
Abstract
This paper examines a set of commercially

representative embedded programs and compares them

to an existing benchmark suite, SPEC2000. A new

version of SimpleScalar that has been adapted to the

ARM instruction set is used to characterize the

performance of the benchmarks using configurations

similar to current and next generation embedded

processors. Several characteristics distinguish the

representative embedded programs from the existing

SPEC benchmarks including instruction distribution,

memory behavior, and available parallelism. The

embedded benchmarks, called MiBench, are freely

available to all researchers.

1. Introduction

Performance based design has made benchmarking

a critical part of the design process [1]. A wide variety

of benchmarks have been proposed including

Dhrystone [2], LINPACK [3], Whetstone [4], CPU2

[5], MediaBench [6] and many others. Most of these

benchmarks are targeted towards specific areas of

computation. Dhrystone, for example, is for system

(integer) performance; LINPACK is for vectorizable

computations; Whetstone and CPU2 are for numerical

(floating point) intensive applications; and

MediaBench is for multimedia applications. Other

benchmarks are available to stress network TCP/IP

stacks, data input/output and other specific tasks.

The most widely used benchmarks are the Standard

Performance Evaluation Corporation (SPEC) CPU

benchmarks [7]. They are now in their third revision

(SPEC2000). They characterize a workload for

general-purpose computers by providing a self-

contained set of programs and data divided into

separate integer and floating-point categories. The

popularity of the SPEC benchmarks as a measure of

performance has heavily influenced the design of

general-purpose microprocessors, particularly those

employed in servers and high-end desktop systems.

Among the common features of these

microarchitectures are deep pipelines, significant

instruction level parallelism, sophisticated branch

prediction schemes, and large caches.

Although this class of machines has been the chief

focus of the computer architecture community,

relatively few microprocessors are employed in this

market segment. The vast majority of microprocessors

are employed in embedded applications [8]. Although

many are just inexpensive microcontrollers, their

combined sales account for nearly half of all

microprocessor revenue. Furthermore, the embedded

application domain is the fastest growing market

segment in the microprocessor industry.

The wide range of applications makes it difficult to

characterize the embedded domain. In fact, an

embedded benchmark suite should reflect this by

emphasizing diversity. The applications range from

sensor systems on simple microcontrollers [9] to smart

cellular phones that have the functionality of a desktop

machine combined with support for wireless

communications. Perhaps the only common

denominators are: 1) that embedded processors often

require power to be considered at the same time in the

design process as performance [11]; and 2) that there is

not a significant legacy code base that would favor a

standard instruction set architecture (ISA) and

operating system, as has happened in the desktop

world. This has led to a remarkable increase in the

number of ISAs for embedded applications and this

number continues to grow.

There have been some efforts to characterize

embedded workloads, most notably the suite developed

by the EDN Embedded Microprocessor Benchmark

Consortium (EEMBC) [10]. They have recognized the

difficulty of using just one suite to characterize such a

diverse application domain and have instead produced

a set of suites that typify workloads in five embedded

markets. Unfortunately, the EEMBC benchmarks,

unlike SPEC, are not readily accessible to academic

MiBench: A free, commercially representative embedded benchmark suite

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,

Todd M. Austin, Trevor Mudge, Richard B. Brown

{mguthaus,jringenb,ernstd,taustin,tnm,brown}@eecs.umich.edu

The University of Michigan

Electrical Engineering and Computer Science

1301 Beal Ave., Ann Arbor, MI 48109-2122

researchers because of the high cost of joining the

consortium.

In this paper, we present a set of 35 embedded

applications for benchmarking purposes called

MiBench (pronounced “My Bench”). Following

EEMBC’s model, these benchmarks are divided into

six suites with each suite targeting a specific area of the

embedded market. The six categories are Automotive

and Industrial Control, Consumer Devices, Office

Automation, Networking, Security, and

Telecommunications. All the programs are available as

standard C source code. Since many past embedded

applications have been written directly in assembly

language, it has been difficult to collect a portable set

of benchmarks for the embedded domain. However,

the current trend in the embedded domain shows

compilers being used for even the simplest

microcontrollers and the highest performance DSPs.

MiBench is thus portable to any platform that has

compiler support.

The rest of this paper is organized as follows.

Section 2 describes the benchmarks and data sets in

MiBench. Section 3 validates the microarchitecture

model of the ARM SA-1 core; an important step that is

often omitted from the discussion of benchmark

performance on benchmarks. Section 4 provides an

analysis of the MiBench benchmarks and compares

them to the SPEC2000 benchmarks. As one would

expect from the way they were selected, the MiBench

programs exhibit a much wider variance in behavior

across the set of suites as well as within individual

domains. This suggests that SPEC is not the

appropriate workload to drive the design of future

microprocessors intended for many of the embedded

application categories found in MiBench. Instruction

distribution, branch predictability, and memory

accesses are all examined. Section 5 provides a

summary of the characteristics of embedded workloads

found in our experiments.

2. Benchmark Descriptions

MiBench has many similarities to the EEMBC

benchmark suite as described on their web site (http://

www.eembc.com). However, MiBench is composed of

freely available source code. All web sites and authors

are maintained with each package, but slight

modifications may have been made to the source code

to promote the portability of the benchmark and the

extensibility of the data set. Where appropriate, we

provide a small and large data set. The small data set

represents a light-weight, useful embedded application

of the benchmark, while the large data set provides a

more stressful, real-world application. MiBench

consists of six categories including: Automotive and

Industrial Control, Network, Security, Consumer

Devices, Office Automation, and Telecommunications.

