| NAME: |
|-------|
|-------|

10 pages

2.5 hours

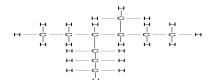
## BLUEVALE COLLEGIATE INSTITUTE SCH4UI PRACTICE EXAM

Friday, January 27, 2012, 8:30am-11:00am

- 1. You may use a(n) i) non-programmable calculator, ii) exam aid sheet (8.5 x 11 double sided, must be handed in with exam), iii) periodic table provided.
- 2. No other electronic devices are permitted.
- 3. Keep your eyes on your own exam, looking at others' exams may result in a mark of ZERO!

| PART A: Multiple Choice # (1-50) | 50 marks    |
|----------------------------------|-------------|
| <b>PART B: Quicks # (51-70)</b>  | 20 marks    |
| PART C: Calculations # (71-80)   | 80 marks    |
| Total:                           | 150 marks 🔏 |

Part A: Multiple Choice. Identify the letter of the choice that best completes the statement or answers the question. Transfer your answer on to the scantron card provided.


### 1. Name CH<sub>3</sub>CH(OH)CH<sub>3</sub>.

- a. iso-ethanol d. propanol b. tertiary-propanol e. 2-propanol
- c. butanol

#### 2. Which organic compound is saturated?

- a. ethylcyclopentane
- d. cyclohexane
- b. 2-methyl-3-ethylpentyne
- e. 1,3,5-trimethyl-2-octene
- c. 1,1-dimethylhexane

#### 3. Name the following compound.



- a. 4-ethyl-3-methylheptane
- d. 4-ethyl-3-methylhexene
- b. 4-methyl-3-propylhexane c. 3-propyl-4-methylhexane
- e. 3-ethyl-4-propylheptane

## 4. Which feature do all aromatic hydrocarbons have?

- a. an amine groupd. an aldehyde group
- e. all double bonds in a ring b. halogens
- c. a benzene ring structure

#### 5. Which compound is a structural isomer of the compound shown below?

- a. propane
- d. pentane
- b. butane
- e. hexane
- c. methane

## 6. Which statement describes an oxidation reaction in organic chemistry?

- a. The product has fewer carbon-oxygen bonds than the reactant.
- b. The product has one methyl group more than the reactant.
- c. The product has more carbon-oxygen bonds than the reactant.
- d. The product has more carbon-hydrogen bonds than the reactant.
- e. Ring structures usually form.

## 7. What forms when water reacts with an alkene?

a. an ester d. an amine e. a ketone b. an acid

c. an alcohol

### 8. Which of the following statements is **false**?

- a. Different compounds with the same molecular formula are called isomers.
- b. The most common intermolecular force for organic molecules is hydrogen bonding.
- c. The carbon atoms of organic compounds may join together in long chains or rings.
- d. In an electron-dot formula, four dots between a pair of atoms represents a double bond.

