

HDF5-SRB Model User’s Guide

Peter Cao, NCSA
Mike Wan, SDSC

September, 2005

 NCSA
1205 W. Clark St
Urbana, IL 61801

Phone: 217-244-0072

SDSC
9500 Gilman Drive, MC 0505
La Jolla, CA 92093-0505

Phone :858-534-5000

Table of Contents

1. Introduction .. 5

1.1 Overview of SRB... 5

What is SRB .. 6

SRB architecture ... 6

1.2 Overview of HDF5... 7

What is HDF .. 7

HDF5 file structure... 8

2. The HDF-SRB Model ... 9

2.1 Design requirements ... 9

2.2 The HDF-SRB architecture ... 9

2.3 The data objects.. 10

H5File .. 11

H5Group .. 11

H5Dataset.. 12

2.4 The client and server APIs .. 13

Pack/Unpack routine enhancements... 13

General proxy function .. 14

3 Client and Server Applications .. 17

3.1 The source code ... 17

3.2 Configuring and compiling the SRB server.. 18

Configure and build HDFSRB from scratch... 18

Configure and build HDFSRB from installed SRB .. 18

3.3 Configuring, writing and compiling the client code .. 19

test/Makefile .. 19

Client header files.. 19

Exmaple of .MdasEnv.. 19

Example of . MdasAuth ... 20

3.4 HDFView – the Java client application .. 20

The HDF-SRB JNI ... 20

The Java HDF-SRB objects .. 21

The GUI components .. 22

C H A P T E R O N E I N T R O D U C T I O N

1. Introduction

This document provides information about the HDF-SRB system, and instructions on how to use it.

The HDF-SRB model is a client-server model that provides interactive and efficient access to remote
HDF5 files. Like most client/server model, the HDF-SRB model is implemented on a set of client and
server APIs and message passing scheme. Unlike other client/server model, the HDF-SRB model is
object oriented. The client can access datasets or subsets of datasets in large files without bringing entire
files into local machines.

Storing massive data presents two big challenges: management of distributed data systems and efficient
access to complex data types. The NCSA Hierarchical Data Format (HDF) and the SDSC Storage
Resource Broker (SRB) have addressed the two issues. The SRB is client-server middleware (or grid data
software) that provides a uniform interface and authorization mechanism to access heterogeneous data
resources (UNIX FS, HPSS, UniTree, DBMS, etc.) distributed on multiple hosts and diverse platforms.
The HDF is a file format and software library for storing all kinds of data, simple integers and floats or
complex users defined compound data types. The HDF employs a common data model with standard
library APIs, providing efficient data storage and I/O access.

The HDF and the SRB offer valuable and complementary data management services, but they have not
previously been integrated in an effective way. Earlier work had the SRB accessing HDF data either (a)
by extracting entire HDF files, or (b) by extracting byte-streams through the SRB’s POSIX interface.
Approach (a) fails to take advantage of HDF’s ability to offer interactive and efficient access to complex
collections of objects. Approach (b) has been shown to be far too low-level to perform reasonably for
some data extraction operations.

In discussions between NCSA and SDSC, it has been determined that a more effective approach is
possible, one that uses modified HDF APIs on the server side to extract data from large files at the
instruction of client-side HDF APIs and SRB as middleware to transfer data between the server and
client. This approach would insert the HDF library and other object-level HDF-based libraries (such as
HDF-EOS) between the SRB and a data storage source (such as a file system), making it possible to
extract objects, rather than files or byte streams. Furthermore, these libraries typically offer query,
subsetting, sub-sampling, and other object-level operations, so that these services might also be available.

The HDF-SRB was funded and Sponsored by The National Laboratory for Advanced Data Research
(NLADR), The National Science Foundation (NFS) Partnerships for Advanced Computational
Infrastructure (PACI) Project in Support of an NCSA-SDSC Collaboration. The first phase of the project
was to provide a working prototype of the HDF-SRB system. For more information about the project,
please read the project report at
http://hdf.ncsa.uiuc.edu/hdf-srb-html/HDF-SRB-project-report.html

1.1 Overview of SRB

This section gives a overview of SRB. For deails, visit the SRB website at http://www.sdsc.edu/srb/.

