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a b s t r a c t

25While there is widespread agreement among vision researchers on the importance of some local aspects

26of visual stimuli, such as hue and intensity, there is no general consensus on a full set of basic sources of

27information used in perceptual tasks or how they are processed. Gestalt theories place particular value on

28emergent features, which are based on the higher-order relationships among elements of a stimulus

29rather than local properties. Thus, arbitrating between different accounts of features is an important step

30in arbitrating between local and Gestalt theories of perception in general. In this paper, we present the

31capacity coefficient from Systems Factorial Technology (SFT) as a quantitative approach for formalizing

32and rigorously testing predictions made by local and Gestalt theories of features. As a simple, easily con-

33trolled domain for testing this approach, we focus on the local feature of location and the emergent fea-

34tures of Orientation and Proximity in a pair of dots. We introduce a redundant-target change detection

35task to compare our capacity measure on (1) trials where the configuration of the dots changed along

36with their location against (2) trials where the amount of local location change was exactly the same,

37but there was no change in the configuration. Our results, in conjunction with our modeling tools, favor

38the Gestalt account of emergent features. We conclude by suggesting several candidate

39information-processing models that incorporate emergent features, which follow from our approach.

40� 2015 Published by Elsevier Ltd.

41

42

43
44 1. Introduction

45 One of the central problems in vision science concerns the pro-

46 cess by which raw visual input is organized into meaningful per-

47 cepts that can ultimately be used to make decisions (Kimchi,

48 Behrmann, & Olson, 2003; Palmer, 1999). Accounts of many

49 perceptual tasks, such as visual search (Wolfe, 1994),

50 object-recognition (Biederman, 1987), attention allocation

51 (Moore & Egeth, 1998), categorization (Kruschke, 1992, 1986)

52 and memory (Luck & Vogel, 1997), rely on the notion of perceptual

53 ‘‘features’’, the elemental information that the perceptual system

54 extracts from raw visual input and builds into percepts.

55 Examples of proposed features range from basic physical proper-

56 ties like the hue, intensity, or location of an item in a scene to

57stimulus-specific properties like the eyes of a face or line orienta-

58tions of block letters. Despite the importance of features in the psy-

59chological literature, there is no consensus about which of the

60infinite set of possible features are most informative, and how they

61interact in different contexts (Pinker, 1984; Pomerantz & Portillo,

622012; Schyns, Goldstone, & Thibaut, 1998; Treisman, 1988;

63Wolfe & Horowitz, 2004). This problem is also crucial for work in

64machine learning and computer vision, where systems must

65encode or learn a feature ‘vocabulary’ over which to make infer-

66ences (e.g. Austerweil & Griffiths, 2011; Blum & Langley, 1997).

67To some extent, the debate over Gestalt processing is primarily

68a debate over features: when the perceptual system encounters a

69complex stimulus, does it break the stimulus into a set of local fea-

70tures that are subsequently pieced together into a percept, or does

71it act directly on higher-order (emergent or holistic) features that

72cannot be decomposed? We call the former view the local theory

73of features and the latter the Gestalt theory. In this paper, we pre-

74sent the capacity coefficient, CðtÞ, as a quantitative tool to arbitrate

75between these two views on features, and therefore as an approach

76to quantitatively test the predictions of Gestalt theory in general.

77The capacity coefficient is a nonparametric measure of work-

78load capacity that derives from an extensive body of work using

http://dx.doi.org/10.1016/j.visres.2015.04.019
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79 stochastic processes to model reaction time distributions under

80 different information-processing constraints. This measure is part

81 of a set of related tools for assessing the architecture, stopping rule,

82 and independence of channels, known collectively as Systems

83 Factorial Technology (SFT; Townsend & Nozawa, 1995). The capac-

84 ity coefficient measures change in performance as additional items

85 are added to the display, giving a principled way of integrating

86 reaction time distributions about the ‘parts’ to make predictions

87 about the ‘whole’. Thus, the capacity coefficient can be directly

88 interpreted as a measure of processing efficiency, which can be com-

89 pared to the performance of certain well-defined benchmark mod-

90 els such as the parallel race model (Miller, 1982, 1991).

91 In brief, we define the capacity coefficient in terms of process-

92 ing times for two sources of information: A and B presented either

93 together or in isolation. Using the response times produced when

94 the sources are presented in isolation, we estimate the predicted

95 response time distribution when presented together assuming a

96 parallel race model (i.e., A and B are processed in parallel at the

97 same rate they would be if they were in isolation and a response

98 occurs as soon as either of A or B are finished processing). In the

99 capacity coefficient, we carry out the comparison between pre-

100 dicted performance and observed performance (with both sources

101 present) in terms of the cumulative hazard function,

102 HðtÞ ¼ � logðFðtÞÞ, where FðtÞ is the cumulative distribution func-

103 tion. In these terms, the ratio of the redundant-target hazard func-

104 tion (the ‘whole’) and the sum of the individual channel hazard

105 functions (the ‘parts’) should be equal to one. Ratio values below

106 one indicate worse performance than a race model while above

107 one indicates better performance than a race model. Further details

108 of the measure are given below in the Systems Factorial Technology

109 section.1
110

CðtÞ ¼
HABðtÞ

HAðtÞ þ HBðtÞ
ð1Þ

112112

113 The application of a model-based approach in general, and an

114 approach based on the capacity coefficient in particular, yields a

115 number of advantages for the quantitative study of emergent fea-

116 tures and Gestalt perception:

117 (i) Framing the problem of configural perception in terms of

118 workload capacity supplements and enriches the vocabulary

119 typically used to characterize Gesalt phenomena. This is in

120 line with the larger push toward theory-driven methodology

121 in the psychological sciences: by considering the capacity

122 coefficient as a theoretical construct, we can design a tar-

123 geted, well-controlled experiment which may also show dif-

124 ferences at the mean RT level.

125 (ii) A model-based analysis is a first step in moving beyond the

126 crucial, foundational taxonomy-building stage exemplified

127 by Pomerantz and colleagues (Pomerantz, 1983;

128 Pomerantz & Portillo, 2011; Treisman & Paterson, 1984) to

129 pin down not only whether certain configural features exist,

130 but how they are processed, at an algorithmic level. The

131 capacity coefficient allows us to pose questions about the

132 manner in which different sources of information are inte-

133 grated (or not) in more complex stimuli, about which chan-

134 nels of information are salient in the first place, and about

135 various ways in which processing differs from baseline mod-

136 els of theoretical interest.

137 (iii) The capacity coefficient provides a more theoretically princi-

138 pled, robust, and interpretable measure of efficiency than

139 mean RT or accuracy can capture. In other words, if we

140would like to characterize the efficiency with which the per-

141ceptual system processes configural features, compared to

142local features, traditional measures like mean RT and accu-

143racy are often insufficient for discriminating among even

144basic properties of perceptual processes (e.g., see

145Townsend, 1990a & Townsend, 1990b).

146

147In previous studies, the capacity coefficient has been used to

148model configural effects in the word processing (Houpt,

149Townsend, & Donkin, 2014), face processing (Burns, Houpt, &

150Townsend, 2010), perceptual learning (Blaha, 2011), audio-visual

151integration (Altieri & Townsend, 2011), and visual feature discrim-

152ination (Eidels, Townsend & Pomerantz, 2008) domains. However,

153the complex, domain-specific nature of the stimuli used in these

154studies makes it difficult to generalize their conclusions to the

155overarching theory of Gestalt processing.

156Consider, for example, the aforementioned study by Eidels,

157Townsend and Pomerantz (2008). In their study, participants were

158presented with stimuli akin to those used by Pomerantz, Sager

159and Stoever (1977): various combinations of a diagonal line (either

160left, \, or right, /) and a right angle (open either to the right, x, or to

161the left, y). Capacity was estimated from response-time data to

162inform analyses of the underlying processing mechanisms.

163However, the complex interplay between basic features such as

164lines and angles and higher order features such as closure, symme-

165try, and even topological similarities between items in the set had

166made it hard to interpret each effect in isolation (additionally,

167these researchers were not ultimately interested in isolating effects

168of selected features).

169In the current study we conducted a careful manipulation of the

170features posited by Gestalt theory by focusing on one of the sim-

171plest perceptual tasks in which the local and Gestalt views come

172into direct conflict: detecting a location change in a pair of dots.