These categories offer different program characteristics

that enable researchers in architecture and compilers to

examine their designs more effectively for a particular

market segment.

2.1. Automotive and Industrial Control

The Automotive and Industrial Control category is

intended to demonstrate use of embedded processors in

embedded control systems. These processors require

performance in basic math abilities, bit manipulation,

data input/output and simple data organization. Typical

applications are air bag controllers, engine

performance monitors and sensor systems. The tests

used to characterize these situations are a basic math

test, a bit counting test, a sorting algorithm and a shape

recognition program.

basicmath: The basic math test performs simple

mathematical calculations that often don’t have

dedicated hardware support in embedded processors.

For example, cubic function solving, integer square

root and angle conversions from degrees to radians are

all necessary calculations for calculating road speed or

other vector values. The input data is a fixed set of

constants.

bitcount: The bit count algorithm tests the bit

manipulation abilities of a processor by counting the

number of bits in an array of integers. It does this using

five methods including an optimized 1-bit per loop

counter, recursive bit count by nibbles, non-recursive

bit count by nibbles using a table look-up, non-

recursive bit count by bytes using a table look-up and

shift and count bits. The input data is an array of

integers with equal numbers of 1’s and 0’s.

qsort: The qsort test sorts a large array of strings

into ascending order using the well known quick sort

algorithm. Sorting of information is important for

systems so that priorities can be made, output can be

better interpreted, data can be organized and the over-

all run-time of programs reduced. The small data set is

a list of words; the large data set is a set of three-tuples

representing points of data.

susan: Susan is an image recognition package. It

was developed for recognizing corners and edges in

Magnetic Resonance Images of the brain. It is typical

of a real world program that would be employed for a

vision based quality assurance application. It can

smooth an image and has adjustments for threshold,

brightness, and spatial control. The small input data is

a black and white image of a rectangle while the large

input data is a complex picture.

2.2. Network

The Network category represents embedded

processors in network devices like switches and

routers. The work done by these embedded processors

involves shortest path calculations, tree and table

lookups and data input/output. The algorithms used to

demonstrate the networking category are finding a

shortest path in a graph and creating and searching a

Patricia trie data structure. Some of the benchmarks in

the Security and Telecommunications category are also

relevant to the Network category: CRC32, sha, and

blowfish. However, they are separated for organization.

dijkstra: The Dijkstra benchmark constructs a large

graph in an adjacency matrix representation and then

calculates the shortest path between every pair of nodes

using repeated applications of Dijkstra’s algorithm.

Dijkstra’s algorithm is a well known solution to the

shortest path problem and completes in O(n2) time.

patricia: A Patricia trie is a data structure used in

place of full trees with very sparse leaf nodes.

Branches with only a single leaf are collapsed upwards

in the trie to reduce traversal time at the expense of

code complexity. Often, Patricia tries are used to

represent routing tables in network applications. The

input data for this benchmark is a list of IP traffic from

a highly active web server for a 2 hour period. The IP

numbers are disguised.

2.3. Security

Data Security is going to have increased importance

as the Internet continues to gain popularity in e-

commerce activities. Therefore, Security is given its

own category in MiBench. The Security category

includes several common algorithms for data

encryption, decryption and hashing. One algorithm,

rijndael, is the new Advanced Encryption Standard

(AES) [12]. The other representative security

algorithms are Blowfish [13], PGP [15] and SHA [14].

blowfish encrypt/decrypt: Blowfish is a symmetric

block cipher with a variable length key. It was

developed in 1993 by Bruce Schneider. Since its key

length can range from 32 to 448 bits, it is ideal for

domestic and exportable encryption. The input data

sets are a large and small ASCII text file of an article

found online.

sha: SHA is the secure hash algorithm that produces

a 160-bit message digest for a given input. It is often

used in the secure exchange of cryptographic keys and

for generating digital signatures. It is also used in the

well-known MD4 and MD5 hashing functions. The

input data sets are the same as the ones used by

blowfish.

rijndael encrypt/decrypt: Rijndael was selected as

the National Institute of Standards and Technologies

Advanced Encryption Standard (AES). It is a block

cipher with the option of 128-, 192-, and 256-bit keys

and blocks. The input data sets are the same as the ones

used by blowfish.

pgp sign/verify: Pretty Good Privacy (PGP) is a

public key encryption algorithm developed by Phil

Zimmerman. It allows you to communicate securely

with people you’ve never met using digital signatures

and the RSA public key cryptosystem. The input data

for both the large and small tests is a small text file.

This is because PGP is usually only used to securely

exchange a key for a block cipher which can then

encrypt/decrypt data at a much faster rate.