| e. Alkanes, alkenes, and alkyr                                                             | nes are all aliphatic hydrocarbons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| <br>a. alkane                                                                              | er of carbons, which molecule would have the highest boiling point? d. amine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| b. aromatic                                                                                | e. ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| c. alcohol                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 10. Which of the following state                                                           | oments is false?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                            | f carbon atoms increases, we observe an increase in boiling points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                            | ed chain isomers have higher boiling points than their straight-chain isomers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                                                                                            | alkanes are tetrahedral at each carbon.  e only type of intermolecular force between alkane molecules, alkanes would not be miscible with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| water.                                                                                     | to only type of intermolecular force between alkane molecules, alkanes would not be inisciple with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 |
| e. Because of the weak interm                                                              | nolecular forces, alkanes have low densities compared to water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 11. An electron has the followin                                                           | g set of quantum numbers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| <br>$n=3, l=1, m_l=1, m_s=+\frac{1}{2}$ .                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| In which orbital is this electro                                                           | n found?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| a.3s                                                                                       | d. 3f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| b. 3 <i>p</i>                                                                              | e. 4 <i>p</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| c. 3 <i>d</i>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| <br>12. Which set of quantum num                                                           | bers is not possible?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| <br>a. $n = 3$ , $l = 0$ . $m_t = 0$ . $m_z = \frac{1}{n}$                                 | d. $n = 5$ , $l = 3$ , $m_l = -3$ , $m_s = -\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 1                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| b. $n = 5$ , $l = 3$ , $m_l = 2$ , $m_s = \frac{1}{2}$                                     | e. $n = 4$ , $l = 4$ , $m_l = 2$ , $m_s = -\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| c. $n = 4$ , $l = 3$ , $m_l = -1$ , $m_s = -1$                                             | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                                            | oute to the quantum mechanical model of the atom?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| <ul><li>a. Uncertainty principle</li><li>c. Aufbau principle</li></ul>                     | b. Hund's rule d. Wave equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| c. Auroau principie                                                                        | d. wave equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                            | bute to the quantum mechanical model of the atom?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| <ul><li>a. Uncertainty principle</li><li>c. Aufbau principle</li></ul>                     | b. Hund's rule d. Wave equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| c. Autoau principie                                                                        | d. Wave equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| <br>15. Which electron configuration                                                       | represents a reactive non-metallic element?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| a. $1s^2 2s^2 2p^6 3s^2 3p^3$<br>b. $1s^2 2s^2 2p^6 3s^2 3p^1$                             | d. $1s^2 2s^2 2p^6 3s^2 3p^6$<br>e. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| a. $1s^2 2s^2 2p^6 3s^2 3p^5$<br>b. $1s^2 2s^2 2p^6 3s^2 3p^1$<br>c. $1s^2 2s^2 2p^6 3s^2$ | C. 13 23 20 33 30 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| <br>16. What is the maximum numb                                                           | per of electrons in $n = 3$ ? d. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| b. 3                                                                                       | e. 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| c. 6                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 17 Which sublevel when full                                                                | corresponds to the lanthanide series of elements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| <br>a. 3d                                                                                  | d.4f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| b. 3 <i>f</i>                                                                              | e. 5 <i>f</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| c. 4d                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| <br>18. Which element has the high                                                         | est electron affinity?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| a. Li                                                                                      | d. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| b. N<br>c. O                                                                               | e. Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| <br>19. Which pair of atoms and/or                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| a. O <sup>2-</sup> and Cl <sup>-</sup><br>b. Ca <sup>2+</sup> and Cl <sup>-</sup>          | d. $\text{Li}^+$ and $\text{Na}^+$ e. $\text{K}^+$ and $\text{Kr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| c. F <sup>-</sup> and N <sup>2-</sup>                                                      | o. ix und ixi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| <br>20. Which element has the lowe a. Ca                                                   | st first ionization energy? d. O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| a. Ca<br>b. Cs                                                                             | a. O<br>e. Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| c. Br                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 21 4 20 0                                                                                  | numic cooled 7 590. The smooth best consists of the state |   |
| <br>21. A 20.0 g sample of aluming the energy change for this                              | num is cooled 7.5°C. The specific heat capacity of aluminum is 0.900 J/g•°C. What is sample?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S |
| a. 140 kJ                                                                                  | d. 140 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| b140 kJ                                                                                    | d. –140 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| e. – 1.4 kJ                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

#### 22. Which statement describes an exothermic reaction?

- a. The energy absorbed in bond breaking is more than the energy released in bond formation.
- b. The energy absorbed in bond breaking is less than the energy released in bond formation.
- c. The system absorbs energy.
- d. The surroundings cool down.
- e. The potential energy of the reactants is less than the potential energy of the products.

#### 23. Which statement does not describe an endothermic reaction?

- a. The surroundings cool down.
- b.  $\Delta H^{\circ}_{rxn}$  is positive.
- c. Heat is released by the system.
- d. Heat is absorbed by the system.
- e. The potential energy of the products is greater than the potential energy of the reactants.

#### 24. Which expression does not represent the rate of the following reaction?

$$Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + H_{2(g)}$$

a. 
$$\frac{\Delta [Mg]}{\Delta t}$$

b. 
$$\frac{\Delta[H_2]}{\Delta t}$$

$$a. \, \frac{\Delta[\text{Mg}]}{\Delta t} \qquad b. \, \frac{\Delta[\text{H}_2]}{\Delta t} \qquad c. \, -\frac{1}{2} \left( \frac{\Delta[\text{HCl}]}{\Delta t} \right) \qquad d. \, \frac{\Delta[\text{MgCl}_2]}{\Delta t}$$

d. 
$$\frac{\Delta[\,\mathrm{MgCl_2}\,]}{\Delta t}$$

#### 25. In the following reaction, what is equal to the rate of production of NO gas?

$$4NH_{3(g)}+5O_{2(g)} \rightarrow 4NO_{(g)}+6H_2O_{(g)}$$

- a. the rate of production of NH<sub>3</sub> gas
- b. one third the rate of production of water
- c. four fifths the rate of disappearance of O2 gas
- d. one quarter the rate of disappearance of NH3 gas
- e. six times the production of water vapour

