all these specimens, exclude such data from our
file, or use two separate and less suitable file
structures.

An index function which displays all names in
the file starting at any specified point in the al-
phabet facilitates use of the demographic file. A
wildcard search function permits a single letter of
a last name to be replaced by an asterisk. This
function provides a display of all records with a
last name matching the specified name, but with any
allowed character in the position occupied by the
'*' (e.g., 'PETERS*N' displays all records on file
for 'PETERSEN' and 'PETERSON').

Surgical Pathology Function

The surgical pathology function was intended
originally to serve as an index to typewritten sur-
gical pathology reports and to provide access to

cases with specified diagnoses. We decided against
using standard nomenclature (e.g., SNOMED) because
the difficulty encountered in getting staff members
to do the coding jeopardized the entire project. We

adopted the same index structure used in the BIBLIO-
GRAPHY function. Although we risk having more than
one code for a particular diagnosis, we review the
index before a search and request all pertinent
codes. This approach lacks the elegance of more rig-
orous coding procedures, but its simplicity serves
the purposes of our department.

We shall not describe the logic of the SURGICAL
PATIOLOGY function in great detail. One feature is
of particular interest. We created a file structure

which permits a text of unlimited length to be en-
tered in lines of up to 80 characters. The general
file structure for such a data component is:

^S(RNO,accession number,label) - number of lines n

^S(RNO,accession number,label,l) - line 1
^S(RNO,accession number,label,n) - line n

This structure was adopted to provide maximum flexi-
bility in the storage of data, but it also permits
the report to be filed in its entirety. Although
this function originally was intended to serve only
as an indexing system, we now use it for the actual
production of all surgical pathology reports. Figure
1 is an example of such a report. A text editor
which functions as a simple word processor is in-
cluded. The printing of multiple copies of reports
eliminates photocopying costs. The full reports will
be kept in the system as long as practical and then
will be transferred to magnetic tape for microfiche
production. The index data will be stored perma-
nently. Since report generation is by direct termi-
nal input rather than typing, the index function in-

volves little additional labor.

Cumulative Clinical Pathology Reporting

The laboratory information system must be capable
of handling a wide variety of functions related to

order entry, specimen collection, data acquisition
and verification, and reporting. We are in the pro-
cess of developing functions to deal with all of

these areas. One of the most important functions
performed by the system is the production of labora-
tory reports. These reports should be presented in a

cumulative fashion. They must be easy to read and
use. Logical design and esthetic appeal affect read-
ability. Many computer-based clinical pathology re-

porting systems fail in this respect. In an attempt
to produce a cumulative report each time new labora-
tory work is ordered, they generally compress data
In a form which is difficult to read.

The manual system in use at this institution and
used for several years at the Univeristy of Minne-

sota is logical and efficient. It produces reports
which represent the benchmark with which all other
reports must be compared. It was used by others be-
fore we adopted it. David Seligson used such a re-
port format at Yale University. We borrowed freely
from its design in producing ours. John B. Henry*
described the approach as well.

It has been our goal to develop a computerized
reporting module for our laboratory information sys-
tem which is at least as good as the manual system
it replaces. The computerized module uses a logical
design which, while not in use in all laboratory de-
partments as this is written, promises to be capable
of handling any future contingency. With minor
changes in layout, we produce reports which are vir-
tually identical to and actually better than our

manual reports.

All necessary procedural information about indi-
vidual tests is obtained from the test directory.
All necessary patient demographic information is ob-
tained from the demographic file. For the purposes
of order entry and reporting, the primary patient
identification is the medical record number, 'RNO'.
Specimen accession numbers, always tied to the

'RNO', are used extensively.

Todd-Sanford, Clinical Diagnosis by Laboratory
Methods, 14th Edition, I. Davidson and J.B. Henry,
editors, W.B. Sauders, 1969, p. 495.

299

Figure 1. Example of computer-generated cal path report.

Good Samaritan Hospital & Medical Center
1' ~~~~~PORTLAND, OREGON 9721 DEPRTMENT OF PATHOLOGY

D8%@i 15-JUN-52 PathE no0i552 04575-6
KASEDEROP

148560-6 F 22-OCT-1909 6C 639
mm* m0NlEOor MNM N

PHYSICIANS
SPECIMEN: I TISSUE FROM RT. FRONTAL LESION 1. W Parsons - S-370

II TISSUE FROM RT. FRONTAL LESION 2. Histolodw
III BONEY ATTACHMENT OF MENINGIOMA 3. AND

GROSS: I. Present is a Palo Pink fradment of tissue measur-
ing 1.0 x 1.0 x 0.5 cm. This specimen is submitted in toto, 1 cass.

