
Technical Report soft-11-01, Chair for Software Engineering, University of Konstanz

The QuantUM Approach in the Context of the

ISO Standard 26262 for Automotive Systems

– Extended Abstract –

Florian Leitner-Fischer and Stefan Leue

University of Konstanz and

Steinbeis Transfer Center for Complex Systems Engineering

Florian.Leitner@uni-konstanz.de, Stefan.Leue@uni-konstanz.de

February 28, 2011

Abstract

The forthcoming standard ISO 26262 defines processes and techniques

in support of a safe design and implementation of automotive systems.

We comment on the recommendations that this standard provides with

respect to the use of semi-formal and formal methods, including formal

verification, during various stages of the proposed safety process. We

illustrate how the QuantUM method and tool that we have developed in

order to open UML-type system architecture models to formal analysis

using stochastic model checking can be applied in support of the safety

requirements imposed by the standard.

1 Introduction

The forthcoming standard ISO 26262 [12] defines processes and techniques in
support of a safe design and implementation of passenger automobile systems
containing safety relevant or safety critical programmable electronic compo-
nents. It is hence the standard applicable to automotive systems and software
engineering in the domain of passenger cars as far as safety relevant aspects
of these systems are concerned. ISO 26262 can be viewed as an application
domain specific specialization of the standard IEC 61508 [11] that is applicable
to general programmable, safety-critical electronic systems. ISO 26262 will be
considered to represent the state of the art with respect to functional safety pro-
cesses and techniques in the automotive system engineering area, and is hence
likely to become a point of reference for litigation in this domain.

The objective of this extended abstract is to discuss and illustrate how semi-
formal and formal design methods can be used to support the design process
of safety-critical automotive systems. We briefly present the QuantUM [14, 13]
approach and tool that permits UML based system models to be annotated with
quantitative failure characteristics. The annotated models will be automatically
analyzed using the stochastic PRISM model checker [8]. The results will be

1



displayed as fault trees (FTs) [17] as well as sequence diagrams. The synthesized
PRISM model can be used as a basis for probabilistic Failure Mode and Effects
Analysis (pFMEA) [7, 1]. We then review the ISO 26262 standard, and discuss
how semi-formal and formal methods and in particular QuantUM can support
the safe design of systems in keeping with the process requirements imposed by
this standard.

Related Work. Work described in [5] and [6] discusses how model-based
software development using semi-formal modeling languages like the UML or the
Matlab/Simulink modeling language can be used in a ISO 26262 development
process. Other than that, we are not aware of any other work that relates ISO
26262 to concrete formal or semi-formal techniques. The use of formal methods
in the context of the forthcoming avionics standard DO-178C is being discussed
in [4].

2 The QuantUM Approach

The QuantUM approach allows for the quantitative safety analysis of UML
models. It can be used to answer questions such as ”does the system satisfy
its requirements in 99.99% of the time?” In QuantUM all inputs of the analysis
are specified at the level of a UML model. To facilitate the specification of
reliability and dependability characteristics, we propose a quantitative extension
of the UML. This extension is defined in terms of a UML Profile and takes
advantage of the UML concept of a stereotype. A comprehensive description of
the QuantUM profile can be found in [13].

Due to the fully automated nature of our approach we were able to implement
a tool that completely hides the analysis model and the formal methods used
during the analysis from the user. Our approach is depicted in Figure 1. It can

Figure 1: Overview of the QuantUM Approach.

be summarized by identifying the following steps:

• The QuantUM extension is used to annotate the UML model with all
information that is needed to perform a dependability analysis.

• The annotated UML model is then exported in the XML Metadata Inter-
change (XMI) format [15], which is the standard format for exchanging
UML models.

2



• Subsequently, our QuantUM Tool parses the generated XMI file and gen-
erates an analysis model in the input language of the probabilistic model
checker PRISM. The tool also generates a formal specification of the prop-
erties to be verified using a probabilistic temporal logic.

• For the analysis we use the probabilistic model checker PRISM together
with our counterexample generation tool DiPro [2] in order to compute
probabilistic counterexamples representing paths leading to a hazard state.