C H A P T E R O N E I N T R O D U C T I O N

What is SRB

The SDSC Storage Resource Broker (SRB) is client-server middleware that provides a uniform interface
for connecting to heterogeneous data resources over a network and accessing replicated data sets. SRB, in
conjunction with the Metadata Catalog (MCAT), provides a way to access data sets and resources based
on their attributes and/or logical names rather than their names or physical locations. SRB provides:

 Distributed data storage in multiple types of storage resources across multiple hosts and OS
platforms.

 A common user interface for transparent access to multiple types of
 storage resources across multiple hosts and OS platforms.
 A global logical name space to make it easy for users to organize thei data.
 A global user name space to make it easy for system administrators to manage user accounts

across multiple hosts and to allow users to use a single sign on to access all resources in the
system.

 A fine-grained access control mechanism.
 A metadata management system which can be used to associate user-defined metadata with data

objects. A well defined metadata querying interface is also provided.

The SRB has been used to implement data grids for data sharing across multiple resources, digital libraries
(to support collection-based management of distributed data), and persistent archives (to manage
technology evolution). The SRB is in widespread use, supporting collections that have up to 25 million
data objects.

SRB architecture

The Storage Resource Broker (SRB) is a middleware that provides distributed clients with uniform access
to diverse storage resources in a heterogeneous computing Environment.

Figure 1 -- A simplified view of the SRB middleware

C H A P T E R O N E I N T R O D U C T I O N

Figure 1 gives a simplified view of the SRB architecture. The model consists of three components: the
meta data catalog (MCAT) service, SRB servers and SRB clients, connected to each other via network.

The MCAT stores meta data associated with data sets, users and resources managed by the SRB. The
MCAT server handles requests from the SRB servers. These requests include information queries as well
as instructions for meta data creation and update.

Client applications are provided with a set of API for sending requests and receiving response to/from
the SRB servers. The SRB server is responsible for carrying out tasks to satisfy the client requests. These
tasks include interacting with the MCAT service, and performing I/O on behalf of the clients. A client
uses the same common API to access every storage systems managed by the SRB. The complex tasks of
interacting with various types of storage system and OS/hardware architecture, are handled by the SRB
server.

1.2 Overview of HDF5

This section gives a brief overview of HDF5. For more details, visit the HDF website at
http://hdf.ncsa.uiuc.edu/

What is HDF

The Hierarchical Data Format (HDF) is a file format for storing and managing scientific data. There are
two basic versions of HDF: HDF4 and HDF5. HDF4 is the earlier version and HDF5 is the new version.
The two versions are incompatible. HDF4 has limit of 20,000 number of objects and 2 gigabytes in file
size. The HDF5 has more improved features and performance. The HDF-SRB system supports HDF5
only.

 HDF5 is a file format for storing all kinds of data. HDF5 can store two primary objects:
datasets and groups. A dataset is essentially a multidimensional array of data elements, and a
group is a structure for organizing objects in an HDF5 file. Using these two basic objects, one can
create and store almost any kind of scientific data structure, such as images, arrays of vectors, and
structured and unstructured grids. You can also mix and match them in HDF5 files according to
your needs

 HDF5 provides efficient data storage and I/O access. HDF5 was created to address the data
management needs of scientists and engineers working in high performance, data intensive
computing environments. As a result, the HDF5 library and format emphasize storage and I/O
efficiency. For instance, the HDF5 format can accommodate data in a variety of ways, such as
compressed or chunked. And the library is tuned and adapted to read and write data efficiently on
parallel computing systems.

 HDF5 is a library with standard APIs. Data can be stored in HDF5 in an endless variety of
ways, so it is important for communities of users to standardize on how their data is to be
organized in HDF5. This makes it possible to share data easily, and also to build and share tools
for accessing and analyzing data stored in HDF5. The NCSA HDF team works with users to
encourage them to organize HDF5 files in standard ways.

 HDF5 provides software and tools. NCSA maintains a suite of free, open source software,
including the HDF5 I/O library and several utilities. The HDF5 user community also develops
and contributes software, much of it freely available. Unlike HDF4, there is little commercial
support for HDF5 at this time, but we are successfully working with vendors to change this.

C H A P T E R O N E I N T R O D U C T I O N

HDF5 file structure

HDF5 files are organized in a hierarchical structure, with two primary structures: groups and datasets.

 HDF5 group: a grouping structure containing instances of zero or more groups or datasets,
together with supporting metadata.