173Based on the capacity coefficient predictions, we developed a suit-

174able redundant-target task to collect the reaction time data needed

175to compute capacity for different combinations of two of the

176lowest-level configural features posited by the Gestalt view in a

177pair of dots, Orientation and Proximity, and tested how they affect

178our model-informed capacity measure. Answering this question

179in an easy-to-control domain, where we can isolate features, may

180shed light on the processing mechanisms that underlie Gestalt per-

181ception in general.

1821.1. Components or configurations?

183Historically, there have been two main schools of thought on

184what constitutes a feature. The first supposes that a perceptual

185scene can be segmented into component pieces (e.g. the eyes, nose,

186and mouth of a face or the objects in a visual array), and the intrin-

187sic physical properties of those pieces (e.g., location, color, bright-

188ness, size, spatial frequency) are the fundamental sources of

189perceptual information (e.g. Luck & Vogel, 1997; Nosofsky, 1986;

190Treisman & Gelade, 1980; Wolfe & Horowitz, 2004).

191Typically, these features are characterized as static and able to

192be processed independently of one another, perceived as the same

193whether they appear together or in isolation (Garner, 1974;

194Rogosky & Goldstone, 2005). Local properties are easily extracted

195from a stimulus using image processing algorithms and are there-

196fore implicitly utilized in template matching techniques, making

197local features popular and successful in computer vision (e.g.

198Brunelli & Poggio, 1993; Li & Allinson, 2008).

199Another perspective comes from Gestalt studies demonstrating

200that people perceive a whole as different from the sum of its parts.

201For example, Tanaka and Farah (1993, 2003) showed that parts of a

202face are more easily recognized when presented in the context of a

203whole face than in isolation (but see Gold, Mundy, & Tjan, 2012).

1 See Townsend and Nozawa (1995) and Houpt and Townsend (2012) for

mathematical derivation and treatment of the capacity coefficient.
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204 Here, the most salient, fundamental sources of information (or fea-

205 tures) are not local, but global (e.g. Navon, 1977; Pomerantz &

206 Kubovy, 1986). They are present in the configuration or organization

207 of the parts, which may be processed without decomposition into a

208 more fundamental set of independent features (although such

209 late-stage decomposition may occur on an ‘as-needed’ basis; see

210 General Discussion). They are therefore called emergent features,

211 since adding new components can induce extra information

212 beyond what is predicted by each component being processed in

213 isolation, possibly through some higher-order feature detector or

214 unitization process (Blaha, Busey, & Townsend, 2009;

215 Hendrickson & Goldstone, 2009).

216 The primordial examples of emergent features arose in the con-

217 text of grouping. For instance, when participants are presentedwith

218 a lattice of dots where the horizontal distances between dots are

219 smaller than vertical distances, they report that the induced hori-

220 zontal lines are the most salient organization. When the horizontal

221 distances are increased to a higher value than the vertical distances,

222 however, the percept flips: participants report an organization into

223 vertical lines. The properties of individual dots are subsumed by

224 their overall organization, and the phenomenology is controlled

225 by a small set of parameters (Kubovy & Gepshtein, 2003).

226 Note that this distinction between local and Gestalt theories of

227 features operates on a process- or computational-level of analysis

228 and does not necessarily map onto any clean distinction between

229 regions of neural processing. It may be tempting to associate ‘local’

230 features with the properties detected by neurons in low-level

231 visual cortex (e.g. V1) and ‘Gestalt’ features with properties

232 detected in higher-level ventral stream areas, (e.g. the fusiform

233 face area), but this prediction certainly does not follow from the lit-

234 erature on Gestalt processing. Indeed, there is also evidence that

235 some emergent features, like Orientation and Proximity, may be

236 detected in low-level visual areas (Von der Heydt, Peterhans, &

237 Baumgartner, 1984). Though important, these questions are

238 outside the scope of the general information-processing paradigm

239 that we take in this paper.

240 1.2. Pomerantz and the odd-quadrant task

241 Many further examples of emergent features have been discov-

242 ered outside the grouping domain as well. Early evidence for the

243 salience of emergent features in perception came from an

244 odd-quadrant paradigm (see Fig. 1). In its original formulation, par-

245 ticipants were presented with a four-panel display with three of

246 the panels containing the same stimulus and the fourth containing

247 a different stimulus (Pomerantz, Sager & Stoever, 1977). The

248 participant was asked to pick the ‘odd-quadrant’ as quickly and

249 accurately as possible. In some trials, the ‘component’ appeared

250 in isolation. For instance, a single dot was presented at the bottom

251 left of three panels and at the top or mid-left of the fourth panel

252 (see Fig. 1(a)). In other trials, some non-informative context

253 (Fig. 1(b)) was added to all quadrants to form a composite stimulus

254 (Fig. 1(c)).

255 This context was non-informative in the sense that no local

256 information about it could be used to distinguish the

257 odd-quadrant. However, it often impacted reaction times and

258 accuracy in the composite condition. When the configuration

259 induced by the context improved performance, it was called a

260 configural-superiority effect; when it negatively affected perfor-

261 mance, it was called a configural-inferiority effect. Over the years,

262 Pomerantz and colleagues (Pomerantz, 1983; Pomerantz &

263 Portillo, 2011; Treisman & Paterson, 1984) have postulated a num-

264 ber of emergent features for lines and dots which could account for

265 these results.

266 An isolated dot is defined solely by its spatial coordinates in the

267 plane. When additional dots are added, their x coordinate and y

268coordinate provide additional sources of information, but new fea-

269tures also emerge from the relationship between the dots. These

270new features include Proximity (distance between dots),

271Orientation (angle of implicit line between dots), Linearity

272(whether three dots or more appear along the same imaginary

273line), and Surroundedness (if one dot is in the interior of an imag-

274inary polygon formed by at least three other dots).

275Pomerantz and Portillo (2011) lay crucial groundwork for build-

276ing a taxonomy of emergent features, by comparing response times

277across various conditions. In the present work, we take one step

278further, investigating not just what kinds of emergent features

279exist, but how they are processed at the algorithmic level of anal-

280ysis. We focus specifically on the simplest case in which emergent

281features can become salient in visual perception: a pair of dots. In

282the next section, we motivate our modeling framework, define the

283capacity coefficient within this framework, and argue that the

284capacity coefficient confers several unique and novel benefits over

285traditional measures.

2861.3. Systems Factorial Technology

287The capacity coefficient is a key component of the modeling

288framework known as Systems Factorial Technology (SFT; Algom

289et al. (2015); Houpt & Townsend, 2012; Townsend & Nozawa,

2901995; Townsend & Wenger, 2004b; Wenger & Townsend, 2001).

291SFT provides a set of tools for rigorously defining and testing con-

292cepts in the broader information-processing paradigm commonly

293evoked in cognitive psychology. By abstracting sources of informa-

294tion to ‘channels’ in an abstract information-processing system, we

295can rigorously pose a number of algorithmic-level questions about

296the way our visual system processes various sources of informa-

297tion. For example, in the present work, we ask how the efficiency

298of processing the whole stimulus changes as parts are added in dif-

299ferent configurations. Due to this ‘channel’ abstraction, we can rig-

300orously define ‘efficiency’ in terms of stochastic processes in a

301multi-channel information processor.

302Conceptually, the capacity coefficient measures the efficiency of

303a cognitive process relative to the baseline prediction of a parallel

304race model, which formalizes the situation in which local informa-

305tion from each channel (here, each feature) is processed indepen-

306dently and in parallel. Suppose, in the context of our task, that

307there is a left channel L and a right channel R. We can estimate

308the cumulative hazard function HðtÞ – the integral over time of

309the likelihood of the response process terminating at time t given

310that it has persisted until that point in time – for each channel

Fig. 1. Example odd-quadrant stimuli adapted with permission from Pomerantz

and Portillo (2011). (a) In the single-dot condition, participants were asked to select

the quadrant that was different from the others. In this case, the correct response is

the upper-left panel. (b) An uninformative context that is added to the single-dot

stimuli to get (c), the composite stimuli. In general, responses on ‘single dot’ trials

were found to be slower and less accurate than responses on composite Orientation

trials, even though the additional dot added to create the Orientation feature

provide no additional information on its own. Note that due to ‘false pop-out’

participants occasionally picked a quadrant different than the correct answer,

because they felt it broke the symmetry (e.g., upper right quadrant in panel a).
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311 by collecting response time distributions for a channel in isolation.