2.4. Consumer Devices

The Consumer Devices benchmarks are intended to

represent the many consumer devices that have grown

in popularity during recent years like scanners, digital

cameras and Personal Digital Assistants (PDAs). The

Table 1: MiBench Benchmarks

Auto./Industrial Consumer Office Network Security Telecomm.

basicmath jpeg ghostscript dijkstra blowfish enc. CRC32

bitcount lame ispell patricia blowfish dec. FFT

qsort mad rsynth (CRC32) pgp sign IFFT

susan (edges) tiff2bw sphinx (sha) pgp verify ADPCM enc.

susan (corners) tiff2rgba stringsearch (blowfish) rijndael enc. ADPCM dec.

susan (smoothing) tiffdither rijndael dec. GSM enc.

tiffmedian sha GSM dec.

typeset

category focuses primarily on multimedia applications

with the representative algorithms being jpeg encoding/

decoding, image color format conversion, image

dithering, color palette reduction, MP3 encode/

decoding, and HTML typesetting. Several of the

algorithms are from the SGI TIFF utilities [16]. All of

the image benchmarks use small and large images as

data input.

jpeg encode/decode: JPEG is a standard, lossy

compression image format. It is included in MiBench

because it is a representative algorithm for image

compression and decompression and is commonly used

to view images embedded in documents. The input

data are a large and small color image.

tiff2bw: Tiff2bw converts a color TIFF image to

black and white image.

tiff2rgba: Tiff2rgba converts a color image in the

TIFF format into a RGB color formatted TIFF image.

tiffdither: Tiffdither dithers a black and white TIFF

bitmap to reduces the resolution and size of the image

at the expense of clarity.

tiffmedian: Tiffmedian converts an image to a

reduced color palette by taking several medians of the

current color palette.

lame: Lame is a GPL’ed MP3 encoder that supports

constant, average and variable bit-rate encoding. It uses

small and large wave files for its data inputs.

mad: Mad is a high-quality MPEG audio decoder. It

currently supports MPEG-1 and the MPEG-2 extension

to Lower Sampling Frequencies, as well as the so-

called MPEG 2.5 format. All three audio layers (Layer

I, Layer II, and Layer III a.k.a. MP3) are fully

implemented. It uses small and large MP3s for its data

inputs.

typeset: Typeset is a general typesetting tool, that

has a front-end processor for HTML. The benchmark

captures the processing required to typeset an HTML

document, without any rendering overheads. This

benchmark is representative of a core component of a

web browser that might be used in a consumer device.

The small and large inputs are a GCC release

announcement and the SimpleScalar main web page.

2.5. Office Automation

The Office applications are primarily text

manipulation algorithms to represent office machinery

like printers, fax machines and word processors. The

PDA market mentioned in the Consumer category also

relies heavily on the manipulation of text for data

organization.

ghostscript: Ghostscript [17] is a postscript

language interpreter without its graphical interface.

This benchmark is included to represent the growing

importance of postscript capable embedded devices

like printers.

stringsearch: This benchmark searches for given

words in phrases using a case insensitive comparison

algorithm.

ispell: Ispell is a fast spelling checker that is similar

to the Unix spell, but faster. It supports contextual spell

checking, correction suggestions, and languages other

than English. The input consists of a small and large

document from web pages.

rsynth: Rsynth is a text to speech synthesis program

that integrates several pieces of public domain code

into a single program. The small and large input are

excerpts from an online news article.

sphinx: Sphinx is a speech decoder that operates on

finite-length segments of speech or utterances, one

utterance at a time. An utterance can be up to some

tens of seconds long. The small and large inputs are a

simple command and a long sequence of speech.

2.6. Telecommunications

Close beside the Consumer category for importance

in modern embedded processors is the

Telecommunications category. With the explosive

growth of the Internet, many portable consumer

devices are integrating wireless communication. The

Telecommunication benchmarks are given a separate

category to stress the importance of this step. These

benchmarks consist of voice encoding and decoding

algorithms, frequency analysis and a checksum

algorithm.

FFT/IFFT: This benchmark performs a Fast Fourier

Transform and its inverse transform on an array of

data. Fourier transforms are used in digital signal

processing to find the frequencies contained in a given

input signal. The input data is a polynomial function

with pseudorandom amplitude and frequency

sinusoidal components.

GSM encode/decode: The Global Standard for

Mobile (GSM) communications [18] is the standard for

voice encoding/decoding in Europe and many

countries. It uses a combination of Time- and

Frequency-Division Multiple Access (TDMA/FDMA)

to encode/decode data streams. The input data is small

and large speech samples.

ADPCM encode/decode: Adaptive Differential

Pulse Code Modulation (ADPCM) [19] is a variation

of the well-known standard Pulse Code Modulation

(PCM). A common implementation takes 16-bit linear

PCM samples and converts them to 4-bit samples,

yielding a compression rate of 4:1. The input data are

small and large speech samples.

CRC32: This benchmark performs a 32-bit Cyclic

Redundancy Check (CRC) on a file. CRC checks are

often used to detect errors in data transmission. The

data input is the sound files from the ADPCM

benchmark.