 HDF5 dataset: a multidimensional array of data elements, together with supporting metadata.

Working with groups and group members is similar in many ways to working with directories and files in
UNIX. As with UNIX directories and files, objects in an HDF5 file are often described by giving their
full (or absolute) path names. For example,

/ -- signifies the root group.
/foo -- signifies a member of the root group called foo.
/foo/zoo -- signifies a member of the group foo, which in turn is a member of the root group.

Any HDF5 group or dataset may have an associated attribute list. HDF5 attributes are small named
datasets that are attached to primary datasets, groups, or named datatypes. Attributes can be used to
describe the nature and/or the intended usage of a dataset or group.

Figure 2 -- Structure of an example HDF5 file

C H A P T E R T W O : H D F - S R B M O D E L

2. The HDF-SRB Model

The HDF and SRB technologies deal with data management in different aspect. The HDF emphasis on
efficient data access and complicate data operations on file and SRB focus on data distribution and
storage. The goal of the HDF-SRB model is to bring these two technologies together to create
client/server system with efficient data access.

The HDF-SRB model is implemented on a set of standard client/server APIs and data structures. The
data structures represent the HDF5 objects such as groups, datasets and attributes. Information of client
requests and server results are encapsulated in the data structures and packed into SRB message. A set of
client/server APIs is defined and used to transfer the SRB message between the client and server.

2.1 Design requirements

The following is a list of design requirements applied to the HDF-SRB model.
 The HDF-SRB model should be built on object oriented fashion. Using data objects (or

structures) has multi-fold benefits.
o The current HDF and SRB development is independent of the HDF-SRB model. No

change is needed to the current HDF and SRB. The HDF-SRB model is added to SRB as
new proxy. It does not affect other part of the SRB project. Also, there is no change in the
HDF library. The HDF-SRB model is built on a high-level data objects (or structures).

o It is much easier to support complicated data access such as hyperslab selection in HDF5.
Since information of client request and server results are encapsulated in the data objects
and the data objects are self explained, the client can pass any user requests to the server.

o Easy to write client application based on a standard set of client stubs.
 The HDF-SRB model must be simple

o Use one client API and one server API
o No complicated packMsg()/unpackMsg()

 The HDF-SRB model must be efficient. It has minimum data to transfer between client and
server

o Pack only required data transferred between client and server
o No redundant member object within an object

2.2 The HDF-SRB architecture

The HDF-SRB model consists of four basic components: the client (HDF client application or SRB
client), the HDF-SRB module, SRB server, and the HDF library. Figure 3 illustrates the basic architecture
of the HDF-SRB model.

C H A P T E R T W O : H D F - S R B M O D E L

Figure 3 – HDF-SRB model

Client applications are implemented using a set of APIs provided by SRB for sending requests and
receiving responses to/from the SRB servers. The requests and responses are packed with HDF objects.
The critical component is the HDF-SRB module, which connects the HDF clients to the HDF library on
the server. The HDF-SRB module is responsible for packing and unpacking messages, or HDF objects,
between the SRB and HDF components. The HDF library is installed with the SRB server for interactive
access to HDF files on the server side.

2.3 The data objects

In the HDF-SRB model, data objects are passed between the client and server instead of the entire files.
There are several reasons for object level access. First, passing objects is more efficient than passing an
entire file as passing a large file through the network can be very time consuming. It is sometimes not
practical to transfer files with size of terabytes. For example, if we can just access the metadata in a
terabyte-size file, then, select a small subset of the data, we can reduce the network transfer to a few
megabytes. Second, it is easy to pass complex requests such as sub-setting. Because messages passing
between the client and server are packed in data objects, there is no need to specify the format of the
messages; messages, simple or complex, are self-explained in the object. Thirdly, it is easy to maintain
and extend. Adding a new function to the object will not require any change to the data model

There are three basic data objects: H5File, H5Dataset and H5Group. H5File is used to hold metadata
about the file and the root group of the file. The file structure can be by following the links that flow
from the root group. H5Dataset contains data values and information about the data, such data type and
data space. H5Attribute is similar to H5Dataset, but contains user-defined metadata for groups and
datasets. H5Datatype contains information about the data type of the dataset, such as data type class,
order and size. H5Dataspace contains sizes of the dimensions of dataset. It is also used for the client to
passing information for sub-setting. The following sections will discuss the data objects in details.