312 These two hazard functions are denoted HLðtÞ and HRðtÞ for the left

313 and right channels, respectively. The parallel race model predicts

314 that if targets are present in both channels (i.e. in a

315 redundant-target condition, denoted LR) and the participant is

316 asked to respond as soon as a target is observed in either channel

317 (i.e. an OR stopping rule), the pertinent cumulative hazard func-

318 tion, HLRðtÞ, should be the sum of the individual channels’ cumula-

319 tive hazard functions. In other words, the ratio of the

320 redundant-target hazard function and the sum of the individual

321 channel hazard functions is equal to one. The capacity coefficient

322 is therefore defined as the ratio:

323

CðtÞ ¼
HLRðtÞ

HLðtÞ þ HRðtÞ
ð2Þ

325325

326 where, again, HLR is the cumulative hazard function derived from

327 the response time distribution when both sources of information

328 indicate a target simultaneously (i.e. on redundant-target trials)

329 and HL;HR are the cumulative hazard functions derived from the

330 response time distribution when each target is presented in isola-

331 tion. The hazard function can be derived as the negative log of the

332 survivor function SðtÞ, which is simply 1� FðtÞ, where FðtÞ is the

333 empirical response time CDF. Note that these functions utilize the

334 entire RT distribution, licensing stronger inferences than summary

335 statistics like the mean (Townsend, 1990b).

336 The capacity coefficient is typically used as an absolute measure

337 categorizing a process as limited, unlimited, or supercapacity

338 depending on whether CðtÞ is less than, equal to, or greater than

339 1, respectively. Here we use it instead as a sensitive relative mea-

340 sure across conditions. Following (Houpt & Townsend, 2012) we

341 use a z-score capacity measure, Cz, which is a convenient summary

342 statistic for CðtÞ. This measure focuses on correct response times,

343 although it treats incorrect responses as censoring events for the

344 correct response process (see Houpt & Townsend, 2012, for more

345 details). Because CðtÞ and the capacity z score are different trans-

346 formations of the same data, we use the terms interchangeably

347 in the text.

348 In addition to its explicit connection to process-level models of

349 cognition, this formulation of efficiency has several advantages

350 over other measures that could be used, like mean response time

351 or accuracy. First, because there is a clearly defined baseline in

352 terms of an information-processing model, we can interpret the

353 absolute value of CðtÞ in a meaningful way, unlike mean RT, which

354 is solely used as a relative measure to show a difference between

355 conditions. Second, the capacity coefficient provides a unified

356 space to compare diverse phenomena in vision science

357 (Townsend & Eidels, 2011). Different tasks, different stimuli, or dif-

358 ferent conditions of the same task may have intrinsically different

359 response demands (e.g. base times), leading to ostensibly different

360 mean RT or accuracy measures. To measure the efficiency of pro-

361 cessing multiple sources of information together across theses

362 cases requires that variation to be appropriately accounted for.

363 The capacity coefficient achieves this goal by defining as the ratio

364 between multiple channels and single channels.

365 Finally, although mean RT and accuracy results are sometimes

366 the same as capacity results, they do not license the same infer-

367 ences. Mean RT and accuracy measures of the configural stimulus

368 do not account for the processing time of individual channels.

369 Thus, comparing mean RTs and accuracies for two-dot displays

370 may be misleading in a redundant-target paradigm. For instance,

371 suppose the configuration in the two-dot configural ‘Orientation’

372 condition had a faster mean RT than the configuration in the corre-

373 sponding control condition, and one used this fact to conclude that

374 Gestalt processing was involved. This conclusion could be flawed:

375 suppose the single-dot components of the configural condition

376were processed more quickly than the single-dot components of

377the control condition. Then the faster mean RT in the configural

378condition could simply be attributed to faster processing in the

379individual channels without any real gains in efficiency. The capac-

380ity coefficient would not make this error. It is able to normalize the

381reaction times for the whole by the reaction times of the parts in

382order to facilitate this comparison. We attempted to be careful in

383our experimental design to equilibrate all single-dot trials, but this

384cannot be expected in general.

385For the above reasons, we consider the capacity coefficient to be

386the primary dependent variable of interest, and perhaps the most

387valid one. Because of its unprecedented application in this setting,

388however, we also decided to include results for mean reaction time

389and accuracy against which the capacity coefficient can be com-

390pared. For some tests, all three measures agree, while for others

391their assessments diverge. We will discuss these points of diver-

392gence below, but from the theoretical perspective articulated here,

393the capacity coefficient takes precedence.

3942. Overview of the experiments

395Our definition of the capacity coefficient suggests a correspond-

396ing experimental paradigm to test the local and Gestalt theories of

397features in pairs of dots. We set channels L and R to be the dot on

398the left and right side of the display, respectively. We thus gener-

399ated some trials in which participants provide responses for these

400dots in isolation, to estimate HLðtÞ and HRðtÞ, and other trials in

401which both dots are present (called ‘redundant-target’ trials), to

402estimate HLRðtÞ. To test the local theory against the Gestalt theory,

403we also designed one condition in which emergent features are

404present in the redundant-target stimulus and a control condition

405in which they were not.

406Participants were presented with a reference display showing

407either a stimulus to the left of the center (L only), a stimulus to

408the right of center (R only), or stimuli in both positions (R & L;

409see Fig. 2(a)). The reference screen was followed by a brief masking

410stimulus, then the participant was shown a display in which the

411dot(s) were in either the same location as the reference or a

412different location (Fig. 2(b) and (c)). The masking duration was

413calibrated to the shortest level at which pilot participants no

414longer reported apparent motion cues.

415Participants were asked to respond whether or not the dot(s)

416were in the same location before and after the mask. When two

417dots were displayed in the reference screen, either both dots

418moved or neither moved. Trials in which both dots were in a differ-

419ent position than the reference contain redundant information;

420noticing any one of the components moving by itself is sufficient

421to complete the task, but if the Gestalt account of emergent fea-

422tures is correct, then we predict that when both dots are present,

423additional configural information is available to participants.

424Thus, for the study of holistic or Gestalt effects, it is instructive

425to compare performance when components appear together (R &

426L) against baseline performance expected when they appear in iso-

427lation (L only or R only).

428There are two main advantages that a redundant-target task

429holds over the odd-quadrant task introduced by Pomerantz,

430Sager and Stoever (1977). First, the odd-quadrant task is known

431to induce a ‘false pop-out’ effect for certain stimuli (Orsten &

432Pomerantz, 2012), in which another level of configural grouping

433is made across separate quadrants. While an interesting phe-

434nomenon in its own right, this effect interferes with the

435lower-level grouping phenomena under investigation. For

436instance, in Fig. 1, a configural-inferiority effect was found, despite

437the change in Orientation, because participants chose the quadrant

438that was not ‘pointing toward the center’ and therefore breaking

439the higher-order symmetry. Our task avoids false pop-out effects

4 R.X.D. Hawkins et al. / Vision Research xxx (2015) xxx–xxx

VR 7093 No. of Pages 15, Model 5G

16 May 2015

Please cite this article in press as: Hawkins, R. X. D., et al. Can two dots form a Gestalt? Measuring emergent features with the capacity coefficient. Vision

Research (2015), http://dx.doi.org/10.1016/j.visres.2015.04.019

http://dx.doi.org/10.1016/j.visres.2015.04.019


440 by limiting the presentation to a single component or configuration

441 on the screen at a time. Second, the design lends itself to analyses

442 of data using Systems Factorial Technology and its associated mea-

443 sures of capacity.

444 We present three experiments in which the capacity coefficient

445 is used to conduct a critical test of local and Gestalt theories.

446 Experiments 1 and 2 test the local features of dot location against

447 the emergent feature of Orientation. While they use the same stim-

448 uli, they differ in the block structure used to present these stimuli.

449 This allows us to test the robustness of our measure with respect to

450 details of the experimental procedure, and to replicate our overall

451 results. Experiment 3 proceeds to test the local features of dot loca-

452 tion against the emergent feature of Proximity.