3. Microarchitecture Model Validation

The Current configuration in Table 3 is modeled

after Intel's SA-1 StrongARM pipeline [22], found in

the SA-11xx series of embedded microprocessors. Intel

has released few details of the SA-1 pipeline; our

model was constructed using pipeline timing

characteristics given in the SA-110 compiler writers'

guide [24]. In addition, we used microbenchmarks to

accurately measure fully exposed pipeline latencies

such as branch mispredictions and cache misses. We

validated our model against a Rebel NetWinder

Developer workstation [25]. The NetWinder contains a

275 MHz StrongARM SA-110 microprocessor, 128

MB of DRAM, and an Ethernet interface. It runs the

Linux operating system (version 2.2.13) with a

standard GNU tool chain including GCC (version

2.95.1). The run times of integer microbenchmarks,

kernels (e.g., FFT), and large benchmarks (e.g., bzip

and GCC) were measured on the NetWinder and

compared to their simulated performance on the SA-1

ARM model. The simplicity of the SA-1 pipeline and

memory system permitted us to construct an extremely

accurate timing model with only a few modifications to

the SimpleScalar/ARM performance simulator. The

largest measured error in performance (CPI) was only

3.2%. We were unable to fully validate our floating

point co-processor model because the NetWinder does

not include floating point support in hardware. We will

address this validation effort when reference platforms

and suitable floating point benchmarks become

available.

4. Benchmark Analysis

All benchmarks in SPEC2000 and MiBench were

compiled using GCC version 2.95.2 on a Debian Linux

2.2.18 workstation with optimizations enabled. All the

benchmarks were simulated using the SimpleScalar/

ARM [20] performance simulator with a configuration

similar to the Intel XScale microcontroller. Only the

integer SPEC2000 benchmarks were used for

comparison, because most embedded processors do not

have significant floating point capabilities. A limited

set of the integer SPEC benchmarks ran correctly on

ARM, so these were used as data points. Up to 1

billion dynamic instructions were simulated for all

benchmarks. The reference data set was used for the

SPEC input. The small data sets for MiBench are

approximately 50 million dynamic instructions while

the large data set has more than 750 million dynamic

instructions as shown in Table 2. Cache performance

data was gathered by simulating the memory

references of all the benchmarks using Cheetah [21].

Cheetah is able to simulate multiple cache

Figure 1: Dynamic Instruction Distribution for large data set.

0%

20%

40%

60%

80%

100%

b
as

ic
m

at
h

b
it

co
u

n
t

q
so

rt

su
sa

n
.c

o
rn

er
s

su
sa

n
.e

d
g

es

su
sa

n
.s

m
o

o
th

in
g

jp
eg

.d
ec

o
d

e

jp
eg

.e
n

co
d

e

la
m

e

m
ad

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

ty
p

es
et

d
ij

k
st

ra

p
at

ri
ci

a

g
h

o
st

sc
ri

p
t

is
p

el
l

rs
y

n
th

st
ri

n
g

se
ar

ch

b
lo

w
fi

sh
.d

ec
o

d
e

b
lo

w
fi

sh
.e

n
co

d
e

p
g

p
.d

ec
o

d
e

p
g

p
.e

n
co

d
e

ri
jn

d
ae

l.
d

ec
o

d
e

ri
jn

d
ae

l.
en

co
d

e

sh
a

C
R

C
3

2

F
F

T
.i

n
v

er
se

F
F

T

ad
p

cm
.d

ec
o

d
e

ad
p

cm
.e

n
co

d
e

g
sm

.d
ec

o
d

e

g
sm

.e
n

co
d

e

g
zi

p
0

0

m
cf

0
0

p
ar

se
r0

0

tw
o

lf
0

0

P
er

ce
n

ta
g
e

o
f

T
o
ta

l
In

st
ru

ct
io

n
s

fp int load store ucond branch cond branch

Auto Consumer Network Office Security Telecomm. SPEC2000

configurations in a single pass. Branch prediction was

simulated using sim-bpred.

4.1. Instruction Distribution

There are four main classes of instructions: control

(unconditional and conditional branches), integer,

floating point and memory (load and store). In

embedded applications, there are computation

intensive, control intensive and I/O intensive

applications. Control intensive programs will have a

much larger percentage of branch instructions.

Computation intensive applications will have a larger

percentage of integer or floating point ALU operations.

I/O applications depend on how the data is manipulated

during its transfer. Figure 1 shows the distribution of

all the MiBench programs and SPEC2000.

From the figure, the benchmark categories

demonstrate some of these distinctive characteristics.

The Telecommunication and Security benchmarks all

have more than 50% integer ALU operations. These

applications tend to find or generate entropy in a set of

data and is done by repeated operations on a datum.

Benchmarks like ADPCM encode/decode have

approximately 80% integer ALU operations compared

to a maximum of 57% for any of the SPEC

benchmarks. The Consumer category has relatively

few integer ALU operations, but performs many

memory operations. This is because of the large image

data that must be processed. The actual operation on

each part of the image is relatively straightforward and

few control instructions are needed. The Office

Automation benchmarks have many control and

memory operations. These programs use function calls

to string libraries to manipulate ASCII data. Because

the data is text, it occupies quite a bit of memory and

many memory operations are needed to reference it.

The SPEC benchmarks have approximately the same

distribution for all the benchmarks.