Each data object has opID field. The opID is the operation identifier of the client request passed to the
server. Based on the operation identifier, the server will take appropriate action on the file. For example,
H5DATASET_READ operation calls the HDF5 library to read the data from the file.

C H A P T E R T W O : H D F - S R B M O D E L

H5File

H5File contains basic information of a file such as the full path of the file and the root group.

typedef struct H5File
{
 int opID; /* the id of operation to take on the server */
 char *filename; /* the name of the remote file */
 int fid; /* the file ID from H5Fopen() */
 H5Group *root; /* the root group that holds the whole file structure */
 H5Error error; /* strings used to carry error report from server operation */
} H5File;

 filename: The filename is the SRB file name, a unique file name within a SRB storage. When you
select a file from SRB storage, you get a SRB file with a logic SRB file path plus the user defined
file name. For example, in /A/home/srbAdmin.demo/test.h5, /A/home/srbAdmin.demo is the
logic file path in SRB and test.h5 is the user file. The logic file path does not have any meaning to
the client, it is used for the server to map the SRB file to the local file that is the physical file on
the server.

 fid: The fid is the file identifier from H5Fopen(). The file is open until H5Fclose(fid) is called.
The fid is kept in all the object structure so that the file is open only once and file information is
cached on the server for better performance.

 root: The root is the root group of the file. When client send “FILE_OPEN” request to the
server, the server will call H5Fopen() and retrieve the file structure stored in the group structure
and send it to the client. By traversing the group structure starting at the root group, the client will
be able to construct the file structure.

 opID: The opID is the file operation identifier. The file operation identifier tells the server what
operation the client have requested. The following is a list of valid operations on file:

FILE_OPEN: This operation will call H5Fopen() and retrieve the structure of the file
into groups. By traversing the group structure starting at the root group, the client will be
able to construct the file structure.
FILE_CLOSE: This will cause to server to call H5Fclose() to close all the resources on
the server side.
FILE_CREATE: Create a new file on the server (not supported)
FIEL_DELETE: Delete an existing file on the sever (not supported)

H5Group

H5Group holds the structure of one group in the file. The H5Group struct contains the full path of the
group in the file, a list of group members (datasets and sub-groups), and an array of attributes.

C H A P T E R T W O : H D F - S R B M O D E L

typedef struct H5Group
{
 int opID; /* the id of operation to take on the server */
 int fid; /* the file ID from H5Fopen() */
 unsigned long objID[2]; /* uniquely object identifer [from server] */
 char *fullpath; /* the path + name, e.g. /hdfeos/swaths */
 struct H5Group *parent; /* the parent group */
 int ngroups; /* number of group members in this group */
 struct H5Group *groups; /* subgroup members of this group */
 int ndatasets; /* number of dataset members in this group */
 H5Dataset *datasets; /* dataset members of this group */
 int nattributes; /* number of attributes of this group */
 H5Attribute *attributes; /* attributes of this group */
 H5Error error; /* strings used to carry error report from server operation */
} H5Group;

 fullpath: The fullpath is the group full path within a file, the group path plus the group name.

For example, /hdfeos/swaths
 groups: An array of group members.
 datgasets: An array of dataset members.
 Attributes: An array of attributes attached to the group.
 opID: Group operation identifier. The operation identifier tells the server what operation the

client have requested. The following is a list of valid operations on groups:
GROUP_CREATE: Create a new group in the file (not supported).
GROUP_DELTE: Delete a group from the file (not supported).
GROUP_ATTR_READ: Retrieve all attributes attached to the group.
GROUP_ATTR_WRITE: Write an attribute value to the group (not supported).
GROUP_ATTR_CREATE: Attach a new attribute to the group (not supported).
GROUP_ATTR_DELETE: Delete an attribute from the group (not supported).

H5Dataset

The H5Dataset contains information of a dataset, such as the full path of the dataset, the datatype and
dataspace, data that has been read from or is to be written to the dataset, and an array of attributes.