453 All three experiments used a 2� 2 within-subject factorial

454 design manipulating (1) the presence or absence of configural

455 cues in redundant-target trials and (2) the presence or absence

456 of an explicit line connecting the dots. For readers familiar with

457 SFT, note that unlike previous SFT studies, which employ a double

458 factorial paradigm, we do not manipulate the salience of configu-

459 ral cues, just their presence or absence. This modification reserves

460 the second dimension of the factorial design to test the presence

461 of a line. In the redundant-target trials, the components either

462 moved in the same direction to preserve Orientation (‘‘control’’;

463 e.g., both dots moving up, as in Fig. 2(b)) or moved in opposite

464 direction to induce a change in emergent feature (‘‘configural’’;

465 Fig. 2(c)). In both cases, there is the same amount of local infor-

466 mation available, since the components move the same amount

467 in either direction. Hence, the local theory predicts that the

468 capacity coefficient will be the same in control and configural tri-

469 als. The Gestalt theory, on the other hand, predicts that the capac-

470 ity coefficient will be larger in the configural trial, since the

471change in emergent feature serves as an additional source of

472information.

473Since the Orientation and length of an explicit line is canonically

474considered a local feature, the second manipulation compares the

475information provided by the implicit (or imaginary) line between

476the dots to the information provided by an explicit line. The local

477theory predicts a strong interaction: capacity should be higher in

478the ‘explicit line’ condition than the ‘implicit line’ condition when

479configural cues are available, since additional information about

480Orientation and length is available. The Gestalt theory predicts that

481there will not be a strong effect of the line, since the physical fea-

482tures provided by the line were already present as emergent fea-

483tures in the dots. To our knowledge, this is the first study to test

484this physical vs. emergent feature difference in simple dot stimuli.

485In the domain of illusory contours, where the Gestalt view of fea-

486tures is well-established, visual discrimination experiments com-

487paring processing of illusory contours vs. real contours found

488minor speed-ups in reaction time for real contours (Larsson et al.,

4891999). Since our stimuli are much simpler, if the Gestalt view is

490correct, any effects of the line in our paradigm would be weak at

491most. Thus, the application of SFT and specifically the capacity

492coefficient provides a critical test for the role of emergent features

493and therefore of Gestalt perception.

4943. Experiment 1

4953.1. Methods

4963.1.1. Participants

497Twenty-one paid individuals between the ages of 18 and 24

498were recruited from the Indiana University student population to

(a)

(b) (c)

Fig. 2. Stimuli and procedure in change detection task. (a) The three classes of reference stimuli, containing one or both of the channels of local information. (b) The sequence

of displays in a ‘control’ trial. Because the dots changed location in the second frame, the participant should respond ‘change’. (c) The sequence of displays in a ‘configural’

trial. Both channels provide the same amount of location change information, but there is also a change in the Orientation of the dots, which Gestalt theories predict will lead

to more efficient processing.
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499 participate in two 50 min sessions. Six participants were removed

500 from the study after their first session due to high error rates

501 ð> 30%Þ. We pre-set this exclusion criterion based on previous

502 work showing that the CðtÞ measure is stable up to error rates of

503 approximately 30% and can become unreliable at higher values

504 (Townsend & Wenger, 2004b). Of the participants that completed

505 both sessions, ten were female, five were male, and all had normal

506 or corrected-to-normal vision. In accordance with the Declaration

507 of Helsinki, the procedures were approved by local IRBs and signed

508 consent forms were obtained from individual participants before

509 the experiment.

510 3.1.2. Materials

511 All stimuli were created using a scripting language for the open-

512 source graphics editor GIMP (Peck, 2006) and presented using the

513 display system DMDX to collect response times (Forster & Forster,

514 2003) on a 1700 in. ViewSonic CRT monitor (ViewSonic Corporation,

515 Walnut, CA) at 1024 � 768 resolution with a 75 GHz refresh rate

516 and luminance of 150 cd/m2. The dots in the stimuli were grey

517 with 50% the luminance of the background (hex: 7F7F7F) and with

518 a diameter of 0:34� in visual angle, at a sitting distance of approx-

519 imately 70 cm. Responses were collected using a button box

520 connected with a PCI-DIO24 Interface Card (Measurement

521 Computing Corporation, Norton, MA).

522We used four different classes of stimuli, in which the distance

523between the dots’ inner contours was always held at a constant

524visual angle of 1:10� to avoid possible confounds with Proximity.

525Fig. 3 displays the possible positions of each dot. Note that each

526possible target position (denoted by the filled circles) is an equal

527distance away from the reference position (open circles). The green

528circles correspond to possible positions for the left channel, and

529blue circles correspond to possible positions for the right channel.

530The green and blue colors are only used for illustration purposes in

531the figure. For each of the following classes of two-dot stimuli, cor-

532responding single-dot stimuli were presented to collect response

533times for the isolated components:

5341. Configural, no line: Each dot is 0:74� of visual angle away from

535its initial positions to a point opposite the other on a circle

536(Fig. 3). The implicit line between them is approximately 60�

537away from the horizontal. There are two variations of this stim-

538ulus – one where the left dot goes up and the right dot goes

539down (Green 2, Blue 3; panel (b)) and another where the left

540dot goes down and the right dot goes up (Green 4, Blue 1; panel

541(c)). The appropriate degree of configural change was chosen

542using the results of a pilot study measuring the d
0
for different

543levels of Orientation (Supplemental Fig. S2).

Fig. 3. (a) Possible locations of dots in Experiments 1 and 2. Note that all possible locations for each dot are the same distance away from the reference location, forming an

equivalence class under the metric of Euclidean distance. Single-dot stimuli were presented for every position. (b) and (c) Configural stimuli are formed by moving the dots to

antipodal points on the circle (i.e. Green 2, Blue 3 or Green 4, Blue 1), holding Proximity constant. (d)–(g) For each point on the circle, a control stimulus can be formed by

adding a new position on the same horizontal line.
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544 2. Control, no line: Both dots are still the same distance from the

545 reference point as in the configural conditions, but move in the

546 same direction (Green 1, Blue 1; Green 2, Blue 2, etc.; panels

547 (d)–(g)) Thus, the implicit line between them remains horizon-

548 tal and there is no change in configural features.

549 3. Configural, line present: Like the other configural condition,

550 but on double-dot trials, a line connected the two dots.

551 4. Control, line present: Like the other control condition, but a

552 line connected the two dots.

553

554 3.1.3. Procedure

555 The sequence of displays in a trial is shown in Fig. 2(b) and (c).

556 On each trial, a fixation cross appeared in the center of the screen

557 for 200 ms, followed by a blank display for 27 ms. On single-dot

558 trials, a blue square was presented 0:72� of visual angle to either

559 the left or the right of the center fixation. On double-dot trials, blue

560 squares were presented in both positions simultaneously. On

561 line-present trials, the connecting line was only present in the

562 probe, not on the reference screen. The reference screen remained

563 for 120 ms and was then masked for 240 ms by one of five ran-

564 domly generated Gaussian noise patterns. The probe stimulus

565 was displayed for 120 ms, followed by a blank screen for

566 1880 ms. Response times were calculated from stimulus onset.

567 At the beginning of the session, participants were instructed to

568 press one button (‘no change’) if the probe dots were in the same

569 locations as the reference squares and another button (‘change’)

570 if the probe dots were in a different location. Participants received

571 feedback on negative responses and time-outs for 20 practice trials

572 at the beginning of each session, but did not receive any feedback

573 for the remainder of the session.

574 Each subject participated in two 50-min sessions of 960 trials

575 per session. One session contained exclusively ‘line-present’ trials,

576 while the other contained exclusively ‘line-absent’ trials.

577 Configural and control stimuli were split into separate blocks.

578 Within each session, however, there were three contiguous blocks

579 of ‘configural’ trials and three contiguous blocks of ‘control’ trials,

580 with optional rest breaks between blocks. The corresponding

581 ‘single-dot’ trials were mixed into each block. The ordering of ses-

582 sions and the ordering of ‘configural’ and ‘control’ block sets within

583 each session was counterbalanced across participants. The distri-

584 bution of stimuli within each block was chosen to balance the con-

585 ditional probabilities: there was a 25% chance of no change

586 (negative response), 25% chance of a double-dot change (positive

587 response) and 50% single-dot change (positive response) trials

588evenly spread over all possible locations. The three varieties of

589‘no change’ trials, the two variations of configural trials, and the

590four variations of control trials were evenly distributed within

591their respective blocks.

5923.2. Results

593Bayesian ANOVAs (Rouder et al., 2012) were used to analyze

594mean correct response times and accuracy. Within this framework,

595we calculated Bayes Factor (BF) for each effect of interest, with the

596convention that BF > 10 is strong evidence and BF > 100 is decisive

597evidence (see Jeffreys, 1961). BF < 3 is weak evidence, and BF < 1 is

598‘negative’ evidence, in favor of the null model. Fig. 4 shows the

599mean response times (a) and accuracies (b) for trials in which

600two dots were present along. Error bars indicate 95% highest den-

601sity intervals (HDIs) of the posterior distribution representing our

602beliefs about the true value of these measures after observing the

603data. The HDI is the smallest interval of the posterior distribution

604containing 95% of the density.