#### 26. In the following reaction, butane is consumed at the rate of 0.0333 mol/(Los). Determine the rate at which CO, is produced.

$$C_4H_{10(g)} + \frac{13}{2}O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(g)}$$

- d. 0.0667 mol/(L•s)
- e. 0.133 mol/(L•s)

#### 27. Which statement about the factors that affect reaction rates is false?

- a. Decreasing the concentrations of the reacting particles decreases the chance of collision.
- b. A collision with poor orientation requires a higher activation energy than a collision with optimum orientation.
- c. Increasing the pressure in a gaseous reaction increases the chance of collision.
- d. A reaction occurs every time particles of the reactants collide.
- e. Increasing the temperature increases the reaction rate.

## 28. Given the following reaction mechanism, what is the equation for the overall reaction?

$$2A \rightarrow B + 2C \text{ (slow)}$$

$$B + C \rightarrow D + E \text{ (fast)}$$

$$C + D \rightarrow E + F$$
 (fast)

a. 
$$2A \rightarrow 2E + F$$
 b.  $2A + B + 2C \rightarrow D + 2E + F$ 

$$c. 2A + 2C \rightarrow 2E + F$$

d. 
$$2A + C \rightarrow 2E + F$$

#### 29. Which quantity does not increase when the temperature of a reaction system is raised?

- a. activation energy b. # of collisions
- c. # of effective collisions
- d. average kinetic energy of the

## particles

#### 30. Which statement about the instantaneous rate of a reaction is not correct?

- a. The higher the rate, the greater is the slope of a line on a concentration-time graph.
- b. The instantaneous rate is the slope of the tangent to a line on a concentration-time graph.
- c. The instantaneous rate is the slope of the secant to a line on a concentration-time graph.
- d. The instantaneous rate decreases over time.

#### 31. A reaction quotient is calculated to be $3.2 \times 10^{-5}$ . The equilibrium constant for the same reaction is $5.4 \times 10^{-5}$ . Which statement is correct?

- a. The system is at equilibrium.
- b. The concentrations of the products are greater than their concentrations at equilibrium.
- c. The system will attain equilibrium by moving to the right.
- d. The system will attain equilibrium by moving to the left.

## 32. What will happen if the pH of the following equilibrium system is increased?

$$H^{+}_{(aq)} + 2CrO_4^{2-}_{aq)} \Leftrightarrow Cr_2O_7^{2-}_{(aq)} + OH^{-}_{(aq)}$$
yellow orange

- a. The solution will turn yellow.
- b. The solution will turn a darker orange.
- c. The concentration of  $H^{+}_{(aq)}$  will decrease.
- e. The concentration of OH (aq) will increase.
- d. All hydroxide ion will be used up.

