
Getting There First:
Real-Time Detection of Real-World Incidents on Twitter
Miloš Krstajić

University of Konstanz

Germany

Christian Rohrdantz
University of Konstanz

Germany

Michael Hund
University of Konstanz

Germany

Andreas Weiler
University of Konstanz

Germany

ABSTRACT

Social networking and micro-blogging services such as Twit-
ter have become a valuable source of information on current
events. Widespread use of Twitter on mobile devices and
personal computers enables users to share short messages on
any subject in real-time, thus making it suitable for early de-
tection of unexpected events where fast response is critical.
In this paper, we present an online method for detection of
real-world events in Twitter data, such as natural disasters
or man-made catastrophes, by analyzing Twitter data. Our
method combines different textual and frequency components
that represent or approximate interesting semantic aspects of
an event. We use visualization as a validation vehicle, which
allows us to understand which components are relevant and
what impact the parameters have on the results of our event
detection algorithm.

INTRODUCTION

Social media sites for short messages such as Twitter have be-
come a powerful tool for real-time information sharing on a
large scale. Twitter currently produces 340,000,000 tweets
per day from more than 140,000,000 active users1. Many
users post messages related to specific real-world events as
they happen, or shortly after. This huge resource can poten-
tially be a valuable body of information about these events,
which can significantly differ by type, location, and scale.
Unexpected events, such as natural disasters or catastrophes,
are local events with global impact, where real-time event de-
tection is crucial in preparing the appropriate response.
Current event detection methods in social media streams can
be classified into three categories: clustering-based, model-
based, and those based on signal processing, see [2] for an
overview. A well-known approach that belongs to the third
category has shown that Twitter can be used to alert the world
about natural disasters faster than traditional media [6]. An
in-depth analysis of how breaking news spread on Twitter is
provided in [3].
The detection of events on Twitter in real-time is challeng-
ing for several reasons. First, the volume of the messages
is huge and unpredictable and, second, the message content
makes most of the state-of-the-art text mining techniques un-
suitable. In 2009, a short-term study by an online marketing

1https://business.twitter.com/basics/what-is-twitter/

company stated that a large portion of the generated informa-
tion can be considered as pointless babble (40% according to
pearanalytics [4]), making it difficult to separate signal from
noise. Twitter messages are short (140 characters at most)
and can often contain typos, grammatical errors, and cryptic
abbreviations.
In this paper, we present our method for real-time detection
of real-world events. The method detects potential events
by identifying keywords, so-called event-term candidates,
whose frequency suddenly becomes significantly higher than
expected. We then use all tweets containing the term candi-
date to compute the scores that aim to capture different char-
acteristics of the event. In our approach, visualization is used
as a validation tool, which provides a direct insight into the
algorithm output. We evaluate our techniques in a case study
using real Twitter data and discuss our findings and future
work.

PROBLEM DESCRIPTION

In this section, we provide details about the Twitter data, de-
scribe the analysis problem, and outline our approach.

Data

The Twitter platform provides direct access to the public live
stream of Twitter messages and offers an API2 to application
developers for receiving a large portion of the total number of
daily produced tweets. By using the Streaming API of Twitter
with the so-called “gardenhose” level, we are able to collect
10% of the public live stream. It covers more than 30 million
tweets per day and more than one million tweets per hour.
Each tweet object is streamed in the semi-structured JSON
format containing 67 data fields. A tweet object includes the
short message itself along with detailed metadata on the tweet
(e.g. count of retweets) and on the user’s profile (e.g. count
of followers).
To cope with the massive data stream and to facilitate the
access to the data we use an extended version of a native
XML database [7] to store the designated incoming data in
a standardized format and access the incoming items on-the-
fly. With this solution we are able to keep up with the live
data stream and can support real-time access to the incoming
data objects.

The Problem

Allan et al. [1] define an event as “something that happens at
some specific time and place along with all necessary precon-
ditions and unavoidable consequences”. While this definition
does not include duration, we can still use it to describe all
real-world events. In the context of events in Twitter, we de-
fine an unexpected event as a sequence of Twitter messages,

2https://dev.twitter.com/start



whose content is similar and related to a keyword, whose vol-
ume is larger than usual. The term interesting refers to a com-
bination of textual and statistical features, which will be de-
scribed below in more detail.