605The analysis of correct response times for two dot stimuli indi-

606cated main effects of configuration (BF ¼ 2:3 � 1070) and of lines

607(BF ¼ 1:5 � 1022) and was nearly equivocal with respect the

608presence of an interaction (BF ¼ :53). In the accuracy data, there

609was very strong evidence against an interaction between the con-

610figuration and the presence of lines (BF ¼ :025). There was decisive

611evidence for main effects of configuration (BF ¼ 9:8 � 1019) and

612lines (BF ¼ 1:2 � 105).

613For capacity we use the (Houpt & Townsend (2012)) z score

614(denoted Cz) as a summary statistic for CðtÞ that can be subjected

615to inferential tests. Capacity z scores of zero indicate unlimited

616capacity. Capacity z scores could also be positive or negative, indi-

617cating super- or limited-capacity, respectively. The Bayesian

618ANOVA on capacity Z scores (shown in Fig. 4(c)) indicated that

619the most likely model includes a main effect for only configuration

620(BF ¼ 1:2 � 106 over a subject only model). Evidence against includ-

621ing an additional main effect of the line was again weak

622(BF ¼ 0:34) and there was substantial evidence of the configural

623main effect only model relative to the model with both main

624effects and an interaction (BF ¼ 5:4). The mean posterior advan-

625tage of configural over control on the capacity z-scores was 3.15

626(HDI ¼ ½2:14;4:12�). The mean posterior difference between capac-

627ity z-scores without lines and with lines was �0:43

628(HDI ¼ ½�1:29;0:47�).
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Fig. 4. (a) Mean response times and (b) accuracy for each condition in Experiment 1 (Orientation with separate blocks for configural and control trials). Configural trials

differed from the reference in Orientation as well as the location of each element. In control trials, both elements were in a different location than the reference squares, but

the Orientation was the same. In distractor trials, both elements were in the same location as the reference squares. Error bars indicate 95% highest density intervals of the

posterior. (c) Mean capacity z-scores for each condition in Experiment 1. Positive numbers indicate better than the unlimited capacity, independent parallel baseline, while

negative numbers indicate worse than the baseline. In general, higher numbers indicate more efficient responding. Error bars indicate 95% highest density intervals of the

posterior.
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629 Participants were generally quite limited capacity, with a group

630 average capacity z-score of �3:57 ðHDI ¼ ½�4:43;�2:65�Þ.

631 Nonetheless, there remained at least a few participants who had

632 capacity z-scores that indicated super-capacity in a configural

633 condition (see Table 1).

634 3.3. Discussion

635 The two channels contributed the same amount of location

636 information in each condition, but the configuration of the dots

637 drastically affected mean response time, accuracy, and the z-score

638 capacity coefficient Cz. When a source of configural information

639 was present, participants performed much more efficiently on

640 the whole, compared to the sum of its parts, as measured by Cz.

641 This effect was predicted by the Gestalt view of features, but not

642 the local view of features.

643 Including an explicit line between the dots, which canonically

644 has the physical feature of Orientation, also impacted response

645 times and accuracy, but in the negative direction; response times

646 tended to be higher when lines were present, and accuracy was

647 lower. The data were not as clear with respect to an effect of the

648 lines on the capacity values, with the favored model containing

649 only a main effect of configuration. Any effect of the lines is minor

650at most. This is a case where accuracy and mean RT point toward a

651slightly different conclusion than the capacity coefficient, and for

652the reasons given in the Introduction, demonstrates the advan-

653tages of using the capacity coefficient. One explanation of the accu-

654racy and mean RT results would be that because the location of the

655dots already contains all of the Orientation information, the addi-

656tion of the line offers no additional advantage, but instead limits

657performance by using up additional processing resources.

658We can also supplement our main analysis by applying the logic

659of the capacity coefficient to error rates instead of response time

660distributions. To that end, we compute a summary statistic for

661the recently developed measure of ‘‘accuracy capacity’’. In particu-

662lar, we compares accuracy on single-dot trials with the expected

663accuracy on redundant-target trials under the benchmark race

664model (cf. Townsend & Altieri, 2012). This summary statistic is

665given by

666

Cpmiss ¼ pðmissjLÞ � pðmissjRÞ � pðmissjLRÞ 668668

669where pðmissjLRÞ is the probability of an error response (i.e., missing

670a target) in the double target condition, and pðmissjLÞ and pðmissjRÞ

671are the probabilities of missing the targets of single-target trials. Cp

672is equal to 0 for a baseline parallel, unlimited capacity race model.

673In Fig. 5, we show this measure plotted on one axis with the

Table 1

Results from Experiment 1 broken down by participant and condition. Z gives the Z-score for the capacity coefficient statistic, with negative values implying limited capacity

(comparable to CðtÞ < 1) and positive values implying super capacity (comparable to CðtÞ > 1). Note that several participants performed at unlimited or super capacity levels on

configural trials, but all participants were significantly limited capacity on control trials.

P Configural Control Single dot

Lines No lines Lines No lines

Z Acc RT Z Acc RT Z Acc RT Z Acc RT Acc RT

1 �1.60 1.00 317 2.87 1.00 349 �3.32 1.00 345 �1.87 0.98 447 0.96 404

2 �4.42 0.99 341 �2.50 1.00 376 �6.74 0.92 430 �6.67 1.00 413 0.98 394

3 �2.32 1.00 563 �4.25 1.00 605 �6.71 1.00 661 �6.42 0.98 620 0.98 641

4 �2.01 1.00 434 �1.58 1.00 354 �3.86 0.94 602 �4.17 0.97 381 0.92 471

5 �0.37 1.00 507 3.99 1.00 404 �6.50 0.98 524 �4.54 0.98 503 0.91 542

6 1.57 1.00 433 0.95 1.00 306 �2.61 0.98 539 �4.70 1.00 377 0.99 450

7 �5.01 0.99 392 �5.11 0.98 331 �6.03 0.94 363 �4.47 0.95 334 0.93 360

8 �2.29 0.77 560 �7.22 0.99 340 �4.67 0.95 451 �5.13 0.98 424 0.89 433

9 �2.79 0.84 433 �5.07 1.00 480 �6.54 0.90 512 �4.02 0.88 577 0.84 547

10 �2.10 1.00 503 �3.22 1.00 509 �6.69 0.99 641 �7.24 0.99 508 0.98 560

11 �4.19 0.97 531 �4.62 0.99 447 �6.35 1.00 541 �4.69 0.99 451 1.00 520

12 �3.39 1.00 351 �0.87 0.99 441 �4.05 0.95 438 �2.59 0.98 417 0.96 430

13 2.88 1.00 511 4.12 1.00 417 �5.56 1.00 469 �3.58 1.00 485 1.00 480

14 �1.53 1.00 429 �0.41 1.00 522 �8.59 0.98 559 �4.43 0.98 460 0.97 512

15 �2.31 0.99 600 �4.72 0.99 561 �6.88 0.86 765 �6.91 0.87 758 0.80 774
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accuracy measure does not yet have formal statistical tests worked out, we can qualitatively see that points in the configural condition tend to be higher on both dimensions

than in the control condition.
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674 capacity coefficient z-score on the other axis. We see that both mea-

675 sures tend to be higher in the configural condition than the control

676 condition, giving qualitative evidence that emergent features are

677 processed more efficiently, even when using accuracy as the vari-

678 able of interest.

679 Still, it is possible that our results can be accounted for by the

680 block structure of configural and control trials. By isolating stimuli

681 from each condition in separate blocks, participants could have

682 been biased to focus on the information provided by obvious

683 Orientation differences to the exclusion of the location informa-

684 tion. To address this concern and also to provide a replication of

685 our results, we ran a second experiment where everything was

686 the same except the blocks were mixed together. This block

687 structure does not allow participants to use different processing

688 strategies a priori.

689 4. Experiment 2

690 4.1. Methods

691 4.1.1. Participants

692 Twenty paid individuals between the ages of 18 and 26 were

693 recruited from the Indiana University community to participate

694 in two 60 min sessions. Five participants were removed from the

695 study after their first session due to unacceptably high error rates

696 of 30% or greater. Of the participants that completed both sessions,

697 fourteen were female, one was male, and all had normal or

698 corrected-to-normal vision. In accordance with the Declaration of

699 Helsinki, the procedures were approved by local IRBs and signed

700 consent forms were obtained from individual participants before

701 the experiment.