As shown previously, the MiBench categories are

representative of different embedded applications. The

Table 2: Benchmark Sizes

Benchmark
Small Instruction

Count

Large Instruction

Count
Benchmark

Small Instruction

Count

Large Instruction

Count

basicmath 65,459,080 1,000,000,000 ispell 8,378,832 640,420,106

bitcount 49,671,043 384,803,644 rsynth 57,872,434 85,005,687

qsort 43,604,903 595,400,120 stringsearch 158,646 38,960,051

susan.corners 1,062,891 586,076,156 blowfish.decode 52,400,008 737,920,623

susan.edges 1,836,965 732,517,639 blowfish.encode 42,407,674 246,770,499

susan.smoothing 24,897,492 1,000,000,000 pgp.decode 85,006,293 259,293,845

jpeg.decode 6,677,595 990,912,065 pgp.encode 38,960,650 824,946,344

jpeg.encode 28,108,471 543,976,667 rijndael.decode 23,706,832 140,889,705

lame 175,190,457 544,057,733 rijndael.encode 3,679,378 24,910,267

mad 25,501,771 272,657,564 sha 13,541,298 20,652,916

tiff2bw 34,003,565 697,493,266 CRC32 52,839,894 61,659,073

tiff2rgba 36,948,939 1,000,000,000 FFT.inverse 65,667,015 377,253,252

tiffdither 273,926,642 1,000,000,000 FFT 52,625,918 143,263,412

tiffmedian 141,333,005 817,729,663 adpcm.decode 30,159,188 151,699,690

typeset 23,395,912 84,170,256 adpcm.encode 37,692,050 832,956,169

dijkstra 64,927,863 272,657,564 gsm.decode 23,868,371 548,023,092

patricia 103,923,656 1,000,000,000 gsm.encode 55,361,308 472,171,446

ghostscript 286,770,117 673,391,179

entire benchmark suite shows even more variation

when considered as a whole. For example, the number

of branches varies quite a bit in MiBench. Bitcount,

ADPCM encode and several others also have fewer

than 10% branch operations for a very computation

intensive operation. Benchmarks like Blowfish,

tiff2rgba and tiffmedian have less than 6% branches.

The largest number of branches come from the text

benchmarks, stringsearch and ispell, and the

telecommunication benchmark, CRC32, which have

branches ranging from 18 to 20%. SPEC typically has

greater than 15% branches except gzip00 which has

only 9%. MiBench also has more variation in the

memory operations. Some MiBench benchmarks, like

GSM encode, tiff2rgba and typset, contain more than

50% memory operations, while others, like Bitcount

and ADPCM encode, contain very few. Most of the

SPEC benchmarks have about 40% memory

operations.

The distribution graph also shows that MiBench has

a few floating point instructions in lame, rsynth and the

FFT benchmarks. These are not intended to stress

floating point operations, but they demonstrate typical

situations in which some floating point calculations

might be used to control road speed, a vector direction

or other data needed to determine a control action. DSP

and numerical intensive processors should use a

specific floating point benchmark to analyze the

performance in detail.

4.2. Branches

MiBench has quite a variation in the number of

branches. The number of branches is small for a

number of benchmarks which leads us to Figure 2. This

figure shows that the static basic block size in the

MiBench programs is approximately 1 instruction

longer than SPEC. SPEC’s basic block length is

normally around 4.5 with twolf00 being the exception

at over 5.5. MiBench, however, has several programs

above 6 and almost all are above 5.5. There are a few

of the Consumer benchmarks that are below 5 like

SPEC.

Now that we have seen that MiBench has more

variation than SPEC2000 in the frequency of branches,

we can determine how well these branches can be

predicted. Simulations were run using a not-taken

prediction scheme, an 8k gshare predictor, an 8k

bimodal predictor and an 8k combined bimodal/2-level

predictor. The direction prediction rates are given in

Figure 3. All predictors used a 2k BTB except the not-

taken strategy. There was no appreciable increase in

prediction misses due to address mispredictions by the

BTB so this data is not shown.

Like SPEC2000, MiBench has many correct

prediction rates well over 90%. The branch predictors

Figure 2: Static basic block length of benchmarks.

0

1

2

3

4

5

6

7

b
as

ic
m

at
h

b
it

co
u

n
t

q
so

rt

su
sa

n

jp
eg

.e
n

co
d

e

jp
eg

.d
ec

o
d

e

la
m

e

m
ad

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

ty
p

es
et

d
ij

k
st

ra

p
at

ri
ci

a

g
h

o
st

sc
ri

p
t

is
p

el
l

rs
y

n
th

sp
h

in
x

st
ri

n
g

se
ar

ch

b
lo

w
fi

sh

p
g

p

ri
jn

d
ae

l

sh
a

cr
c3

2

F
F

T

ad
p

cm
.e

n
co

d
e

ad
p

cm
.d

ec
o

d
e

g
sm

.e
n

co
d

e

g
sm

.d
ec

o
d

e

g
cc

0
0

g
zi

p
0

0

m
cf

0
0

p
ar

se
r0

0

tw
o

lf
0

0

In
st

ru
ct

io
n

 C
o
u

n
t

Auto Consumer Network Office Security Telecomm. SPEC2000

are very large and, therefore, this shows that most

branches in both benchmark suites are predictable.

MiBench does have a few benchmarks with interesting

branch characteristics though. The

Telecommunications and Security benchmarks have

fairly high miss rates due to randomness of data, but

very few misses per thousand instructions due to the

large number of integer ALU operations. The

infrequency of branches dilutes the penalty due to

mispredicted branches. The other categories like

Automotive/Industrial look very similar to SPEC.