C H A P T E R T W O : H D F - S R B M O D E L

typedef struct H5Dataset
{
 int opID; /* the id of operation to take on the server */
 int fid; /* the file ID from H5Fopen() */
 unsigned long objID[2]; /* uniquely identify an object in a file [from server] */
 H5Datatype_class_t tclass; /* same as class in H5Datatype. Put here for packing */
 char *fullpath; /* the path + name, e.g. /hdfeos/swaths/data fields/channel */
 int nattributes; /* number of attributes */
 H5Attribute *attributes; /* array of attributes */
 H5Datatype type; /* the data type */
 H5Dataspace space; /* the data space */
 unsigned int nvalue; /* the number of bytes in the buffer *value */
 void *value; /* the data read from file or write to file */
 H5Error error; /* strings used to carry error report from server operation */
} H5Dataset;

 fullpath: The fullpath is the dataset full path within a file, e.g. /foo/datasts/d1
 type: The data type.
 space: The data space. The client will use the space information to determine the data size.
 value: The value is the values of the dataset retrieved from the file. The server calls H5Dread()

and fill the value buffer with data from the file. Since the client cannot interpret complex data
such as compound dataset and variable length dataset, the data values are converted into strings
on the server before they are dent to the client.

 Attributes: An array of attributes attached to the dataset.
 opID: Dataset operation identifier. The operation identifier tells the server what operation the

client have requested. The following is a list of valid operations on datasets:
DATASET_READ: Read an entire dataset or a subset.
DATASET_WRITE: Write data to the dataset (not supported).
DATASET_CREATE: Create a new dataset in the file (not supported).
DATASET_DELTE: Delete a dataset from the file (not supported).
DATASET_ATTR_READ: Retrieve all attributes attached to the dataset.
DATASET_ATTR_WRITE: Write an attribute value to the dataset (not supported).
DATASET_ATTR_CREATE: Attach a new attribute to the dataset (not supported).
DATASET_ATTR_DELETE: Delete an attribute from the dataset (not supported).

2.4 The client and server APIs

The SRB client/server software needs to be enhanced to support HDF5 because of the very complex
nature of the HDF5 data structures and request characteristics. The enhancements include the
pack/unpack routines, new proxy functions for server and client.

Pack/Unpack routine enhancements
The SRB pack/unpack routines must be enhanced to accommodate the HDF5 data structures. In SRB,
the pack/unpack routines are used to send and receive data structure between clients and server. For
example, for a typical client request, the input data structure is packed into a single byte stream and sends

C H A P T E R T W O : H D F - S R B M O D E L

to the server which in turns unpacks the byte stream it received back into the input data structure before
the request is processed. The pack/unpack routines are also used to send and receive the output data
structure from the server to client. Two upgrades to the pack/unpack routines were needed to handle the
HDF5 data structure:

 Handles data structures containing deeply nested data structures. An example is the H5Group
struct which may contain an array of H5Group struct as its sub-groups. Each one of these sub-
groups may again contain their own sub-groups forming an hierarchical tree of group and sub-
groups. The SRB pack/unpack routines are now able to drill down and recursively pack and
unpack hierarchical structures.

 Handles data structures containing members with data types depending on the setting of other
members. For example, the H5Dataset struct contains a generic member "void* value". "value"
can be a pointer to an array of string or an array of character depending on the setting of another
member - "class". If the value of "class" is set to H5DATATYPE_STRING (3),
H5DATATYPE_COMPOUND (6) or H5DATATYPE_VLEN (9), "value" is a pointer to an
array of string. Otherwise, "value" is a pointer to an array of character. The SRB pack/unpack
routines are now able to pack and unpack structures with dependent data type based on some
new syntax in the packing instruction.

General proxy function
We implemented a new and more general SRB proxy function framework to make it easier to implement
and handle HDF5 requests which can be quite complex. On the client side, a user calls a new client API -
srbGenProxyFunct() to make proxy request. One of the input parameter of this function - "functType"
specifies the type of proxy function being requested.

On the server side, the svrGenProxyFunct () function is used to dispatch the proxy function call. It uses
the genProxyFuncEntries[] table, which is defined in genProxyFunct.h to determine which proxy function
to call to handle the request. Currently, the genProxyFuncEntries[] is defined as follows:

genProxyFunc_t genProxyFuncEntries[] = {
 {HDF5_OPR_TYPE, (func_ptr) h5ObjProcess},
};

The table contains only one entry, the HDF5 type (HDF5_OPR_TYPE) proxy function. The
h5ObjProcess() function will be called to handle the HDF5_OPR_TYPE request. To implement
additional types of proxy functions, one needs to simply add more entries to the genProxyFuncEntries[]
table and functions to handle these type of requests on the server.