LIVE DETECTION OF INCIDENTS IN TWITTER

We base our approach on the idea that people would use Twit-
ter to quickly respond to an important event or incident. An
event is then considered important if there is an unexpectedly
large amount of messages in a short period of time that are
related to the event. Here the challenge is twofold: first, we
need to define what is ”unexpectedly large”, and, second, we
have to identify messages that are related to an event. Since
the messages are short, we assume that a word-level analy-
sis of tweets might be suitable to detect events. We can ex-
pect that applying a term-frequency based approach on Twit-
ter could deliver good results and performance since: a) it is
easy to adapt it to incremental data sources, and b) sophis-
ticated state-of-the-art text mining approaches do not work
well with short texts.
We monitor the frequency of individual keywords (event-term
candidates) and, for those keywords that have unexpected fre-
quency values, we calculate additional scores that could help
in describing and detecting an important real-world incident.

Algorithm

Our approach builds on previous work on feature-based sen-
timent analysis of product reviews [5]. The real-time version
of this offline event detection algorithm is extended to work
on the Twitter stream for emergency response tasks, taking
into account the characteristics and the challenges of this text
stream such as short messages and large data volume. The
algorithm works directly on the real-time text stream and, in
difference to other approaches, is able to process the docu-
ments as soon as they arrive, instead of processing and ana-
lyzing chunks of documents sequentially.
Step 1: Queueing and preprocessing of tweets. A queue
is used to buffer the incoming document stream in order not
to skip any document during extraordinary peaks in the over-
all data load. Afterwards, each document is preprocessed to
filter out non-English tweets and extract keywords that may
indicate an incident (event-term candidates). The prepro-
cessing is optimized to cope with the real-time processing
requirement and includes tokenization, lemmatization, and
part-of-speech (POS) tagging. During our tests we found out
that nouns, proper nouns, and hashtags are a good choice for
event-term candidates as they usually refer to explicit entities
or concepts. Due to grammatical inconsistencies, the accu-
racy of POS tagging of tweets is lower than POS tagging of
general text data and, therefore, the preprocessing step pro-
duces some wrong event-term candidates.
2. Event-term candidate extraction. For each incoming
tweet, the algorithm compares the newly extracted event-term
candidate with the list of event-term candidates that were
extracted in the past. If the candidate occurs for the first
time, it will be stored in a special data table with two at-
tributes: last seen and moving avg. The timestamp of the
current tweet will be saved to the data field last seen, be-
cause by now it is the last time the candidate has been ob-
served. The data field moving avg contains the average tem-

poral distance between two occurrences of a candidate, which
will be incrementally updated with each appearance of the
candidate. When a candidate appears for the first time, the
moving avg will be set to the time that has passed since
the stream started. The update step is then: moving avgt =
moving avgt−1 · (1−δ ) + dist to previous · δ . The coeffi-
cient δ dampens the moving avg in order to avoid abrupt
changes caused by outliers. We are using the value δ = 0.01.
3. Event-term episode identification, update and deletion.
If the candidate has been stored earlier, we check if the rela-
tive temporal distance to the previous occurrence of the can-
didate is smaller than the threshold α ·moving avg. If so, we
create or update an episode for the candidate. An episode
will contain all tweets containing the candidate for which
the relative temporal distance is smaller than our threshold
α ·moving avg. Each episode has an expiration date, which
is calculated by adding the moving avg of the candidate to
the timestamp of the last tweet added. Expired episodes are
removed to keep the storage load low.
4. Score calculation. When the number of documents in one
episode exceeds β , which is a fixed threshold, we calculate
the overall score of the episode. If this score is higher than
the the third threshold γ , we consider this episode to be im-
portant. Then we update the visualization and show the event
to the user. The parameters α , β , and γ are decisive for the
number of retrieved events and can be tuned by the user trad-
ing off recall and precision. We analyzed multiple different
real-world events and experimentally came up with parame-
ter settings, which retrieve most of the relevant episodes for
a real-world event (α = 0.25 and β = 15). Next, increasing
the parameter γ we minimize the number of falsely identified
events.

Scoring

Without considering the score of an episode, the algorithm
detects a lot of event-term episodes that are actually false
alarms. Very often, these false alarms are just conversations
or new topics started by some user that, due to the high-
connectivity of Twitter users, suddenly go viral. Therefore,
it is necessary to use a score to distinguish between episodes
indicating a real-world event and non-event episodes that are
for example caused by frequent retweets.
Real-world incidents typically have different characteristic
semantic aspects. We aim to capture these aspects for each
event episode approximating them through different heuristic
score components. Each component is calculated using all
tweets in the active episode. The sentiment score, which is
defined in equation 1 is used to identify whether the docu-
ments of an episode are negative or not. Then, each docu-
ment of an episode is compared with a trigger-word list to
calculate the trigger-word score in order to distinguish be-
tween episodes that indicate a real-world event and those that
represent a popular conversation topic. A trigger-word list,
for example, can be generated by taking all hyponyms of the
word event from WordNet3. The relative time distances be-
tween two documents (in relation to the moving average) in-
dicates the strength of the accelerated occurrence of a term.