4.3. Memory

Besides instruction distribution and branch

predictability, memory behavior is another important

consideration when evaluating an embedded workload.

Static memory size and memory cachability were

compared with SPEC. In Figure 4, the text and data

segment sizes of MiBench and SPEC2000 are shown.

The two benchmark suites are similarly sized, but

SPEC2000 has slightly larger segments in most cases.

Again, though, MiBench contains more variation. It

has a benchmark with a large 1 Mb text segment

(Ghostscript) like the large 2 Mb text segment of

gcc00. It also has several benchmarks with several

megabyte data segments (typeset, sphinx, PGP). The

largest SPEC data segment in these benchmarks is

around 0.5 Mb (gzip00). It is not known why the lame

segments are so large, but it may be that large tables

are stored rather than recomputed during compression.

The large variations in MiBench’s data segment is

due to the large number of immediate values

(constants) embedded in the source code. Embedded

applications will sometimes have large data tables for

lookups or interpolation. Generally though, embedded

applications have small memory for both data and

instruction segments which can be seen in the common

case text and data segment sizes. Text sizes around

175-200 kilobytes are very normal and mostly due to

inclusion of C standard libraries. Data segments are

generally even smaller at several kilobytes.

As shown above, the benchmarks in MiBench have

a variety of data set sizes. Because of this, MiBench

will have similar cache miss rates on some benchmarks

and much less cache miss rates on other benchmarks.

Figure 5 and Figure 6 show the cache miss rates with

varied associativity and number of sets for some

benchmarks in MiBench. gzip00’s miss rate (not

shown) levels off at just over 0.11 while tiff2rgba

levels off around 0.05. As mentioned previously, these

are the maximum miss rates for any program simulated

in the benchmark sets. Other benchmarks have fewer

misses and look more like Figure 5. The most frequent

miss rate plots have negligible miss rates with

associativity greater than 4-way or size greater than 8

kilobyte.

Also from Figure 5, the miss rates drop drastically

to less than 2% around 4 to 8 kilobytes for most of

MiBench. Some SPEC2000 benchmarks have more of

a capacity issue and don’t reduce miss rates to below

Figure 3: Branch prediction rates for several schemes.

0.001

0.01

0.1

1

10

100

1000

b
as

ic
m

at
h

b
it

co
u

n
t

q
so

rt

su
sa

n
.c

o
rn

er
s

su
sa

n
.e

d
g

es

su
sa

n
.s

m
o

o
th

in
g

jp
eg

.d
ec

o
d

e

jp
eg

.e
n

co
d

e

la
m

e

m
ad

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

ty
p

es
et

d
ij

k
st

ra

p
at

ri
ci

a

g
h

o
st

sc
ri

p
t

is
p

el
l

rs
y

n
th

st
ri

n
g

se
ar

ch

b
lo

w
fi

sh
.d

ec
o

d
e

b
lo

w
fi

sh
.e

n
co

d
e

p
g

p
.d

ec
o

d
e

p
g

p
.e

n
co

d
e

ri
jn

d
ae

l.
d

ec
o

d
e

ri
jn

d
ae

l.
en

co
d

e

sh
a

C
R

C
3

2

F
F

T
.i

n
v

er
se

F
F

T

ad
p

cm
.d

ec
o

d
e

ad
p

cm
.e

n
co

d
e

g
sm

.d
ec

o
d

e

g
sm

.e
n

co
d

e

g
cc

0
0

g
zi

p
0

0

m
cf

0
0

p
ar

se
r0

0

tw
o

lf
0

0

v
o

rt
ex

0
0

M
is

p
re

d
ic

ti
o
n

s
p

er
 1

0
0
0
 I

n
st

ru
ct

io
n

s
bimodal comb gshare nottaken

Auto Consumer Network Office Security Telecomm. SPEC2000

2% until around 16 to 32 kilobytes which is slightly

larger. Some benchmarks like gcc00 and patricia

require more associativity due to random access

patterns. These working sets require more associativity,

but 8-way is sufficient to lower the miss rate

substantially.

Embedded processor caches are typically small

except in multimedia applications. Embedded

applications reuse data so that cache performance is

good. Data sets are also typically either fixed or stream

based. The 32-way cache used in the Current and Next

Generation configurations is unnecessary for the

benchmarks simulated. All the benchmarks in

MiBench have very few misses with more than 4- or 8-

way caches and the number of sets is sufficient at 256-

512 as described previously.

4.4. Benchmark Performance

To do an analysis of IPC in MiBench, three

different microarchitectures were simulated with

SimpleScalar/ARM. The configurations of these

machines are all shown in Table 3. The “Current”

configuration is modeled after published information

on the Intel ARM SA-1 microarchitecture [22].

Similarly, the “Next Generation” configuration is

modeled after published information on the next

generation Intel ARM Xscale microarchitecture [23]

and the “High-end” configuration is modeled after the

Compaq Alpha 21264 microarchitecture.

The results of the simulations with each different

configuration is shown in Figure 7. The greatest IPC

values come from the image manipulation and

multimedia related applications like tiff2rgba, JPEG

decode, tiffmedian, gzip00 and mcf00. The lowest IPC

values are Blowfish, typeset and CRC32, which have

many data dependencies due to the nature of the

encryption, encoding and hashing algorithms.