702 4.1.2. Materials

703 All equipment and stimuli were the same as in the previous

704 experiment.

705 4.1.3. Procedure

706 The procedure was identical to Experiment 1 except that config-

707 ural and control trials, along with their corresponding single-dot

708 trials, were mixed together and presented in random order across

709 4 blocks with short rest breaks between blocks. Also, instead of 960

710 trials per 50-min session, we used 1152 trials per 60-min session.

711 Again, one session contained only ‘line’ trials and the other con-

712 tained only ‘no line’ trials, and the distribution of trial types was

713the same except the 25% dedicated to double-dot change trials

714was evenly split between ‘configural’ and ‘control’ trials.

7154.2. Results

716Fig. 6 shows the mean response times (a) and accuracies (b) for

717trials in which two dots were present along with the 95% highest

718density intervals of the posterior. The analysis of correct response

719times for two dot stimuli indicated main effects of configuration

720(BF ¼ 2:7 � 1069) and of lines (BF ¼ 2:3 � 103) and was nearly equiv-

721ocal with respect the presence of an interaction (BF ¼ :51). In the

722accuracy data, there was decisive evidence for an interaction

723between the configuration and the presence of lines (BF ¼ 104).

724When the interaction was disregarded, there was decisive evidence

725of a main effect of configuration (BF ¼ 2:0 � 1065) and nearly equiv-

726ocal evidence against a main effect of lines (BF ¼ :53).

727Capacity Z scores were again calculated following (Houpt &

728Townsend, 2012) for each participant in each condition and are

729shown in Fig. 6(c). Those values were then compared using a

730Bayesian ANOVA across the configurality-control manipulation

731and the implicit-explicit line manipulation. The most likely model

732included only a main effect of configuration (BF ¼ 6:8 � 1012 over a

733subject only model) however there was only weak evidence for

734leaving out an additional main effect of the line (BF ¼ 2:8). The

735analysis did indicate substantial evidence for the configuration

736only model when compared to a model including both lines and

737an interaction (BF ¼ 8:0). The mean posterior advantage of

738configural over control on the capacity z-scores was 5.83

739(HDI ¼ ½4:77;6:91�). The mean posterior difference between

740capacity z-scores without lines and with lines was �0:387

741(HDI ¼ ½�1:32;0:567�).

742The grand mean for the capacity z scores at the group level was

743negative, �4:94 (HDI ¼ ½�5:96;�3:94�), implying limited capacity.

744However, in the configural condition, there was some variability

745across participants, with several participants’ data indicating super

746capacity (positive z score) or indistinguishable from unlimited

747capacity (z � 0; see Table 1) (see Table 2).

7484.3. Discussion

749We replicated the results of Experiment 1 with configural and

750non-configural trials intermixed. This ruled out the possibility that

751participants only performed at higher capacity in the presence of

752an Orientation cue because they were primed to expect it by the
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753 block composition. The likelihood that the upcoming target would

754 be identifiable only using differences in location was equivalent to

755 the likelihood that it could be identifiable using differences in con-

756 figuration, so participants could not have successfully adopted a

757 strategy of ignoring location information.

758 Although the overall pattern of results matches Experiment 1

759 almost perfectly, there were some minor differences. First, the

760 magnitude of the capacity advantage for configural trials over con-

761 trol trials was larger in Experiment 2 (5.83 compared with 3.15).

762 This is likely due to the relatively worse capacity for the control tri-

763 als in Experiment 2 because the mean capacity z scores for the con-

764 figural trials are nearly identical across the two experiments. This

765 drop in efficiency on control trials may be due to participants giv-

766 ing processing priority to detecting a configural cue in the mixed

767 condition, then checking location if the configural cue is absent.

768 In Experiment 1, when the control trials were in their own block,

769 participants would not gain any advantage from checking for con-

770 figural differences because there were not any.

771 A second difference between Experiments 1 and 2 was that

772 there was clear evidence for an interaction between the lines and

773 the configuration in Experiment 2, although only in the accuracy

774 measure. It is clear from Fig. 6(b) that the interaction has a fairly

775 small magnitude, and the accuracy measure is not of theoretical

776 interest, so we will not dwell on it here beyond noting that it seems

777to be driven by an increase in accuracy for the target present trials

778due to the additional line context and a decrease in the distractor

779trials with the addition of lines.

780In Fig. 7, we plot ‘‘accuracy capacity’’ alongside participants’

781capacity coefficient z scores, observing that participants tend to

782be higher on both dimensions in the configural condition. This

783again reinforces the validity of our measure when participants do

784not perform at near-ceiling accuracy. Since the choice of ‘mixed’

785or ‘separated’ block designs did not affect our conclusions, we pro-

786ceeded to test the emergent feature of Proximity using the simpler

787‘separated blocks’ design from experiment 1.

7885. Experiment 3

7895.1. Methods

7905.1.1. Participants

791Twenty-four paid individuals between the ages of 20 and 32

792were recruited from the Indiana University community to partici-

793pate in two 50 min sessions. Two participants dropped out of the

794study after their first session, and six were removed from the study

795after the first session due to unacceptably high error rates of 30%

796or greater. Of the sixteen participants that completed both

Table 2

Results from Experiment 2 broken down by participant and condition in the same format as Experiment 1.

P Configural Control Single dot

Lines No lines Lines No lines

Z Acc RT Z Acc RT Z Acc RT Z Acc RT Acc RT

1 �3.32 0.99 522 �6.24 1.00 398 �10.76 0.88 608 �7.29 0.90 469 0.88 508

2 �7.55 0.85 549 �8.65 0.99 464 �10.76 0.77 480 �10.19 0.99 493 0.90 454

3 �1.71 0.98 608 �0.19 1.00 371 �10.19 0.96 628 �9.33 0.94 414 0.95 520

4 2.50 0.99 506 2.76 0.99 476 �5.11 0.72 618 �4.21 0.90 534 0.76 546

5 �3.23 0.99 429 �3.52 1.00 334 �7.69 0.97 429 �5.49 0.99 353 0.99 411

6 �4.05 0.99 380 �2.47 1.00 385 �7.63 0.92 444 �3.53 0.95 432 0.93 421

7 �1.91 1.00 456 �2.45 0.97 526 �8.80 0.96 580 �9.53 0.90 637 0.95 607

8 0.11 1.00 409 2.42 1.00 443 �6.93 0.94 483 �8.89 0.92 497 0.93 477

9 �1.12 0.99 401 �0.98 0.99 506 �9.27 0.95 413 �7.74 0.96 528 0.92 476

10 �4.74 0.99 502 �4.23 0.99 471 �7.21 0.94 564 �6.44 0.94 567 0.97 570

11 �0.50 0.98 406 �0.11 0.99 323 �9.96 0.85 506 �10.16 0.97 367 0.90 405

12 �0.18 0.99 543 �1.43 1.00 615 �5.99 1.00 569 �10.81 0.99 698 0.97 644

13 �5.01 1.00 512 0.00 1.00 461 �7.75 0.99 559 �5.05 0.99 484 0.98 543

14 �2.47 0.99 392 �3.39 0.98 466 �7.49 0.90 438 �5.85 0.86 552 0.74 508

15 0.72 0.99 330 0.32 1.00 347 �7.97 0.97 330 �10.12 0.98 371 0.96 363

−10 −6 −2 0 2

−
0
.4

−
0
.2

0
.0

Configural

Cz (RT−based)

C
p
 (

A
c
c
u
ra

c
y
−

b
a
s
e
d
)

Lines

No Lines

−10 −6 −2 0 2

−
0
.4

−
0
.2

0
.0

Control

Cz

C
p
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797 sessions, thirteen were female, three were male, and all had nor-

798 mal or corrected-to-normal vision. In accordance with the

799 Declaration of Helsinki, the procedures were approved by local

800 IRBs and signed consent forms were obtained from individual par-

801 ticipants before the experiment.