• The resulting counterexamples can then be transformed into a fault tree
that can be interpreted at the level of the UML model. Alternatively, they
can be mapped onto a UML sequence diagram which can be displayed in
the UML modeling tool containing the original UML model.

The QuantUM extension of the UML allows for a direct annotation of UML
models within the case tool that is used to design the system. This allows
for an convenient integration of the QuantUM approach into the development
process of safety-critical systems. The following section is devoted to an overview
on possible application scenarios of the QuantUM approach in an ISO 26262
compliant development process.

3 QuantUM and ISO 26262

We discuss how the ISO 26262 standard is related to the use of formal methods,
and how the QuantUM approach can support the proposed functional safety
objectives and techniques. The standard is structured into nine parts that
address different stages of the system design process.

• Part 26262-1 presents a definition of terms used in the standard. In the
context of our paper it is most interesting how terms related to formal
methods are defined. A formal notation is defined as a description tech-
nique that possesses completely defined syntax and semantics. A notation
is defined to be semi-formal if only its syntax is precisely defined. The
UML would hence qualify as a semi-formal notation. Formal verification
is defined as a method that allows one to prove correctness of a system
against its specification. A verification method is semi-formal if it is based
on specification given in a semi-formal notation. Following this terminol-
ogy, our paper uses both semi-formal notations (UML and its derivative
QuantUM) as well as a formal notation (the PRISM model checker input
language) and formal verification techniques (stochastic model checking.)

• Part 26262-2 defines requirements on the management of functional safety.
The standard defines different confirmation measures to be performed in-
cluding confirmation reviews, functional safety audits and functional safety
assessments. These process steps are designed to compile a safety case,
which is defined to be an argument that the safety goals for an aspect of
the system1 are satisfied based on the functional safety assurance measures
carried out. Amongst others, Table 1 in 26262-2 requires confirmation re-
views using Fault Tree Analysis (FTA) [17] and Failure Modes and Effects

1Instead of ”aspect” the standard uses the term item to denote a system, a collection of

systems or a function to which ISO 26262 is applied.

3



Analysis (FMEA) [10] to be performed. For ASIL-A and ASIL-B this is
merely required, for ASIL-C this analysis shall be performed by a per-
son not belonging to the development team, and for ASIL-D by a person
not belonging to the same organization or department within an organiza-
tion. Note that both FTA and FMEA avail themselves of formal analysis
methods and that QuantUM supports the automated synthesis of models
required to carry out FTA and FMEA. In general, an automation of the
compilation of safety cases can significantly enhance the analysis since it
makes the compilation less error prone and more cost effective.

• Part 26262-3 is devoted to the concept phase of the system development
life cycle. This stage is pivotal for the functional safety of the system
since it involves the planning of all safety assurance activities. In partic-
ular, it comprises the definition of the different system aspects that are
safety relevant, the initiation of the safety process, a hazard analysis and
a risk assessment. Tables 1 to 4 of 26262-3 define a qualitative method
to determine the Automotive Security Integrity Level (ASIL) of a system
aspect, which ranges from A (lowest safety-criticality) to D (highest safety-
criticality). 26262-3 finally requires the derivation of a functional safety
concept from previously elicited functional safety goals, consisting of a list
of functional safety requirements. We contend that the hazard analysis
and risk assessment activities can be well supported by a formal analysis
approach, such as the one using QuantUM that we describe below. Clause
8.4.5 of 26262-3 requires the resulting functional safety requirements to be
evaluated with regard to their effectiveness using tests, trials, prototyping
and simulation. We maintain that a definition of safety requirements based
on semi-formal and formal techniques will greatly enhance this activity,
for instance by performing model checking runs.