Surprisingly, ADPCM and Sphinx do relatively well

even though they should have similar dependencies.

The High-end architecture does considerably better

than the Current or Next Generation embedded

architectures. It normally achieves 2 to 3 times the IPC

of the Current and Next Generation configurations.

The Current and Next Generation configurations

have very similar performance on most of the

benchmarks. The Next Generation architecture has a

deeper pipeline, a Bimodal branch predictor and double

the cache of the Current architecture. Since most of the

branches in MiBench and SPEC are easily predictable,

the Current configuration suffers a loss of parallelism

by predicting not taken. This can be seen slightly in

Figure 7, but it doesn’t account for the poor

performance of the Next Generation system. As shown

earlier, most of the benchmarks are easily cachable,

therefore, the performance loss cannot be due to cache

problems. The loss in performance must be due to the

in-order execution and lack of functional units. Since

most benchmarks in MiBench have large basic blocks

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

35
00

00
0

40
00

00
0

45
00

00
0

b
as

ic
m

at
h

b
it

co
u

n
t

q
so

rt

su
sa

n
.c

o
rn

er
s

su
sa

n
.e

d
g

es

su
sa

n
.s

m
o
o

th
in

g

jp
eg

.d
ec

o
d

e

jp
eg

.e
n

co
d

e

la
m

e

m
ad

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

ty
p

es
et

d
ij

k
st

ra

p
at

ri
ci

a

g
h

o
st

sc
ri

p
t

is
p

el
l

rs
y

n
th

sp
h

in
x

st
ri

n
g

se
ar

ch

b
lo

w
fi

sh
.d

ec
o

d
e

b
lo

w
fi

sh
.e

n
co

d
e

p
g

p
.d

ec
o

d
e

p
g

p
.e

n
co

d
e

ri
jn

d
ae

l.
d

ec
o

d
e

ri
jn

d
ae

l.
en

co
d

e

sh
a

C
R

C
3

2

F
F

T
.i

n
v

F
F

T

ad
p

cm
.d

ec
o

d
e

ad
p

cm
.e

n
co

d
e

g
sm

.d
ec

o
d

e

g
sm

.e
n

co
d

e

g
cc

0
0

g
zi

p
0

0

m
cf

0
0

p
ar

se
r0

0

tw
o

lf
0

0

B
y
te

s

Data Text

Auto Consumer Network Office Security Telecomm. SPEC2000

Figure 4: Text and data segment sizes. prediction rates for several schemes.

and easily predictable branches, there is likely just not

enough resources to execute all the parallel

instructions.

5. Conclusions

Embedded processor design requires knowledge of

the embedded task to develop an efficient

microarchitecture. MiBench shows considerably

Figure 5: Cache miss rates for Rijndael (top) and ispell (bottom) with 16 byte lines.

0

5

10

15

20

25

30

35

40

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 262144 524288 262144

Cache Size in Bytes

M
is

se
s

p
er

 1
0
0
0
 I

n
st

ru
ct

io
n

s

1

4

8

0

5

10

15

20

25

30

35

40

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 262144 524288 262144

Cache Size in Bytes

M
is

se
s

p
er

 1
0
0
0
 I

n
st

ru
ct

io
n

s

1

4

8

different characteristics than the SPEC2000

benchmarks when analyzing the static and dynamic

characteristics of embedded processor performance.

The dynamic instruction profile has more variation in

the number of branch, memory, and integer ALU

operations. It also has more variable text and data

memory segment sizes, but the data tends to be more

cachable. MiBench and SPEC2000 both have very

predictable branches. The variation in the number of

instructions per cycle also shows that the benchmarks

fall into the expected control and data intensive

categories.

In the future, more benchmarks will be added to the

MiBench benchmark suite. Future Automotive and

Industrial benchmarks will include software pulse

width modulation (PWM), virtual environment

simulation and a real-time operating system scheduler.

New Network benchmarks will include defragmenting

TCP/IP packet streams and other packet manipulations.

Figure 6: Cache miss rates for tiff2rgba with 16 byte lines.

0

1

2

3

4

5

6

7

8

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 262144 524288 262144

Cache Size in Bytes

M
is

se
s

p
er

 1
0
0
0
 I

n
st

ru
ct

io
n

s

1

4
8

Table 3: ARM Configurations

Current Next Generation High-end

Fetch queue (instructions) 2 4 32

Branch Predictor Not-taken 8k Bimodal, 2k 4-way BTB Combining: 4k Bimodal, 4k

Gshare, 1k 4-way BTB

Fetch & Decode width 1 1 4

Issue width 1 (In-order) 1 (In-order) 4 (Out-of-order)

Functional units 1 int ALU, 1 FP mult, 1 FP

ALU

1 int ALU, 1 FP mult, 1 FP

ALU

1 int ALU, 1 FP mult, 4 FP

ALU

Instruction L1 Cache 16 k, 32-way 32 k, 32-way 64 k, 2-way

Data L1 Cache 16 k, 32-way 32 k, 32-way 64 k, 2-way

L2 Cache None None 512 k, 4-way, unified

Memory (bus width, first

block latency)

4-byte, 12 cycle 4-byte, 12 cycle 8-byte, 18 cycle

6. References

 [1] J.L. Hennessy and D.A. Patterson, Computer

Architecture: A Quantitative Approach, Morgan Kaufmann, San

Francisco, CA, 1996.