The prototype for the client API - srbGenProxyFunct() is given as follows:

int srbGenProxyFunct (
srbConn *conn, int functType, int intInput1, int intInput2,
char *strInput1, char *strInput2, void *inputStruct, FormatDef inputFormat,
void **outputStruct, FormatDef outputFormat, FormatDefConst *localDef,
int maxOutSz)

where

 srbConn* conn - From srbConnect ().

C H A P T E R T W O : H D F - S R B M O D E L

 int functType -The type of proxy operation. e.g., HDF5_OPR_TYPE
 int intInput1 - an arbitrary integer input that will be passed to the
 proxy function handler on the server side.
 int intInput2 - an arbitrary integer input.
 char *strInput1 - an arbitrary string input.
 char *strInput2 - an arbitrary string input.
 void *inputStruct - Pointer to input struct.
 FormatDef inputFormat - packing format for inputStruct.
 void *outputStruct - Pointer to output struct.
 FormatDef outputFormat - packing format for outputStruct;
 FormatDefConst *localDef - Local Format definition. NULL means no Local
 Local Format definition.
 int maxOutSz - the max size of packed output

Packing of the input struct and unpacking of the output struct are done automatically in this routine. The
"inputFormat" specifies the instruction for packing the input struct and the "outputFormat" specifies the
instruction for unpacking the output struct.

The srbGenProxyFunct() client API and the server proxy function handling routine form a simple and
flexible framework for implementing SRB proxy functions.

C H A P T E R T H R E E : A P P L I C A T I O N S

3 Client and Server Applications

In this chapter, we will discuss the HDF-SRB source code, instruction on how to setup a server and how
to write a client application. As client application, we will give two examples, a standalone C application
and an Java application implemented in the NCSA HDFView.

3.1 The source code

The HDF-SRB source code is part of the SRB source distribution version 3.4.x or above. The HDF-SRB
source code is located at SRB3_4_x/proxy/hdf5. The source code is organized as following:

proxy
hdf5

 include
 h5Attribute.h

h5Dataset.h
h5Dataspace.h
h5Datatype.h
h5File.h
h5Group.h
h5Handler.h
h5Object.h
h5String.h
hdf5PackDefExtern.h
hdf5PackDef.h

 common
h5Ctor.c
h5Dtor.c

 client
 clH5Dataset.c

clH5File.c
clH5Group.c
h5ClHandler.c
h5LocalHandler.c

 server
h5Attribute.c
h5Dataset.c
h5File.c
h5Group.c
h5Object.c
h5String.c
h5SvHandler.c

 test
 test_h5File.c
 Makefile

The “include” directory contains all the header files needed by the client and the server. The “common”
directory has two files: h5Ctor.c and h5Dtor.c. h5Ctor.c contains code for initializing the data structures

C H A P T E R T H R E E : A P P L I C A T I O N S

and h5Dtor is for clean up memory for the data structure. The “client” directory contains code only
needed by the client such as the client handlers. The “server” directory is the server code, which include
server handlers and implementation of the data structures. The test_h5File.c is a C example of how to
write HDF-SRB client application. It is also used to test the HDF-SRB model.

3.2 Configuring and compiling the SRB server

This section gives instruction for configuring and compiling the SRB server code to support HDF5/SRB
interface.

Currently, we don't have a way to configure HDF5 using the install.pl script for the combine installation
of the Postgres MCAT and SRB software. However, the SRB software alone can be configured and built
to support HDF5.

Configure and build HDFSRB from scratch

To configure and build the SRB client/server software that supports HDF5 from scratch, the following
steps should be taken:

a) Download the source from http://www.sdsc.edu/srb/ , decrypt and untar the SRB software.
b) Download and install pre-compiled zlib, szip and hdf5 library from

http://hdf.ncsa.uiuc.edu/HDF5/release/obtain5.html.
c) cd to the main SRB directory. e.g., "cd SRB3_4"
d) Configure the SRB software to support HDF5 by typing in:

configure --enable-hdf5 \
 --enable-hdf5home=<hdf5path> \
 --enable-zlib=<zlibpath> \

 --enable-zip=<szippath>
where, hdf5path is the directory where the hdf5 library is installed. zlibpath and szip is where the
zlib and szip installed respectively. For example,
configure --enable-hdf5 \

--enable-hdf5home=/home/srb/hdf5-1.6.4/build\
--enable-szip=/home/srb/lib_external/zlib121-linux2.4\
--enable-zlib=/home/srb/lib_external/szip2.0-linux-enc

e) Type in "gmake" to make the software, and follow the SRB instruction on how to start the server.