| <br>33.   |                                                                           |                                                             | happen if CoCl <sub>4</sub> <sup>2</sup> is added to th | e following equilibrium           |
|-----------|---------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|
|           |                                                                           | $+4Cl_{(aq)} \Leftrightarrow CoCl_{4(aq)}^{2-} + 0$         | $6H_2O_{(l)}$                                           |                                   |
|           | pink                                                                      | purple/blue                                                 |                                                         |                                   |
|           | a. The solution will be                                                   | -                                                           | c. The concentration of c                               |                                   |
|           | b. The solution will be                                                   | ecome more purple.                                          | d. The pH of the system                                 | will increase.                    |
|           |                                                                           |                                                             |                                                         |                                   |
| <br>34.   |                                                                           |                                                             | e reaction vessel would appear                          |                                   |
|           | a. colourless b                                                           | o. blue c. pink                                             | d. purple/blue                                          |                                   |
| 25        | What will bannon to t                                                     | ha fallassina aguilihuissu i                                | on input cas is added while the                         | valuma namaina aanatant?          |
| <br>35.   |                                                                           |                                                             | an inert gas is added while the                         | volume remains constant:          |
|           | $2IBr_{(g)} \Leftrightarrow I_{2(g)}$ a. The concentration of             |                                                             | c. There will be no change to the                       | a aquilibrium quatam              |
|           | <ul><li>a. The concentration of</li><li>b. The concentration of</li></ul> |                                                             | d. The concentration of Br <sub>2</sub> wil             | •                                 |
|           | b. The concentration (                                                    | or 12 will increase.                                        | d. The concentration of Br <sub>2</sub> wir             | r decrease.                       |
| 36.       | If the equation in ques                                                   | stion 35 has the pressure ir                                | creased, what will happen to the                        | e equilibrium?                    |
|           | a. The concentration of                                                   |                                                             | c. The concentration of $I_2$ will in                   |                                   |
|           | b. The concentration of                                                   | Br <sub>2</sub> will decrease.                              | d. There will be no change to the                       |                                   |
|           |                                                                           |                                                             |                                                         |                                   |
| <br>37.   | What is the relationsh                                                    |                                                             | t and the solubility product cons                       | tant when a precipitate forms?    |
|           | a., $Q_{\rm sp} > K_{\rm sp}$ b., $Q_{\rm sp}$                            | $_{\rm p} \le K_{\rm sp}$ c., $Q_{\rm sp} < K_{\rm sp}$     | $d., Q_{sp} = K_{sp}$                                   |                                   |
|           |                                                                           |                                                             |                                                         |                                   |
| <br>38.   | What is the conjugate                                                     | , <b>2</b>                                                  |                                                         |                                   |
|           | a. $H_3O^+_{(aq)}$ b. 6                                                   | $OH^{(aq)}$ c. $H_3PO_{4(aq)}$                              | d. HPO <sub>4</sub> <sup>2-</sup> <sub>(aq)</sub>       |                                   |
| 20        | ***                                                                       |                                                             | $\mathcal{A}$                                           |                                   |
| <br>39.   | What is the conjugate                                                     |                                                             | 1 yma 2-                                                |                                   |
|           | a. $H_3O^+_{(aq)}$ b. 6                                                   | $OH^{(aq)}$ c. $H_3PO_{4(aq)}$                              | d. HPO <sub>4</sub> <sup>2-</sup> (aq)                  |                                   |
| 40        | What is the Properties                                                    | I I array definition of a bac                               | .2                                                      |                                   |
| <br>40.   |                                                                           | d-Lowry definition of a bas                                 | c. a substance that dissolves in v                      | votor to form H <sup>+</sup> ions |
|           | <ul><li>a. a substance that acc</li><li>b. a substance that do</li></ul>  |                                                             | d. a substance that dissolves in v                      | $\Delta^{\nu}$                    |
|           | o. a substance that do                                                    | mates protons                                               | d. a substance that dissolves in v                      | vater to form Off Tolls           |
| 41.       | What is the oxidation                                                     | number of P in PO <sub>2</sub> 3-?                          |                                                         |                                   |
|           | a6                                                                        | c. +3                                                       |                                                         |                                   |
|           | b3                                                                        | d. +6                                                       |                                                         |                                   |
|           | e. +5                                                                     | <b>a.</b>                                                   |                                                         |                                   |
|           |                                                                           | 1                                                           |                                                         |                                   |
| <br>42.   | How does the oxidation                                                    | on number of Bi change wh                                   | en BiO <sub>3</sub> reacts to form Bi(OH) <sub>3</sub>  | ?                                 |
|           | a. decreases by 3                                                         | c. no change                                                |                                                         |                                   |
|           | b. decreases by 2                                                         | d. increase by 1                                            |                                                         |                                   |
|           | e. increases by 4                                                         | A PA                                                        | 7                                                       |                                   |
| 40        | ***                                                                       |                                                             | , and a                                                 |                                   |
| <br>43.   |                                                                           | eaction, identify the OXIDI                                 |                                                         |                                   |
|           | a. Mn b. O                                                                | $_{2}O \rightarrow 5 VO_{2}^{+} + Mn^{2+} + 2$<br>c. V d. H |                                                         |                                   |
|           | a. Will D. O                                                              | с. у и. п                                                   | e. not a redox reaction                                 |                                   |
| 44.       | Which substance is th                                                     | e strongest oxidizing agent                                 | ?                                                       |                                   |
| <br>• • • | a. Fe                                                                     | c. Cu <sup>2+</sup>                                         | ·•                                                      |                                   |
|           | b. Br <sub>2</sub>                                                        | d. Zn <sup>2+</sup>                                         |                                                         |                                   |
|           | e. H <sub>2</sub>                                                         |                                                             |                                                         |                                   |
|           |                                                                           |                                                             |                                                         |                                   |
| <br>45.   | What does the double                                                      |                                                             |                                                         |                                   |
|           | a. change in phase                                                        | c. separation of ele                                        | ectrodes                                                |                                   |
|           | b. the anode                                                              | d. salt bridge                                              |                                                         |                                   |
|           | e. electrolyte                                                            |                                                             |                                                         |                                   |
|           | T                                                                         |                                                             |                                                         |                                   |
| <br>46.   |                                                                           |                                                             | return through the <u>anode</u> .                       |                                   |
|           | a. true                                                                   | b. false                                                    |                                                         |                                   |
| 4=        | T 1 . 11                                                                  | • 1 4 4 4 1                                                 | 1 1                                                     |                                   |
| <br>47.   | -                                                                         | kidation occurs at the <u>cat</u>                           | chode.                                                  |                                   |
|           | a. true                                                                   | b. false                                                    |                                                         |                                   |
| 40        | G                                                                         |                                                             |                                                         | 1.1 /1 /1 /1                      |
| <br>48.   |                                                                           |                                                             | n in iron because aluminum is                           | s higher on the activity series.  |
|           | a. true                                                                   | b. false                                                    |                                                         |                                   |
| 40        | The evide# 1                                                              | of on alone t !                                             | og og 4ho olomo4 !!-!!                                  |                                   |
| <br>49.   |                                                                           |                                                             | es as the element is oxidized                           |                                   |
|           | a. true                                                                   | b. false                                                    |                                                         |                                   |
|           |                                                                           |                                                             |                                                         |                                   |
| <br>50.   | Reduction refers to                                                       |                                                             |                                                         |                                   |
|           | a. true                                                                   | b. false                                                    |                                                         |                                   |