 [2] R. Weicker and S. Nixdorf. Dhrystone, CACM, vol. 27,

num. 10, October 1984.

 [3] J.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart.

LINPACK Users Guide, SIAM Pub, Philadelphia, PA, 1979.

 [4] H.J. Curnow and B.A. Wichmann. A Synthetic

Benchmark, The Computer Journal, vol. 19, num. 1, 1976.

 [5] Digital Review. CPU2, ftp://swedishchef.lerc.nasa.gov/

drlabs/cpu.

 [6] C. Lee, M. Potkonjak and H. Mangione-Smith.

MediaBench: A Tool for Evaluating and Synthesizing

Multimedia and Communications Systems, Micro-30, November

1997.

 [7] B. Case. SPEC2000 Retires SPEC92, The

Microprocessor Report, vol. 9, 1995.

 [8] J. Turley, Embedded Processors by the Numbers,

Embedded Systems Programming, http://www.embed-ded.com/

1999/9905/9905turley.htm, May 1999.

 [9] K.L. Kraver, M.R. Guthaus, T.D. Strong, P.L. Bird, G.S.

Cha, W. Hold, R.B. Brown. “A mixed-signal sensor interface

microinstrument,” Sensors and Actuators A, vol. 91, pp. 266-

277, 2001.

 [10] EDN Embedded Microprocessor Benchmark

Consortium, http://www.eembc.org.

 [11] T. Mudge, Power: A First Class Design Constraint for

Future Architectures, IEEE Computer, April 2001, to appear.

 [12] Advanced Encryption Standard, http://www.nist.gov/aes.

 [13] Counterpane Internet Security, Inc. The Blowfish

Encryption Algorithm, http://www.counterpane.com/

blowfish.html, 1993.

 [14] National Institute of Standards and Technology. Secure

Hash Standard, http://www.itl.nist.gov/fipspubs/fip180-1.htm,

April 1995.

 [15] P.R. Zimmermann, The Official PGP User’s Guide. MIT

Press, 1995.

 [16] Silicon Graphics. Tiff Utilities, ftp://ftp.sgi.com/

graphics/tiff, May 1999.

 [17] Aladdin Software. Aladdin Ghostscript, http://

www.cs.wisc.edu/~ghost/aladdin, April 2000.

 [18] International Telecommunication Union. Global

Standard for Mobile Communication, http://www.itu.int,

February 2000.

 [19] International Telecommunication Union.

Recommendation G.726 (12/90) - 40, 32, 24, 16 kbit/s Adaptive

Differential Pulse Code Modulation (ADPCM), http://

www.itu.int, December 1990.

 [20] D.C. Burger and T.M. Austin. The SimpleScalar Tool

Set, Version 2.0. Technical Report CS-TR-97-1342, University

of Wisconsin-Madison, June 1997.

 [21] R. Sugumar and S. Abraham. cheetah - Single-pass

simulator for direct-mapped, set-associative and fully associative

caches, Unix Manual Page, 1993.

 [22] Intel Corporation, “SA-110 Microprocessor Technical

Reference Manual,” ftp://download.intel.com/design/strong/

applnots/27819401.pdf.

 [23] Intel Corporation, “The Intel XScale Microarchitecture

Technical Summary,” ftp://download.intel.com/design/

intelxscale/XScaleDatasheet4.pdf.

 [24] Intel Corporation, “Intel StrongARM SA-110

Microprocessors Instruction Timing,” ftp://download.intel.com/

design/strong/applnots/27819401.pdf.

 [25] Rebel.com, NetWinder Family, http:/www.rebel.com/

netwinder.

Figure 7: Instructions per Cycle (IPC).

0

0.5

1

1.5

2

2.5

3

3.5

b
as

ic
m

at
h

b
it

co
u

n
t

q
so

rt

su
sa

n
.c

o
rn

er
s

su
sa

n
.e

d
g

es

su
sa

n
.s

m
o

o
th

in
g

jp
eg

.d
ec

o
d

e

jp
eg

.e
n

co
d

e

la
m

e

m
ad

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

ty
p

es
et

d
ij

k
st

ra

p
at

ri
ci

a

g
h

o
st

sc
ri

p
t

is
p

el
l

rs
y

n
th

sp
h

in
x

st
ri

n
g

se
ar

ch

b
lo

w
fi

sh
.d

ec
o

d
e

b
lo

w
fi

sh
.e

n
co

d
e

p
g

p
.d

ec
o

d
e

p
g

p
.e

n
co

d
e

ri
jn

d
ae

l.
d

ec
o

d
e

ri
jn

d
ae

l.
en

co
d

e

sh
a

C
R

C
3

2

F
F

T
.i

n
v

er
se

F
F

T

ad
p

cm
.d

ec
o

d
e

ad
p

cm
.e

n
co

d
e

g
sm

.d
ec

o
d

e

g
sm

.e
n

co
d

e

g
cc

0
0

g
zi

p
0

0

m
cf

0
0

p
ar

se
r0

0

tw
o

lf
0

0

IP
C

sa1core xscale highend

Auto Consumer Network Office Security Telecomm. SPEC2000