Configure and build HDFSRB from installed SRB

If the SRB software has been built using the install.pl script, the SRB software needs to be rebuilt in order
to support HDF5. For example,

a) cd to the main SRB directory. e.g., "cd SRB3_4"
b) Type in “gmake clean”

To configure the SRB software to support HDF5, the configure command line options given in
the config.log file plus the hdf5 option

 --enable-hdf5 \
 --enable-hdf5home=<hdf5path> \

C H A P T E R T H R E E : A P P L I C A T I O N S

 --enable-zlib=<zlibpath> \
 --enable-zip=<szippath>

c) Type in "gmake" to make the software.

It should be noted that before starting the SRB server, the HDF5 library path should be included in the
LD_LIBRARY_PATH path. e.g.,
 setenv LD_LIBRARY_PATH /home/srb/hdf5-1.6.4/build/lib

3.3 Configuring, writing and compiling the client code

The test client program given in the proxy/hdf5/test directory can be use to illustrate the steps needed to
compile and build a client program using the HFD5/SRB interfase.

test/Makefile

The Makefile given in the proxy/hdf5/test directory should be used as a template to build a client
program. The make requires that the client to have access to the SRB source tree and build environment.
The following modifications may be required:

a) a) The definition of "srbBuildDir" given at the beginning of the file "srbBuildDir" is the directory
where the SRB server is built. Currently it is set to "../../.." since the test program is built under
the same build tree. This directory can be set to an absolute path.

b) b) The steps that are normally taken when configuring the Makefile - replacing the names of .c, .o
and executable files with your own files. e.g., replacing test_h5File.c, test_h5File.o and t5 with
your file names.

Client header files
The client program should contains the following header files:

#include "h5File.h"
#include "h5Handler.h"
#include "hdf5PackDef.h"

Before the client program can be run, the SRB client user environment should be set up first. e.g., setting
up the ~/.srb/.MdasEnv and ~/.srb/.MdasAuth files. The client program will look for the server options
to make server connection.

Exmaple of .MdasEnv

mdasCollectionName '/A/home/srbAdmin.demo'
mdasCollectionHome '/A/home/srbAdmin.demo'
mdasDomainName 'demo'
mdasDomainHome 'demo'
srbUser 'srbAdmin'
srbHost 'server.host.machine'
srbPort '5544'
defaultResource 'demoResc'

C H A P T E R T H R E E : A P P L I C A T I O N S

AUTH_SCHEME 'ENCRYPT1'

Example of . MdasAuth

srbPasswd2005

3.4 HDFView – the Java client application

The HDFView is a visual tool for browsing and editing NCSA HDF4 and HDF5 files. Using HDFView,
you can

 view a file hierarchy in a tree structure
 create new file, add or delete groups and datasets
 view and modify the content of a dataset
 add, delete and modify attributes
 replace I/O and GUI components such as table view, image view and metadata view

For more details on HDFView, visit the NCSA HDFView webpage at http://hdf.ncsa.uiuc.edu/hdf-java-
html/hdfview/index.html.

Supporting HDF-SRB in HDFView requires implementing HDF-SRB Java Native Interface(JNI) and
adding new GUI components and data object.

The HDF-SRB JNI

The Java language defines its own virtual machine and instruction set. This design makes Java easy to
program and very portable. However, Java programs cannot use code written in any language except
Java.

In order to provide a minimal level of interoperability with other languages, the Java Native Interface
(JNI) defines a standard for invoking C and C++ subroutines as Java methods (declared 'native'). The
Java Virtual Machine (JVM) implements a platform-specific mechanism to load C or C++ libraries, and
to call the native methods on behalf of the Java programs.