II. Present is a single rale ivorw to role wellow
fradennt of tissue measuring 2.0 x 1.2 x 0.3 co. The frozen section
material is submitted in cass. FS. Remainder of tissue is submitted in
toto, cass* A.

FROZEN SECTION DIAGNOSIS: Tumor, Probablw meningioma, (AND)

III. Present is a sindle irregular fradment of Palo
Pink to ivorw-white cortical bone measurind 1.7 x 2.0 x 1.5 cm# Several
sections are cut and allowed to fix before decalcification.
K Gunson/AND 18-JUN-82

MICROSCOPIC: A meningothelial meningioma is infiltrating fibrofattw
tissue. Nuclei are bland and there is no mitotic activitw.

A Portion of the skull has been submitted for decal-
cification.
AND 19-JUN-82

DIAGNOSIS: Brain, right frontal? tumor: Meningioma.

A,. M. D.
21-JUN-82

DEPARTMENT OF PATHOLOGY B tJR t3 c::C'% L.. F:, ' T H C) L C) (3 Y PAGE X

Figure 2. Exanple of computer-generated chemistry report.

Good Samaritan.j. Hospital & Medical Center
S

t
PORTLAND, OREGON 97210 DEPARTMENT OF PATHOLOGY

ADAMS, 999999-6 F O1-JAN-1900 G HEALTH4C 457
NAmE REORDN SEX DATEOF SIR PNYSI STATON ROOMa

LAB NO.-> :01080101079:01081: 01083:'01084: 01085:01087:01088:
TEST : REFERENCE : DATE 1982 :05/22:05/22:05/22:05/22:05/22:01/08:05/26:05/27:

I RANGE : COL'N TIME:00:25:00:25:00:45:06:30:09:15:19:30:07:00:07:45:

CALCIUM S :8.6 - 10.6 :mg/dl ' : ' 10.0 : : :
PHOSPHORUS
MAGNESIUM
IRON
TIDC
UREA NITROGEN
SODIUM
POTASSIUM
CHLORIDE
BICARBONATE
GLUCOSE
CREATININE
PH
PCO2
P02
02 SATURAW"-

._ rHOTEIN
CHOLESTEROL
TRIGLYCERIDE
URIC ACID
OSMOLALITY

S :2.2 - 4.5
S :1.4 - 2.4
S :65 - 175
S :250 - 410
S :7 - 20
S :137 - 140
S :3.7 - 4.9
S :95 - 106
S :22 - 30
S :59 - 107
S :0.6 - 1.3
B 17.35 - 7.45
B :38 - 48

u 13.8 - 4.5
S :6.4 - 8.1
S :150 - 250
S :30 - 135
S 12.9 - 5.7
S :275 - 300

:mg/dl
.mEo/L
: ug/dl
: ug/m
'mg/dl
:mmol/L
: mol/L
: mmol/L
mmol/L
mg/dl
:mg/dl

mg/dl
g9/dl

mg/dl
mg/d I

I m/dlI
: mOsm/k :

II

II

II

i
22 :

20
148
4.3
110
23

18
144
3.8
106
9-'

II

1I

142 1,
4 ^

i

II

II
aI
I

II

II

II
II
i

19
143 !

4.0
7*1
223

DEPARTMENT OF PATHOLOGY CHEM X STRFY

300

: PAGE I

The global database may be conceptualized as a
file of matrix cards arranged in alphabetic order
by patient name. (Note that MUMPS is well suited to

this approach since it can deal easily with largely
empty matrices without significant degradation in
storage efficiency or increase in program complex-
ity.) The data file is organized by nursing station,
room/bed number and medical record number, so that
reports may be printed in distribution and charting
sequence. The fourth subscript of the data file is

the REPORT FORMAT NUMBER.