3http://wordnet.princeton.edu/



The absolute time distance between two documents speci-
fies whether the term in general occurs frequently or not. A
word that is very frequent usually does not indicate an event.
The similarity between documents (equation 2) can be used
to check whether tweets deal with the same topic or not. Fur-
thermore, we calculate the average number of tweets that are
retweets, which implicitly indicates the interestingness of a
tweet. The average number of tweets containing an URL will
be calculated since tweets dealing with news often contain an
URL. We also calculate scores based on whether the event-
term candidate is a hashtag or not, the source of the tweet
(mobile phone, computer, button on homepage,...) and the
importance of the user who published the tweet, which is de-
fined as the number of the user’s followers.
Most of our scores are ratio-based and we weight each score
by the total number of documents in the episode. The use-
fulness of each individual score, as well as the design of the
overall score depends on the type of events the user wants to
find. For example, if we are looking for natural disasters such
as floods or earthquakes, we might want to put more weight
on the sentiment than on any other score.

sentiment score =

{

0, if avg senti > 0,

|avg senti|, else
(1)

wherein avg senti refers to the average sentiment score of all
documents of the current episode.

document similarity =
1

#o f docs
·
| f requent1|+ | f requent2|

2
(2)

wherein | f requent1| and | f requent2| refer to the number of
documents containing the most and second most frequent
event-term candidate, ignoring the candidate of the current
episode.

VISUALIZATION AS A VALIDATION TOOL

Visualization for detection algorithms can have two different
purposes. First, it can give algorithm developers insightful
feedback about how novel methods work on real data and sup-
port systematic testing and validating capabilities. For exam-
ple, they allow developers to learn more about the relevance
of different components and the impact of different param-
eter settings. This is especially valuable in the case of text
streams, because there are no suitable ground-truth data sets
available for automated evaluation. Second, visualization can
also be used to convey relevant information and grant inter-
active explorative access to the text stream to end users such
as professional analysts. In this paper, we treat mainly the
usage of the first scenario, as it provides us the possibility to
evaluate our different scores and parameters in order to find
an optimal configuration for real-world event detection. Be-
sides, this research direction has not received a lot of attention
until now.
Each of the frequent terms extracted by our algorithm occu-
pies a row in our visualization, as shown in Figure 1. Time
is mapped to the x-axis, while the term occurrences are rep-
resented by vertical bars, whose widths indicate the number
of underlying documents. Each bar represents a three minute

interval and is divided into several small rectangles, each rep-
resenting an individual score. We use a colormap, going from
blue (low score) over white to red (high score), to represent
the value of the score. The scores have the following order:
Sentiment, Negative Event Words from WordNet, All Event
Words, Triggerwords from News, Relative Time Distance, Ab-
solute Time Distance, Retweets, URL, Candidate Hash Tag,
Document Similarity. We order the frequent terms according
to their overall score (Figure 1), which is calculated accord-
ing to the user-defined weighting of the individual scores and
represented by the color of the large square at the left end of
each row.
It is important to consider that event-term episodes collect
documents of an event-term candidate until the score of the
episode exceeds the threshold γ . Therefore, it can happen
that a document occurs in a bar which is visualized at a later
point in time (compared to the document’s timestamp). This
is inevitable, since an episode requires several documents to
exceed the threshold γ , but the moving average of some event-
term candidates can be larger than the three minute interval.

OUR FIRST RESULTS

One of the events that our algorithm detected on the live Twit-
ter stream was the “Aurora shooting”4, which took place on
July 20, 2012. An armed man fired indiscriminately in a the-
atre in Aurora (near Denver, Colorado, USA) during the pre-
miere of the new Batman movie “The Dark Knight Rises”.
The shooting started shortly after the beginning of the movie,
at 00:38 local time (06:38 UTC), killing 12 people and injur-
ing 58 more. Figure 1 shows the output of our tool for the
Aurora shooting. The algorithm detected the first frequent
term aurora at 07:57 UTC, about 1 hour and 20 minutes after
the incident had started. Other important terms, such as vic-
tim, gunman, and wound, are detected about 20 minutes later,
after 8:20 UTC. These terms might indicate a new informa-
tion as it appears (that the incident involved a gunman, and
the first reports about the wounded people). It is interesting
to note that terms such as kill and shoot were not detected
as unexpected events. Looking into the data, it can be seen
that these terms are very often used as jargon among Twitter
users and this incident did not cause a noticeable increase in
their frequency. Another term, theatreshooting, appears later
in the visualization (after 8:45 UTC). It is a hashtag and this
example actually shows how the hashtags are created much
later than our detected event.