# Part B: Quicks: Complete the following Quicks in the space provided. (20)

| 51. | The IUPAC name of $H_3C - O - CH_2CH_3$ is                                                               |
|-----|----------------------------------------------------------------------------------------------------------|
| 52. | Ketones are reduced to produce                                                                           |
| 53. | Aldehydes are oxidized to produce                                                                        |
| 54. | The IUPAC name of the smallest possible carboxylic acid                                                  |
| 55. | The name of the product formed from the condensation of propanoic acid and N-ethylbutanamine             |
|     |                                                                                                          |
| 56. | What is another correct name for methylethanoate?                                                        |
| 57. | Write the electron configuration for Cl <sup>-</sup>                                                     |
| 58. | Write the principle level distribution for Ag <sup>+</sup>                                               |
| 59. | What ion or atom has the principle level distribution [Ar] $4s^2$ , charge = $4^+$ ?                     |
| 60. | When thermochemical equations are added to find $\Delta H$ of an unknown reaction is using               |
| 61. | If the temperature of 50 g of water increased by 7°C, Q <sub>gained</sub> =                              |
| 62. | Reactions that make up steps in a reaction mechanism are called                                          |
| 63. | A catalyst (lowers <b>ΔH</b> OR lowers <b>activation energy</b> ) circle one                             |
| 64. | The units for the rate constant, k of a third order overall reaction is                                  |
| 65. | In an exothermic reaction the equation for $\Delta H$ with respect to $E_a$ forward and $E_a$ reverse is |
| 66. | What will you observe when $Q_{sp} > K_{sp}$                                                             |
| 67. | What is the [OH] in 1.0M CH <sub>2</sub> O <sub>2</sub> H, $K_a = 1.8 \times 10^{-4}$ , $pH = 3.1$ ?     |
| 68. | The conjugate acid of H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> is                                     |
| 69. | Calculate $K_b$ when $K_a = 1.8 \times 10^{-6}$                                                          |
| 70. | The charge of Cr in $\operatorname{Cr}_2\operatorname{O_7}^{2-}$ is                                      |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |

Part C: Short Answer. Complete the following questions in the space provided (80) \*\*Make sure to include FULL solutions to receive FULL marks \*\*

**71.** Complete the following table. [ /10]

| Reaction                                                                                                                                                                             | Type of reaction | Class of organic product |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| CH3CH2OH + HCI →<br>CH3CH2CI + H2O                                                                                                                                                   |                  |                          |
| $CH_5CHOHCH_3 \xrightarrow{\text{H}_2SO_4} \\ \text{heat} \\ CH_2 = CHCH_3 + H_2O$                                                                                                   |                  |                          |
| O<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> — C — OH + NaOH →<br>O<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> — C — ONa + H <sub>2</sub> O                          |                  |                          |
| OH <sub>3</sub> CH <sub>2</sub> —C—NHCH <sub>3</sub> + H <sub>2</sub> O H <sub>2</sub> SO <sub>4</sub> heat OCH <sub>3</sub> CH <sub>2</sub> —C—OH + H <sub>2</sub> NCH <sub>3</sub> |                  | 1                        |
| $ \begin{pmatrix} CH_3-CH \\ \bigcirc \end{pmatrix}_{n} \rightarrow \begin{pmatrix} -CH_2-CH-CH_2-CH- \\ \bigcirc & \bigcirc \end{pmatrix} $                                         |                  |                          |