The system permits the user to create an un-

limited number of different report formats falling
within a limited number of hard-coded types called

GENERIC FORMAT TYPES. For example, the columnar re-

port illustrated in Figure 2 containing a maximum
of 37 tests and 11 five-character results columns

employs 'GENERIC TYPE 0'. Most of chemistry and
hematology data will be reported on forms of this
type. As this is written, type 0 is the only type we

have created and tested. However, the logical de-
sign provides for a form with 41 rows by one

110-character column defining a blank, horizontally
held page and thereby permitting the display of
free-form text-- the extreme form of nonstructured
report. Other report formats will fall between these

extremes and will be handled easily by the logic of

this system.

The implementation of this simple approach in-

volves the creation of three different series of
subroutines. A single subroutine exists within each

series for each generic report type. Although the
creation of a new generic report type does not re-

quire significant modification of existing programs,
it does involve programmer intervention. By adding
one subroutine to each of the three series, the sys-
tem can accommodate a new generic type. The user may
create any number of report formats employing exist-

ing generic types.

Report Format Creation. Manager-level functions

permit the creation of new report formats. Following
specification of the generic type upon which the

format is based, control is transferred to a subrou-
tine which is named for that type. This subroutine
asks the user to enter the specific information

necessary to create a report of that generic type.
For example, in the case of generic type 'O', it
would request entry of the number of tests, test

names, footnote texts,etc., assign a unique format
number, and establish the record in ^RFMo, the for-
mat global.- This record associates each format num-

ber with its generic type. The information that
would be stored for a format of generic type 'O'has
the form:

^RFM(format number) - format name (e.g., 'CHEMIS-
TRY-I')

^RFM(format name) - format number (e.g., 5)
^RFM(format number,O,0) - generic report type
^RFM(format number,O,1) - number of data rows

^RFM(format number,row,l) - name of test

^RFM(format number,row,2,"F") - female reference
range

^RFM(format number,row,2,"M") - male reference
range

^RFM(format number,row,3,"F") - femalq low flag

^RFM(format number,row,3,"M") - male low flag

^RFM(format number,row,4,"F") - female high flag

^RFM(format number,row,4,"M') - male high flag
"RFM(format number,row,5) - units of measure

In addition to information dealing with specific
tests, other information may be stored. For exam-
ple, if ^RFM(format number,row,l) equals "-", the
seven elements pertaining to a test are absent. The

system prints a horizontal dividing line on the re-
port at that location. In a similar manner rows may
be reserved for use in displaying footnote codes,

technologist identification, etc.

Result Storage. The test directory listing for

each procedure now includes values for the REPORT
FORM on which the result is to be displayed and for
the REPORT FORM LOCATION which specifically places

the result on that form. When a particular test re-
sult is placed in the database, this information is
available. By means of the format global, ^RFMo,
the value of REPORT FORM allows the generic format
type to be identified. Control is transferred to one
of the second series of special subroutines which
creates the appropriate type of database records for
the given generic type.

Result Display. When reports are printed, the
printing program passes through the results database
global, 'Do. Within the section containing data for

a single patient, the information is stored by RE-
PORT FORMAT NUMBER. By use of the format global,
^RFMo, the generic report type is determined. To

produce the report document, control is passed to
one of the third series of special subroutines which
uses both the data in the results database, 'Do,
and the report format database, ^RFMo.

Only those pages which report newly ordered data

are printed. These pages are printed during each
report generation run, only until a report has been
produced for which results are no longer pending. At

this time the card is returned to inactive status.

When a card is filled, it must be marked 'PERMANENT
RECORD--RETAIN IN CHART' and not used again. Within

the result database, elements called 'PRINTFLAG' and
'FULLFLAC' exist for each defined page. Appropriate
logic exists to set these flags to achieve the de-

sired functional characteristics.

The results database global, 'Do, is organized
by nursing station, room/bed number and medical rec-

ord number. Within the database section for a par-
ticular patient, the next division of the data is

report format number, 'RFNUM'. This number uniquely
identifies the generic report type. 'D() contains
data elements which deal with the report page as a

whole and are independent of generic report type.
Additionally, 'D() contains data elements which are

dependent upon the generic report type.

Conclusion

The modular incremental approach is well suited
to the creation of a laboratory information system.
It is also well suited to other areas of the hospi-
tal. We are well into the installation of major ap-
plications in radiology, medical records, biomedical
physics, and the pharmacy. We hope to make these

projects the subject of future reports.

301