Discussion

At first sight, the time gap between the incident and the de-
tection seems quite long for a real-time event detection algo-
rithm. We therefore looked directly into the tweets between
the beginning of the event and the time of our detection. The
first two tweets dealing with the Aurora shooting occur at
07:13 UTC and 07:18 UTC. There are no other tweets about
the shooting until 07:45 UTC, when they start appearing at a
rate of about 3 tweets per minute and then continuously in-
creasing. Why is the event not represented in Twitter, right
after the incident? We can speculate that this might be caused
by the local time (most of the people in the area are asleep and
can not tweet about the event) and also by our data stream

4http://en.wikipedia.org/wiki/2012 Aurora shooting



Figure 1. Screenshot of our validation tool for the Aurora shooting. On the right side, a row for each frequent term is shown containing vertical bars
which indicate the occurrence of the term. Each bar represents the incoming documents (containing the term) in three minute intervals and is divided
into multiple small rectangles, which represent different scores. The colormap goes from blue (low score) over white to red (high score). The width of
the bar is mapped to the number of documents. The user can click on a bar and see all underlying tweets and their common words on the left side.

source itself, since we have access to random 10% of the
whole Twitter stream. Therefore, it might be possible that
the whole stream contains more tweets about the event.
Nine out of ten frequent words with the highest overall score,
retrieved by the algorithm, are explicitly or implicitly related
to the Aurora shooting. For this result, we use the following
scores for the ranking: sentiment, trigger words, retweets and
urls. Additional preliminary experiments showed that very
similar results, with a slightly higher number of false pos-
itives, could be achieved by excluding the trigger-words or
sentiment score. Summary of the most important findings:
1. Our word-level event detection approach works in real-

time. The implementation can easily process the 10% live
stream without batch processing on a laptop with Intel Core
i7 CPU with 8 GB of RAM and would also scale up for the
whole Twitter stream.

2. Generally infrequent terms (like Aurora) are more suitable
to point to events than frequent terms (like shoot).

3. Hashtags evolve after the event was already detected.

4. The trigger-words score supports and improves the detec-
tion process, but the results are also acceptable without
them.

5. The relative time distance score is always high and there-
fore it does not seem to be useful.

6. The URL score, similar to the hashtags, filters out some
noise, but generates many false positives.

CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the initial results of our real-
time visual analytics approach for automatic identification of
unexpected real world incidents in Twitter. Our algorithm
takes into account different detection components, which rep-
resent or approximate semantic aspects of the events. Visu-
alization is used as part of the validation process, where we

can see how different components and parameter settings in-
fluence the output of the algorithm. Currently, keywords re-
lating to the same event are treated independently and can be
understood as part of the same event by looking at the similar
time intervals and scores. As part of our future work, we will
work on developing a visualization that can be used to allow
explorative analysis to end users.

REFERENCES

1. Allan, J., Ed. Topic detection and tracking: event-based
information organization. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

2. Bontcheva, K., and Rout, D. Making Sense of Social
Media Streams through Semantics: a Survey. Semantic
Web (2012).

3. Hu, M., Liu, S., Wei, F., Wu, Y., Stasko, J., and Ma, K.-L.
Breaking news on twitter. In Proc. CHI 2012, ACM
(2012), 2751–2754.

4. Pearanalytics. Twitter study.
http://www.pearanalytics.com/, 2009.

5. Rohrdantz, C., Hao, M. C., Dayal, U., Haug, L.-E., and
Keim, D. A. Feature-based visual sentiment analysis of
text document streams. ACM TIST 3, 2 (2012), 26.

6. Sakaki, T., Okazaki, M., and Matsuo, Y. Earthquake
shakes twitter users: real-time event detection by social
sensors. In Proc. WWW 2010, ACM (2010), 851–860.

7. Weiler, A., Mansmann, S., and Scholl, M. H. Towards an
advanced system for real-time event detection in
high-volume data streams. In Proc of 5th workshop for
Ph.D. students PIKM 2012, ACM (2012).