• Part 26262-4 is concerned with the system design and with ensuring that
the system design satisfies the technical safety requirements. Formal veri-
fication techniques such as model checking and theorem proving are prime
candidates to establish such a satisfaction relation between a design and a
set of requirements. 26262-4, however, does not mention these techniques.
Table 1 of 26262-4 proposes the use of deductive analysis techniques, such
as FTA, and qualifies them as highly recommended for ASIL C and D. In-
ductive Analysis techniques, such as FMEA, Event Tree Analysis (ETA)
and Markov modeling are highly recommended for all ASIL levels. We
note that hence QuantUM based probabilistic analysis is well suited to
support system design, in particular if it is extended to system design
languages such as SysML [16]. We also note that QuantUM allows for
the automatic generation of fault trees from design models, and provides
support for carrying out probabilistic FMEA.

• Part 26262-5 is devoted to hardware design. While we note that hard-
ware analysis can be carried out by model checking [3], our UML-based
approach is not really suitable to describe hardware architectures. We
nonetheless believe that there is great potential for supporting hardware
level functional safety using formal analysis methods. Clause 9.4.3 re-
quires a probabilistic metric for random hardware failures. If the compo-
nent level of the hardware architecture is modeled with UML (or SysML),

4



our QuantUM approach can be used to compute such probabilistic metrics
automatically.

• Part 26262-6 defines the software development process including the defi-
nition of software safety requirements and their verification. Figure 2 of
26262-5 defines the V-model [9], adapted to accommodate software safety
requirements, as the applicable software process and lifecycle model. Soft-
ware safety requirements ”are derived from the technical safety concept
and the system design.” Further objectives of this stage are a refinement
of the software-hardware interface, and an assurance mechanism showing
that the software safety requirements are ”consistent with the technical
safety concept and the system design specification.” Tables 7 and 8 of
26262-6 recommend formal verification for the higher two ASIL levels and
the use of formal notations for software unit design at all ASIL levels.
The QuantUM approach uses a semi-formal notation and synthesizes a
formal model of individual subsystems, which is a fit with the former two
requirements. Table 10 specifies methods to be used in unit design and
implementation verification, and requires formal verification for the higher
two ASIL levels. Semantic code analysis, which can be accomplished by
functional model checking, is recommended for all ASIL levels. We notice
that the way in which QuantUM links model based design and formal
analysis is consistent with the recommendations regarding software ver-
ification in this part of 26262, even though the QuantUM approach is
restricted to analyzing quantitative safety requirements.

• Part 26262-7 addresses safety relevant issues in the production, operation
and maintenance of automotive systems and is not directly relevant in our
context.

• Part 26262-8 is devoted to specifying requirements on processes support-
ing the system development, including the management of safety require-
ments, the process of system verification, the qualification of software
tools and the qualification of software components. In the specification of
safety requirements, semi-formal and formal notations are again recom-
mended for all ASIL levels. Verification is defined as a means to ensure
that products meet their specification, which is interpreted as saying that
they are ”correct, complete and consistent.” The process is required to
include a planning of the verification activities, which also addresses the
verification method to be used. Most notably, note 1 of clause 9.4.1.1
expressly mentions model checking as one such applicable verification
method, even thought this remains the only reference to this verification
technique throughout the standard. QuantUM supports the application of
model checking to system design models, and hence fits into a verification
process according to 26262-8.

A further relevant issue addressed in 26262-8 is the qualification of soft-
ware tools used in the development process. It requires that software
tools used during system development will not entail the violation safety
requirements allocated to some system aspect, or that if a violation of a
safety requirement is caused, there is high confidence in revealing this later
on in the development process. This entails a significant hurdle for the
practical qualification of tools, since proving software tools correct is an

5



utterly resource consuming task that is not guaranteed to lead to a result
at all, not at least since the underlying software correctness problem is
undecidable. With respect to model checking tools it should be pointed
out that the only sound usage of model checkers on models of realistic
size, for which a complete state space exploration is likely to be impossi-
ble, is to use them as error detectors. They are suitable to increase the
confidence in the correctness of some software artifact, but cannot prove
it correctness unless the state space is so small that it can be completely
explored. However, if we are able to produce abstractions of the system
to be built that allow for a complete state space exploration, as it was the
case when we used QuantUM and PRISM on significant case studies [13],
then we may actually assume that the use of these tools is compliant with
the software tool qualification requirements of 26262-8.

