Exercises

21.1 Temperature (pages 407-408)

- **1.** Define temperature.
- 2. Explain how a common liquid thermometer works.

Match each number with the corresponding description.

Temperature	Description
3. –273	a. Water freezes on the Celsius scale.
 4. 0	b. Water freezes on the Fahrenheit scale.
 5. 32	c. Water boils on the Celsius scale.
 6. 100	d. Water boils on the Fahrenheit scale.
7. 212	e. Absolute zero on the Celsius scale.

8. Define absolute zero.

9. Identify where each temperature scale is primarily used.

- a. Celsius:_____
- b. Fahrenheit:_____
- c. Kelvin:_____

10. Divisions on the Celsius and Fahrenheit scales are called _____, but divisions on the Kelvin scale are called

11. For an ideal gas, temperature is ______ to the average kinetic energy of molecular translational motion.

12. Define translational motion.

- 13. Is the following sentence true or false? For solids and liquids, temperature is unrelated to the average kinetic energy of molecular translational motion.
- **14.** What is the relationship between the temperature of a substance and the rate of motion of its molecules?

15. Suppose you have a 2-liter pot of boiling water, and you pour out 1 liter of the water. Explain whether the average kinetic energy and temperature of the water in the pot has changed.

21.2 Heat (page 409)

- **16.** Define heat.
- **17.** Describe the spontaneous energy transfer that occurs when you touch a cube of ice.
- **18.** Is the following sentence true or false? A cup of hot water contains more heat than a cup of cold water._____
- 19. Explain the meanings of the terms *thermal energy* and *internal energy*.
- **20.** Define thermal contact.
- **22.** Is the following sentence true or false? Heat always flows from a substance with more total molecular kinetic energy to a substance with less._____
- **23.** Is the following sentence true or false? Heat never flows on its own from a cooler substance into a hotter substance.

21.3 Thermal Equilibrium (page 410)

- **24.** After objects in thermal contact with each other reach the same temperature, the objects are in ______.
- **25.** When a thermometer is in contact with a substance, heat flows between them until ______.
- **26.** Why is it important for a thermometer to be small in comparison to the substance it is measuring?

Name _____ Class _____

Chapter 21 Temperature, Heat, and Expansion

21.4 Internal Energy (page 411)

27. Name four types of energy within substances.

- a. _____ b. _____ C. _____ d. _____
- **28.** _________ is the grand total of all energies inside a substance.

29. What are two ways the internal energy of a substance can change?

- **30.** Describe two ways a substance can change when it absorbs heat. a. _____
 - b. __

21.5 Measurement of Heat (pages 411-412)

- 31. How can you determine the amount of heat transferred from one substance to another?
- **32.** In order to quantify heat, we must specify the _____ and _____ of substance affected.
- **33.** Suppose you place a pot with 1 cup of water and an identical pot with 2 cups of water on a hot stove for the same amount of time. Circle the letters beside the sentences that correctly describe what happens.
 - a. More heat is added to the pot with 2 cups of water.
 - b. The same amount of heat is added to both pots.
 - c. The temperature of the pot with 1 cup of water increases more.
 - d. The temperature increase of both pots is the same.
- **34.** Define calorie.

35. Circle the letter beside the number of kilocalories that equals 50,000 calories.

a.	5	b.	50
c.	500	d.	5000

Name	Class	Date
Chapter 21 Temperature, Heat, and I	Expansion	
36. A Calorie, used to describe the en equivalent to one	ergy of	., is
37. One calorie is equivalent to all forms of energy.	joules, the SI	unit for

21.6 Specific Heat Capacity (pages 413-414)

_.

- 38. The capacity of a substance to store heat depends on its
- **39.** What is specific heat capacity?

Specific Heat Capacities				
Material	(J/g°C)	(cal/g°C)		
Aluminum	0.900	0.215		
Copper	0.386	0.092		
Lead	0.128	0.031		

40. Use the table above to complete these statements.

- a. _____ calorie(s) of heat are needed to raise the temperature of 1 gram of aluminum by 1 Celsius degree.
- b. _____joule(s) of heat are needed to raise the temperature of 2 grams of copper by 1 Celsius degree.
- c. _____joule(s) of heat are needed to raise the temperature of 1 gram of lead by 2 Celsius degrees.
- **41.** Explain this statement: We can think of specific heat capacity as thermal inertia.
- **42.** Why does water have a higher specific heat capacity than iron?

Date ____

Chapter 21 Temperature, Heat, and Expansion

21.7 The High Specific Heat Capacity of Water (pages 415-416)

- **43.** Is the following sentence true or false? Water takes longer to heat to a certain temperature than most substances, and it takes longer to cool._
- 44. Explain why Europe is much warmer than northeastern Canada, even though they are at similar latitudes.
- **45.** The high specific heat of ocean water near the west coast of North America causes the winters there to be ______ and the summers to be ______ than near the east coast.

21.8 Thermal Expansion (pages 416-419)

- 46. Why do most forms of matter expand when they are heated?
- 47. If concrete sidewalks and highway paving were laid down in one continuous piece, cracks would appear as the materials

_____ on hot summer days and ______ ____ on

cold winter days.

- 48. Describe one way that each of the following handles the different rates of thermal expansion in materials.
 - a. Dentist: _____
 - b. Automobile engines: _____
 - c. Civil engineer:
- 49. Roadways on bridges often have tongue-and-groove-type gaps called ______ to allow for thermal expansion.

- **50.** Explain how the bimetallic strip in the figure above is affected in each case.
 - a. Heated by a flame:

b. Cooled by ice:

51. Describe how a thermostat uses a bimetallic strip.

21.9 Expansion of Water (pages 419-422)

- **52.** Water is most dense at a temperature of _____
- **53.** Complete the table by writing *increase* or *decrease* to describe how the volume and density of water changes during each temperature change.

Temperature Change	Change in Volume	Change in Density
0° C to 4° C		
4°C to 10°C		

- **54.** Describe how the thermal expansion and contraction of water is different from most other materials.
- **55.** Explain why water has such an unusual thermal expansion and contraction behavior.

Use the figure below to answer questions 56–60.

- 56. Where does most of the cooling in the pond take place?
- 57. What determines whether the water will float at the surface?
- **58.** What must be true in order for water at 4°C to remain at the surface?
- **59.** What must be true in order for ice to begin forming at the surface of the pond?
- **60.** If only some of the water in a deep pond is 4°C, where will it be?