72. Complete the following table by drawing Lewis Structures for the following molecules: [ /10]

| Molecule         | Noble | Valence        | # of  | # of   | Lewis diagram                         | 3-D Diagram                                       |
|------------------|-------|----------------|-------|--------|---------------------------------------|---------------------------------------------------|
|                  | Gas e | e <sup>-</sup> | bonds | lone e | (Indicate co-ordinate covalent bonds, | (draw 3-D and include bond angles and name of the |
|                  | (0.5) | (0.5)          | (0.5) | (0.5)  | or resonance structures, where        | general and specific name of the shape)           |
|                  | , í   | , ,            | , ,   | , ,    | appropriate) (1)                      | (2)                                               |
| XeI <sub>2</sub> | Ó     | 7              |       |        |                                       |                                                   |
|                  |       |                |       |        |                                       | General:<br>Specific:                             |
| BBr <sub>3</sub> |       |                |       |        |                                       |                                                   |
|                  |       |                |       |        |                                       | General:<br>Specific:                             |

73. The experimental data in the table below were collected for the following decomposition of  $SO_2Cl_{2(g)}$ . What is the rate law for this reaction? [  $\ /10$ ]

$$SO_2Cl_{2(g)} \rightarrow SO_{2(g)} + Cl_{2(g)}$$

| Trial | Initial concentration of SO <sub>2</sub> Cl <sub>2(g)</sub> (mol/L) | Initial reaction rate [mol/(L•s)] |
|-------|---------------------------------------------------------------------|-----------------------------------|
| 1     | 0.100                                                               | $2.2 \times 10^{-6}$              |
| 2     | 0.200                                                               | $4.4 \times 10^{-6}$              |
| 3     | 0.300                                                               | $6.6 \times 10^{-6}$              |

**74.** a) The initial concentration of morphine (a base),  $C_{17}H_{19}NO_3$ , in a solution is  $3.6 \times 10^{-3}$  mol/L. The pOH of the solution is 4.53. Calculate  $K_b$  for morphine. [ /8]

| Concentration       |  |  |
|---------------------|--|--|
| Initial (mol/L)     |  |  |
| Change              |  |  |
| Equilibrium (mol/L) |  |  |

**75.** 300.0 mL of 0.00325 mol/L barium chloride is added to an equal volume of 0.00400 mol/L sodium sulfate. What is the concentration of barium ions after the precipitation of barium sulfate ( $K_{\rm sp} = 1.50 \times 10^{-9}$ ) is complete? [ /10]

| Concentration       |  |
|---------------------|--|
| Initial (mol/L)     |  |
| Change              |  |
| Equilibrium (mol/L) |  |

**76. a)** Calculate the pH at equivalence when 20 mL of 0.20 mol/L  $NH_{3(aq)}$  is titrated against 0.20 mol/L  $HCl_{(aq)}$ .  $K_b$  for ammonia,  $NH_3$ , is  $1.8 \times 10^5$  [  $1.5 \times 10^5$  [

| Concentration (mol/L) | , A | J- ' |  |
|-----------------------|-----|------|--|
| Initial               |     |      |  |
| Change                |     |      |  |
| Equilibrium           |     |      |  |

b) Draw a fully labeled titration curve for the titration in part a) [ /5]

78. The cell potential for the following galvanic cell is given.

$$\begin{array}{c|c} Zn_{(s)} & Zn^{2+}_{(aq)} & | & Pd^{2+}_{(aq)} & | & Pd_{(s)} & E^{\sigma}_{cell} = 1.750 \ V \\ & Zn^{2+}_{(aq)} + 2e^{\cdot} \rightarrow Zn_{(s)} & E^{\sigma}_{cell} = -0.762 \ V \end{array}$$

a) Determine the standard reduction potential for the following half reaction. [ ~/3]  $Pd^{2+}_{(aq)}+2e^{-}\to Pd_{(s)}$ 

b) Draw a fully labeled diagram of this galvanic cell with a salt bridge of  $NaNO_{3(aq)}$ . [