802 5.1.2. Materials

803 Using the same settings as Experiments 1 and 2, we created two

804 new classes of stimuli, with the dots always lying on a horizontal

805 axis (0�) to avoid confounds with the emergent feature of

806 Orientation. Fig. 8(a) displays the possible positions of each dot.

807 Note again that each possible target position (denoted by the filled

808 circles) is an equal distance away from the reference position (open

809 circles). For each of the following classes of two-dot stimuli,

810 corresponding single-dot stimuli were presented to collect

811 response times for the isolated components:

812 1. Configural, no line: Each dot is displaced by 0:17� of visual

813 angle away from its initial position toward the edge of the

814 display (Green 1, Blue 2; Fig. 8(b)). This expands the initial

815 distance between reference points by a factor of 1.72, thereby

816 inducing a change in the emergent feature of Proximity. The

817 appropriate degree of configural change was chosen using the

818 results of a pilot study measuring the d
0
for different levels of

819 Proximity change (Fig. S2).

820 2. Control, no line: The individual dots are displaced the same

821 amount as in the configural condition, but in the same direction

822 (Green 2, Blue 2 and Green 1, Blue 1; panels c and d, respec-

823 tively). Thus, the Proximity between the dots remains constant

824 while the individual ‘channels’ contain the same information

825 about location change.

826 3. Configural, line present: Like the other configural condition,

827 but on double-dot trials, a line connected the two dots.

828 4. Control, line present: Like the other control condition, but a

829 line connected the two dots.

830

831 5.1.3. Procedure

832 The task and protocol were identical to Experiment 1.

8335.1.4. Results

834Fig. 9 shows the mean response times (a) and accuracies (b) for

835trials in which two dots were present along with the 95% highest

836density intervals of the posterior. The analysis of correct response

837times for two dot stimuli indicated main effect of configuration

838(BF ¼ 4:6 � 1070) but very strong evidence against main effect of

839lines (BF ¼ 0:026) and substantial evidence against a full model

840including an interaction relative to the model only including a

841main effect of configuration (BF ¼ :11). In the accuracy data, there

842was decisive evidence for an interaction between the configuration

843and the presence of lines relative to the main effects only model

844(BF ¼ 1:4 � 1052). When the interaction was disregarded there

845remained decisive evidence of main effects of configuration

846(BF ¼ 4:0 � 1043) and lines (BF ¼ 5:4 � 104).

847While overall error rates were lower than 30% for all sixteen

848participants who completed the study, three participants had error

849rates equal to or worse than chance when restricted to trials from

850one or more of the four conditions (e.g., the configural trials with

851lines). Since the capacity coefficient analysis only uses response

852times from correct responses, this potential difference in response

853thresholds could bias comparisons between conditions. For the fol-

854lowing analysis, we only report the thirteen participants with

855above chance accuracies in all conditions.2

856The Bayesian ANOVA on capacity Z scores (shown in Fig. 9(c))

857indicated the most likely model included both main effects and

858an interaction (BF ¼ 1:3 � 108 over the subject only model). There

859was substantial evidence for the full model over the next best

860model, which included only main effect of configuration

861(BF ¼ 9:9) and strong evidence over the third best model, which

862included both main effects (BF ¼ 12).

863The mean marginal posterior advantage of configural over con-

864trol on the capacity z-scores was 4.44 (HDI ¼ ½3:47;5:41�). The

865mean posterior difference between capacity z-scores without lines

866and with lines was �0:778 (HDI ¼ ½�1:73;0:176�).

867Participants were again generally limited capacity, with a group

868average capacity z-score of �1:56 (HDI ¼ ½�2:92;�0:0821�). In one

Fig. 8. (a) Possible locations of dots in Experiment 3. Green dots denote possible locations for the left dot, and blue dots denote possible locations for the right dot. Note that

all possible locations for each dot are the same distance away from the reference location, forming an equivalence class under the metric of Euclidean distance. Single-dot

stimuli were presented for every position. (b) Configural stimuli are formed by moving the dots in opposite directions (Green 1, Blue 2), increasing the distance between them

by a factor of 1.72. (c) and (d) For both of these outer positions, a control stimulus was formed by moving the opposite dot such that the distance between the reference dots

was preserved.

2 We ran the analyses including the three low accuracy subjects. The magnitudes of

the reported values were slightly different but none of the conclusions changed.
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869 condition, configural without lines, performance was

870 super-capacity at the group level (Cz ¼ 1:95, HDI ¼ 0:0193;3:45�).

871 There were also a few participants whose individual data indicated

872 super capacity in the configural condition with lines, but none in

873 either of the control conditions (see Table 3).

874 5.1.5. Discussion

875 First, the capacity coefficient measure is again larger in the con-

876 figural condition than the control condition, indicating that

877 Proximity is indeed an emergent feature providing additional

878 information above and beyond the contribution of the individual

879 dot locations. The accuracy interaction was again present and still

880 had a limited effect size, however the crossover from Experiment 2

881 is not evident in these data. Instead, the accuracy effect seems to be

882 driven by a larger magnitude drop in the distractor correct rejec-

883 tions between the ‘line’ and ‘no lines’ conditions.

884 In Fig. 10, we plot ‘‘accuracy capacity’’ alongside participants’

885 z-score capacity values from Experiment 3 to

886 obtainSupplemental information about configural processing from

887 patterns of errors. We observe that participants tend to be higher

888 on both dimensions in the configural condition, corroborating the

889 statistical tests above.

890 Unlike the previous two experiments focusing on Orientation,

891 however, we also see an interaction between the line manipulation

892 and the configural condition on the capacity z-scores. In

893Experiments 1 and 2 there was weak evidence against an effect

894of lines and substantial evidence against an interaction. The benefit

895of the configural cue of Proximity compared to the control condi-

896tion, measured in terms of capacity, was greater when the two dots

897were not connected by a line. The presence of a line appears to

898inhibit the contribution of configural information. This is the oppo-

899site of the interaction predicted by the local theory, and also by the

900literature on redundant signals, which suggest that the presence of

901additional explicit cues should improve detection.

902The most likely account of this interaction is through the

903Gestalt phenomenon of ‘element connectedness’ (Palmer & Rock,

9041994), where connecting two dots by a line segment strengthens

905their tendency to be grouped together. Our Proximity manipula-

906tion causes the dots to appear farther apart (due to increased phys-

907ical distance), while this grouping effect due to connectedness may

908cause the dots to appear closer together (albeit in psychological

909distance). This counteracting force would lead to a weaker effect

910in the ‘lines’ condition than the ‘no lines’ condition, where no addi-

911tional grouping effect was present. Interestingly, element connect-

912edness does not seem to affect performance in the control

913condition, where Proximity stays constant. While there have been

914rigorous psychophysical studies of the strength of grouping by

915Proximity as a function of distance (Kubovy, Holcombe, &

916Wagemans, 1998), there is no psychophysical data about the

917impact of element connectedness on the perception of Proximity.
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Fig. 9. (a) Mean response times and (b) accuracy for each condition in Experiment 3 (using Proximity and separate configural and control blocks). Configural trials differed

from the reference in Proximity as well as the location of each element. In control trials, both elements were in a different location than the reference squares, but the
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Table 3

Results from Experiment 3 broken down by participant and condition in the same format as Table 1.

P Configural Control Single dot

Lines No lines Lines No lines

Z Acc RT Z Acc RT Z Acc RT Z Acc RT Acc RT

1 �2.29 0.98 438 0.67 0.98 533 �7.67 0.67 573 �5.36 0.66 839 0.76 591

2 0.34 0.98 453 3.56 1.00 511 �3.43 0.80 485 �2.98 0.78 580 0.79 481

3 5.57 0.98 465 2.83 0.98 414 0.02 0.95 531 �5.56 0.95 436 0.89 460

4 �5.82 0.87 494 �1.85 0.99 302 �2.19 0.82 437 �6.53 0.78 375 0.85 413

5 �1.88 1.00 297 2.30 0.99 454 �4.90 0.99 370 �6.39 1.00 583 0.93 509

6 �0.83 0.98 494 0.17 0.99 424 �5.47 0.98 534 �5.92 0.96 505 0.87 506

7 3.97 1.00 420 4.89 0.99 504 0.01 0.97 495 �0.97 0.98 542 0.90 543

8 �4.23 1.00 478 2.31 1.00 540 �8.36 0.98 549 �5.97 0.97 627 0.83 681

9 �3.03 0.99 730 �1.90 1.00 570 �4.32 1.00 630 �6.13 1.00 551 0.92 641

10 2.06 0.99 510 2.45 1.00 342 0.52 1.00 493 �0.39 0.99 458 0.88 538

11 �5.03 1.00 395 �0.33 1.00 461 �5.16 0.99 465 �5.15 0.98 496 0.90 562

12 0.87 1.00 394 2.91 0.98 498 �3.37 0.92 446 �2.46 0.97 532 0.85 512

13 3.60 0.92 778 7.34 0.99 590 �1.47 0.81 960 0.13 0.97 704 0.71 840
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918 Some evidence against this account, however, comes from Han,

919 Humphreys, and Chen (1999), who used a global letter discrimina-

920 tion task to show that grouping elements by Proximity can be as

921 fast and efficient as grouping by connectedness. They found no dif-

922 ference between a condition using only Proximity cues and a con-

923 dition using both Proximity and connectedness cues. In their

924 experiments, though, Proximity and connectedness were not put

925 in opposition; furthermore, since element connectedness has only

926 been discussed in the context of global grouping tasks, we cannot

927 expect these results to generalize exactly to psychophysical

928 change-detection tasks settings in which only two elements are

929 present. Our task is an example where multiple Gestalt principles

930 come into conflict, which remains an important direction for fur-

931 ther investigation.