So, to access a C library from a Java program, four tasks must be completed:

a) Declare appropriate 'native' methods in one or more Java classes
b) Write 'glue' code for each native method to implement the JNI C or C++ standard
c) compile the JNI glue (C or C++) to create a JNI library
d) deploy the Java classes and the JNI library on the system

When the Java program runs, the JNI glue and C library must be in the 'java.library.path' path.

The HDF-SRB JNI consists of an Java class and dynamically linked native library. The Java class declares
static native methods, and the library contains C functions which implement the native methods. The C
functions call the standard HDF-SRB client module.

The HDF-SRB JNI class contains only one native interface, h5ObjRequest(). h5ObjRequest () does two
things: load the dynamic library and pass client requests to the C function.

C H A P T E R T H R E E : A P P L I C A T I O N S

public synchronized static native int h5ObjRequest
 (String srb_info[], Object obj, int obj_type) throws Exception;

The dynamic library (C implementation of the native interface) wraps the SRB client and converts data
object between C and Java. When client calls the Java interface h5ObjRequest(), the dynamic library does
the following tasks:

a) Make connection to the SRB server
b) Decode the Java object and construct C structure
c) Send requests to the server in the form of C structure
d) Encode server result in to Java object

The Java HDF-SRB objects

HDFView is implemented on the HDF Object Package. The HDF Object Package is a Java package
which implement HDF4 and HDF5 data objects in an object-oriented form. The HDF Java Object
Package provides a common standard Java API to access both HDF4 and HDF5 files.

The HDF Object Package, ncsa.hdf.object, provides classes that reflect fundamental conceptual to design
of HDF objects. Objects of HDF5 (group and dataset) and HDF4 (group, multi-dimension array, raster
image, vdata and annotation) are presented as Java classes. It has three major goals:

a) simplifies the process of reading information from or writing data to file.
b) hides the HDF4 and HDF5 libraries from applications.
c) provides modular HDF4 and HDF5 packages. Applications can be built by using only the

common object/interface layer
For more information on the HDF Object Package, visit http://hdf.ncsa.uiuc.edu/hdf-java-html/hdf-
object/index.html.

To support HDF-SRB data objects, we have implemented the following Java package, ncsa.hdf.srb.obj,
which is inherited from the common object layer.

 H5SrbFile extends FileFormat
 H5SrbGroup extends Group
 H5SrbScalarDS extends ScalarDS
 H5SrbCompoundDS extends CompoundDS
 H5SrbDatatype extends Datatype

These objects implement methods to deal with the client requests and data from the server. The native
call, h5ObjReques(), pass the information through the objects. For example, the following code is how
the we read data from remote file using H5SrbScalarDS::read().

C H A P T E R T H R E E : A P P L I C A T I O N S

 public Object read() throws Exception, OutOfMemoryError
 {
 String srbInfo[] = ((H5SrbFile)getFileFormat()).getSrbInfo();
 if (srbInfo == null || srbInfo.length<5) return null;

 opID = H5DATASET_OP_READ;
 H5SRB.h5ObjRequest (srbInfo, this, H5SRB.H5OBJECT_DATASET);

 return data;
 }

The GUI components

Since HDFView is built on modular fashion, the GUI components are transparent to data access. There
is not much change to the GUI components. We added SRBFileDialog class to the GUI. SRBFileDialog
is used to make connection to server through the Java Api for Real Grids On Networks (JARGON).
JARGON is a pure java API for developing programs with a data grid interface. The API currently
handles file I/O for local and SRB file systems, as well as querying and modify SRB metadata. For more
information on JARGON, read http://www.sdsc.edu/srb/jargon/index.html.

You will go through the following steps to access file and data on SRB server.

a) Select “Open from SRB” from the “File” menu, which calls the Jargon APIs to make a server
connection and gets a list of files on the server.

C H A P T E R T H R E E : A P P L I C A T I O N S

b) Select a file from the file list to open. It creates an instance of H5SrbFile and calls the
H5SrbFile::open(), which invokes the JNI call, h5ObjRequest(), to open the file at the server and
request the file structure.

Once you have the file stru

c) cture in the HDFView, you can make other client requests on the file.
For example, open a subset of a dataset.

C H A P T E R T H R E E : A P P L I C A T I O N S

Using HDFView, you can also open files from multiple SRB servers that support HDF5. To add server
connections, you use the “User Options” from the “Tools” menu.

C H A P T E R T H R E E : A P P L I C A T I O N S

