Geometry CP SUMMER ASSIGNMENT

Please complete the following assignment due on the first Friday of school. The assignment will be collected, graded, and count towards 30 points on your first test, which will be at the end of the first unit. Use all of your available resources: old notes, or the Internet. Make a note of your questions to ask in September.

Complete the following worksheets. You may use the websites listed below to assist you in completing this assignment.

http://faculty.unlv.edu/bellomo/Math120/Notes/Ch10-Sect1.pdf

https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-geometry/line-segmentalgebra/v/segment-addition

https://www.youtube.com/watch?v=prtUJyK985Y

If you have any questions over the summer, please email **both** your teacher and the Supervisor of Mathematics & Science:

Ms. Eisen (Teacher): <u>deisen@dumontnj.org</u> Mrs. Sullivan (Teacher): <u>dsullivan@dumontnj.org</u> Ms. Warnock (Supervisor of Mathematics & Science): <u>dwarnock@dumontnj.org</u>

HAVE A GREAT SUMMER!!

ALGEBRA REVIEW

1) Simplify the expression.

a)
$$5x + 8 - 9x$$

b) $-12y - y + 2$
d) $x^2 + 2x - 6x - 12$
e) $4y - (y + 6)$
f) $2(x - 5) + 13$
g) $a(a + 2) - 5(a - 3)$
h) $(c + 8)(-5)$
j) $-2(c - d) + (c - d) - 6(c - d)$

2) Solve the equation.

a) x - 14 = 18b) 4(x + 4) = 3(x - 1)

- c) 8 7x = x d) 2n 1 = 5n + 8
- e) $\frac{n}{5} = 7$ f) $-\frac{2}{3}z = 22$
- g) $\frac{x}{8} 2 = -13$ h) $8 = \frac{1}{2}x + 6$

3) Solve each of the following proportions.

a) $\frac{x}{2} = \frac{7}{14}$ b) $\frac{5}{7} = \frac{y+1}{21}$ c) $\frac{27}{x-5} = \frac{3}{2}$

- 4) Solve each word problem by writing an equation and solving it.
 - a) The sum of a number and twice the number is 18. Find the number.

b) Eight times a number equals 35 more than the number. Find the number.

c) Three times the sum of 13 and a number is the same as 7 times the number decreased by 9. What is the number?

5) Solve each equation for the specified values.

$5a-6b=9$ $de-4f=5e$ $\frac{u-v}{de-4f=5e}$	a) Solve for b.	b) Solve for e.	c) Solve for <i>v</i> .
w	5a - 6b = 9	de-4f=5g	$\frac{u-v}{w} = 4$

6) Graph each equation.

SECTION 1.1 – FINDING AND DESCRIBING PATTERNS

7) Description: 7) Describe the pattern (in words) and write the next two numbers you expect: Next two numbers: _____, _____ 24, 17, 10, ... 8) Describe the pattern (in words) and write the next 8) Description: _____ two numbers you expect: Next two numbers: _____, _____ 2, 4, 8, ... 9) Draw the next two figures in the pattern. 9) **SECTION 1.2 – INDUCTIVE REASONING** 10) "The product of two even numbers is always __." 10) a) Fill in the blank: _____ b) Four examples: _____, _____ a) Fill in the blank to make the sentence above a true statement. b) Give 4 examples that prove it is true. , _____, 11) Prove that the conjecture below is false by 11) Counterexample: writing a counterexample (in a complete sentence). "All vegetables are green."

12) Prove that the conjecture below is false by writing a counterexample (in a complete sentence).

"Any number multiplied by an odd number gives you an odd answer." 12) Counterexample:

SECTION 1.3 – POINTS, LINES, AND PLANES

Use the diagram below to answer each question.

- 13) Name 3 points.
- 14) Name 2 lines.
- 15) Name 1 plane.
- 16) Name 3 points that are collinear.
- 17) Name 1 point that is NOT collinear with A and B.
- 18) Name 4 non-coplanar points.
- 19) Name 2 coplanar lines.

Use the diagram below to answer each question.

20) Name 2 segments with G as an endpoint.

21) Name 2 rays with J as an endpoint.

21)_____, _____

SECTION 1.4 – SKETCHING INTERSECTIONS

SECTION 1.5 – SEGMENTS AND THEIR MEASURES

Use the diagram below to answer each question.

27) Write the Segment Addition Postulate for the following diagram (using segment names).

28) Solve for x.

In the diagram below, P is between Q and T.

29) Find QT if PQ = 8 and PT = 3.

- 30) Find QP if PT = 10 and TQ = 13.
- 31) Find the following distances on a number line.
 - a) Find FG if F = 3 and G = 15.
 - b) Find MN if M = -14 and N = 2.
- 32) Graph G(-1, 4), E(3, 4), O(-4, 3), and M(-4, 1). Then determine if $\overline{GE} \cong \overline{OM}$.

SECTION 1.6 – ANGLES AND THEIR MEASURES

Use the diagram below to answer each question.

33) Use the letters to name $\angle 1$.

34) Use the letters to name $\angle 2$.

Use the diagram below to answer each question.

35) Name the vertex and sides of $\angle 1$.

36) Name an acute angle.

37) Name an obtuse angle.

38) Name a straight angle.

35) Vertex: _____ Sides: _____, ____ 36)_____ 37)_____ 38) _____ 39) *m∠AEB* = _____ 40) *m∠AEC* =_____ 41) $m \angle AED =$ _____ 42) *m∠GEC* = _____ 43) $m \angle GED =$ 44) $m \angle GEB =$ 45) $m \angle AEB + m \angle BEC =$ _____ 46) $m \angle DEB - m \angle DEC =$

Use the diagram below to answer each question.

39) Find $m \angle AEB$.

40) Find $m \angle AEC$.

41) Find $m \angle AED$.

42) Find $m \angle GEC$.

- 43) Find $m \angle GED$.
- 44) Find $m \angle GEB$.

45) $m \angle AEB + m \angle BEC =$ _____

46) $m \angle DEB - m \angle DEC =$ _____

CHAPTER 1 – VOCABULARY REVIEW

Choose the word from the word bank that best completes each statement. Each word is used only once.

	Acute	Angle	Collinear	Congruent	Conjecture				
	Coordinate	Coplanar	Counterexample	Obtuse	Plane				
	Ray	Right	Segment	Straight	Vertex				
48)) A/An is formed by two rays joined at the same point.								
49)) angles measure 180°								
50))) A/An angle is an angle that measures more than 90° but less than 180° .								
51)) A/An has one endpoint and one end that extends forever.								
52)	2) angles measure exactly 90°.								
53)	The endpoint of two	rays joined togeth	er to form an angle is ca	alled the					
54)	An example showing	g that a statement	is not always true is calle	ed a/an	·				
55)	A/An	has tw	vo endpoints.						
56)		angles meas	ure less than 90°						
57)	A/An	is a st	tatement based on a patte	ern or observation.					
58)	If A , B , and C lie on	the same line, the	n A, B, and C are						
59)	Two segments that h	ave the same leng	th are called	seg	ments.				
60)	The number that cor	responds to a poin	t is called its	·					
61)	A/An	is a fl	at surface that extends in	ndefinitely in all dir	ections.				
62)	If <i>A</i> , <i>B</i> , <i>C</i> , and <i>D</i> lie	on the same plane	, then A, B, C and D are						

SECTION 9.2 – THE PYTHAGOREAN THEOREM

Use the Pythagorean Theorem to solve for each unknown side length.

63) *c* = _____ 64) *a* = _____ 65) *b* = _____