932 6. General discussion

933 In all three experiments, we used the capacity coefficient as a

934 diagnostic measure to show that the Gestalt theory of features pro-

935 vides a better explanation of the data than the local theory. When

936 there is a change in emergent features of Orientation or Proximity,

937 the perceptual system experiences gains in efficiency that cannot

938 be accounted for in terms of how it processes the parts.

939 Moreover, the presence of an explicit line does not provide any

940 information not already present in emergent features between

941 dots, and in the case of Proximity actually inhibits processing.

942 This comparison of the whole against the sum of the parts has been

943 at the core of Gestalt theory since its inception, and the capacity

944 coefficient provides a way of rigorously integrating how the parts

945 are processed to make predictions about the whole.

946 We now turn to some details of our results that raise interesting

947 questions for future work. First, note that while Czwas much larger

948 on configural trials than on control trials, there was still high vari-

949 ation across individuals. This is troubling for a natural characteri-

950 zation of configurality as high absolute performance relative to

951 the parallel independent race model. Often, participants were still

952 performing with limited capacity (Cz < 0), in the configural condi-

953 tion, which implies less efficiency than if local information was

954 processed independently. One explanation for this effect is the

955 existence of attentional factors that may interfere with processing

956 and generally reduce workload capacity. However, because any

957 such factors affect all trials evenly, it does not affect our compar-

958 ison with control trials. Hence, when modeling the contribution

959 of emergent features, we should be careful to measure degrees of

960 configurality – as we did here – instead of making an absolute

961 judgement.

962If the model containing only local information does not account

963for the data, we are left with the question of what model is appro-

964priate? The SFT framework, and the capacity coefficient in particu-

965lar, naturally suggests several candidates. These models are

966unequivocally in the information-processing paradigm, and

967embody different hypotheses about the sources of information,

968the order of processing that information, and the way that infor-

969mation is ultimately combined into a decision. All of these aspects

970of information-processing are intimately tied into the SFT frame-

971work and can most easily be framed in terms of its stochastic

972process-based measures. Further work is needed to distinguish

973among them, and we suggest some potential variations of our

974change-detection task that may do so.

9751. Additional Channels: Emergent features like Orientation and

976Proximity could constitute separate sources of information

977and ‘‘race’’ in parallel against local information coming from

978the individual dots. Under this theory, configural effects appear

979when channels containing information higher-order features

980overpower the channels containing local information in that

981race. It has recently been suggested that topological similarity

982may play such a role (Eidels, Townsend & Pomerantz, 2008;

983Pomerantz, 2003), and is also implicitly endorsed by

984Pomerantz and Portillo’s (Pomerantz & Portillo, 2011) Theory

985of Basic Gestalts, which posits direct detectors for emergent fea-

986tures. This model also has the advantage of generalizing easily

987to more complex stimuli (e.g. three or more dots), with addi-

988tional higher-order features like co-linearity or symmetry suc-

989cessively overpowering lower-order features. Its potential

990scalability makes it a promising contender for implementation

991in a computer vision system. However, other properties of the

992race remain unclear, such as the degree of facilitatory and inhi-

993bitory interaction between channels (Eidels et al., 2011).

9942. Configuration-First Processing: The visual system first takes

995holistic features like Orientation or Proximity into account

996and only examines local information if the holistic features

997are not informative enough to make the decision. There was

998some support for this model in the mixed design of

999Experiment 2. Recall that we found a decrease in processing

1000efficiency for control trials when mixed together with configu-

1001ral trials, as compared to the same trials in Experiment 1, where

1002participants could plausibly use a ‘‘location-only’’ strategy. The

1003‘‘configuration-first’’ model could be more carefully tested

1004against the ‘‘additional channels’’ model by designing new stim-

1005uli in which Orientation or Proximity changes the same amount

1006as in the present study, but the degree of location change of the

−5 0 5

−
0
.4

−
0
.2

0
.0

0
.2

Configural

Cz (RT−based)

C
p
 (

A
c
c
u
ra

c
y
−

b
a
s
e
d
)

Lines

No Lines

−5 0 5

−
0
.4

−
0
.2

0
.0

0
.2

Control

Cz

C
p

Fig. 10. Experiment 3 scatter plot comparing the capacity coefficient on the x-axis with the accuracy-based capacity assessment function on the y-axis. While the accuracy

measure does not yet have formal statistical tests worked out, we can qualitatively see that points in the configural condition tend to be higher on both dimensions than in

the control condition.

R.X.D. Hawkins et al. / Vision Research xxx (2015) xxx–xxx 13

VR 7093 No. of Pages 15, Model 5G

16 May 2015

Please cite this article in press as: Hawkins, R. X. D., et al. Can two dots form a Gestalt? Measuring emergent features with the capacity coefficient. Vision

Research (2015), http://dx.doi.org/10.1016/j.visres.2015.04.019

http://dx.doi.org/10.1016/j.visres.2015.04.019


1007 individual dots is much larger. Top-down processing predicts

1008 that there would be no difference in the results, since the infor-

1009 mation from individual dots would not be considered. However,

1010 the additional-channels model predicts that given enough of a

1011 boost, the channel containing local information could over-

1012 power the configural channel.

1013 3. Coactivation: The location information from each dot could pool

1014 into a common channel that takes featural information into

1015 account (Colonius & Townsend, 1997; Miller, 1982). This model

1016 is theoretically appealing since it specifies an internal transfor-

1017 mation by which local, physical information is transformed into

1018 higher-order percepts. However, our findings that stimuli con-

1019 taining emergent features are processed with limited capacity

1020 rule out this model, which predicts super capacity (Townsend

1021 & Nozawa, 1995). Coactivation was also recently ruled out as

1022 a viable model for configural processing because of its inability

1023 to predict behavior in trials containing distractors (Eidels,

1024 Townsend & Pomerantz, 2008).

1025

1026 We expect that SFT and the capacity coefficient will be instru-

1027 mental in distinguishing between these models. SFT was initially

1028 developed precisely because of the critical mimicry problems fac-

1029 ing traditional measures and analyses. For example, mean reaction

1030 time and accuracy measures famously cannot distinguish between

1031 parallel and serial architectures in domains like visual search

1032 (Townsend & Wenger, 2004). Although it may not be technically

1033 impossible to distinguish between the three specific models pre-

1034 sented in our General Discussion using traditional measures, we

1035 worry about the historical failings of these measures, and expect

1036 the tools introduced in this paper to pose fewer problems down

1037 the road.

1038 In conclusion, we have presented strong evidence from a new

1039 experimental task, with inferences drawn using the powerful mod-

1040 eling approach of the capacity coefficient, that the simple emergent

1041 features of Orientation and Proximity between two dots confers a

1042 benefit to efficiency above and beyond the contribution of its com-

1043 ponent parts. Although these features are not local, physical prop-

1044 erties of the stimulus, their contribution is indistinguishable from

1045 (and sometimes more efficient than) the local information pro-

1046 vided by the Orientation and length of an explicit line. By illustrat-

1047 ing the critical role that the capacity coefficient played in our

1048 formalization and testing of Gestalt and local theories in this sim-

1049 ple domain, we set the foundation for further work systematically

1050 investigating the processing of emergent features.

1051 Appendix A. Supplementary data

1052 Supplementary data associated with this article can be found, in

1053 the online version, at http://dx.doi.org/10.1016/j.visres.2015.04.

1054 019.
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