• Part 26262-9 finally addresses safety-oriented analysis techniques. Clause
8.2 mentions qualitative FMEA as well as qualitative FTA and Event Tree
Analysis (ETA) as qualitative analysis techniques. As quantitative analy-
sis techniques, quantitative FMEA, quantitative FTA, ETA and Markov
models are being recommended, amongst others. Our QuantUM approach
clearly supports the quantitative analysis, since it directly provides for
quantitative FTA and enables probabilistic FMEA, as we illustrated in [1].

4 Conclusion

We have briefly sketched the QuantUM approach and discussed how it, along
with other formal methods, can be used to support the software process require-
ments imposed by the standard ISO 26262. Our findings were that QuantUM
is a good match for many of those requirements, even though the use of formal
methods in support of this standard should not be extended to other semi-formal
and formal techniques.

References

[1] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner-Fischer, and
S. Leue. Safety analysis of an airbag system using probabilistic FMEA and
probabilistic counterexamples. In QEST ’09: Proceedings of the Sixth Inter-
national Conference on Quantitative Evaluation of Systems, pages 299–308,
Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[2] H. Aljazzar and S. Leue. Debugging of Dependability Models Using Inter-
active Visualization of Counterexamples. In QEST ’08: Proceedings of the
Fifth International Conference on the Quantitative Evaluation of Systems,
pages 189–198. IEEE Computer Science Press, 2008.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press,
2008.

[4] D. Brown, H. Delseny, K. Hayhurst, and V. Wiels. Guidance for
using formal methods in a certification context. In Proc. Embedded

6



Real Time Software and Systems (ERTS 2010), 2010. Available from
http://www.erts2010.org/Default.aspx?Id=973&Idd=980.

[5] M. Broy. Seamless model driven systems engineering based on formal
models. In K. Breitman and A. Cavalcanti, editors, Formal Methods and
Software Engineering, volume 5885 of Lecture Notes in Computer Science,
pages 1–19. Springer Verlag, 2009.

[6] M. Conrad and H. Dörr. Deployment of model-based software develop-
ment in safety-related applications: Challenges and solutions scenarios. In
Proceedings of Modellierung 2006, 22.-24. März 2006, Innsbruck, Tirol,
Austria, pages 245–254, 2006.

[7] L. Grunske, R. Colvin, and K. Winter. Probabilistic model-checking sup-
port for FMEA. In QEST ’07: Proceedings of the Fourth International
Conference on Quantitative Evaluation of Systems, pages 119–128, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[8] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool
for automatic verification of probabilistic systems. In TACAS ’06: Proceed-
ings of the 12th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science,
pages 441–444. Springer, 2006.

[9] IABG Information Technology. V-model lifecycle process
model. Technical report, 1995. Available from http://www.v-
modell.iabg.de/kurzb/vm/k vm e.doc.

[10] International Electrotechnical Commission. Analysis techniques for system
reliability - procedure for failure mode and effects analysis (FMEA), IEC
60812.

[11] International Electrotechnical Commission. Functional safety of electri-
cal/electronic/programmable electronic safety-related systems, IEC 61508,
2004.

[12] International Organization for Standardization. Road vehicles – functional
safety, ISO 26262, 2008.

[13] F. Leitner-Fischer. Quantitative Safety Analysis of UML Models. Master’s
thesis, University of Konstanz, 2010.

[14] F. Leitner-Fischer and S. Leue. QuantUM: Quantitative safety analysis of
UML models. In Proc. Ninth Workshop on Quantitative Aspects of Pro-
gramming Languages (QAPL 2011), 2011.

[15] Object Management Group. XML Metadata Interchange (XMI), v2.1.1.
http://www.omg.org/technology/documents/formal/xmi.htm, 2007.

[16] Object Management Group. SysML. Specification v1.2.
http://www.sysml.org, 2010.

[17] U.S. Nuclear Regulatory Commission. Fault Tree Handbook, 1981.

7


