

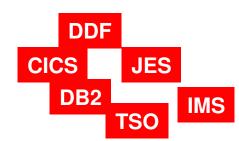
IBM Software Group

Understanding The Importance Of Workload Manager And DB2

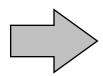
Ed Woods / IBM Corporation

Tivoli software

© 2009 IBM Corporation


Agenda

- Workload Manager Overview
- Important WLM Concepts And Terminology
- How DB2 Exploits Workload Manager
- WLM/DB2 Usage Recommendations
- What is new in WLM and how it impacts DB2
- Summary



Why Workload Manager (WLM)?

Goal Prioritization

What does z/OS need to accomplish objectives? How important is the workload to the business?

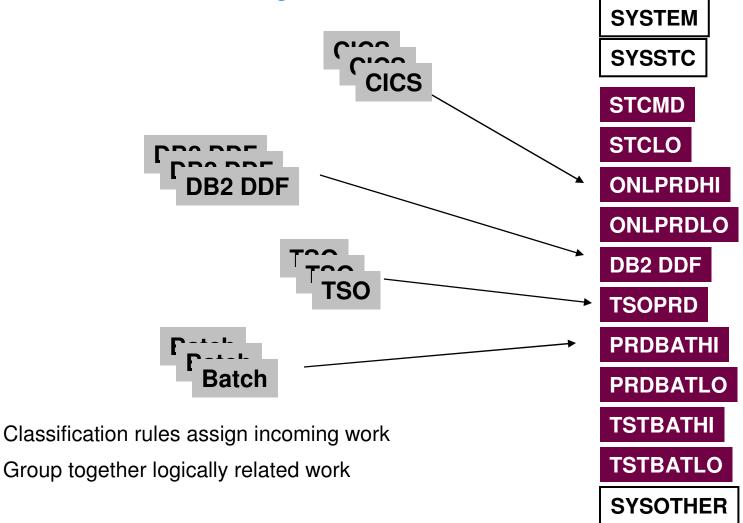
- Complexity of systems has increased dramatically
 - In the past priority managed by PARMLIB options
 - ▶ Too much work to 'micro-manage' each z/OS system
 - Multiple LPARs, Data sharing, large sophisticated workloads
- Workload Manager improves the performance management process
 - Prioritize workload based upon goals and business objectives
 - ▶ Let the system optimize and prioritize resource management
 - Make sure that the most important workload gets the appropriate resource

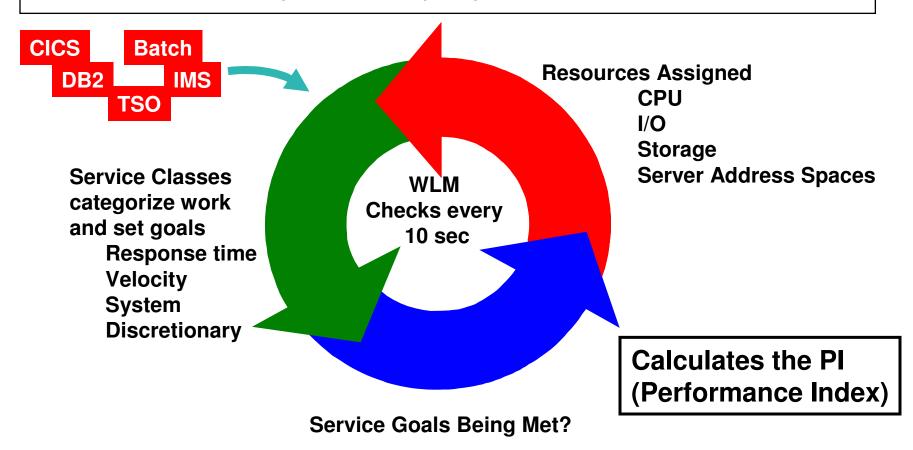
DB2 And Workload Manager

- Workload Manager (WLM) is the priority and resource manager for z/OS and implicitly for DB2 as well
- Workload Manager manages CPU, I/O, and memory resources as needed by the workload
- WLM manages critical DB2 address spaces
 - DB2 subsystem address spaces
 - ▶ DB2 Stored Procedure address spaces
- These resources have an impact on how DB2 applications perform
- Workload Manager is used to manage DB2 workflow
 - DB2 Distributed and DB2 Stored Procedure workload
 - Priority and performance of allied address spaces (CICS, IMS, batch, TSO) that call DB2
- Important to have a basic understanding of WLM

Workload Manager Terminology

- A SERVICE DEFINITION consists of one or more SERVICE POLICIES
- A service policy contains several WORKLOADS
- Each workload consists of one or more SERVICE CLASSES
- Each service class has at least one PERIOD and each period has one GOAL
- There are five types of goals
 - System, Average Response Time, % Response Time, Execution Velocity, Discretionary
- Address spaces and transactions are assigned to service classes by CLASSIFICATION RULES


SERVICE DEFINITION
SERVICE POLICIES
WORKLOADS
SERVICE CLASSES
PERIOD
GOAL
CLASSIFICATION RULES


WLM

Service Classes Categorize Workload

Workload Manager Service Classes And Goals

Z/OS resources assigned based upon goals defined in WLM

Key WLM Constructs

- WLM is built upon two key constructs
 - DEFINITION WLM provides mechanisms to categorize, prioritize, and manage workload
 - These are the service definitions managed by the WLM dialogs
 - FEEDBACK The components managed by WLM provide information (samples) to help WLM determine how well it is doing
 - These are feedback mechanisms provided by each component, subsystem, and operating system

Understanding WLM Goals The Performance Index

- Service Class periods are compared by calculating a Performance Index (PI) for each
- PI gives WLM a common way to track how well the work is doing regardless of goal type
- Importance parameter
 - Defined as part of the Service Class 1 (high) to 5 (low)
 - Assigned to a Service Class Period
 - A way to prioritize critical goals
 - For work at the same importance level, WLM attempts to equalize the PIs
- The PI equals 1

- -> The work in the period is meeting its goal exactly
- The PI is less than 1
- -> The work is doing better than its goal
- The PI is more than 1
- -> The work is missing its goal

The Importance Of Importance

- Importance parameter
 - A way to prioritize critical goals
- Not analogous to Dispatching Priority
 - What is the importance of achieving the goal?
- WLM attempts to meet importance 1 goals first, and so on.....
- Helps WLM determine donors and receivers of resources
 - Donors workload that can give up resource
 - Receivers workload that needs resource

Types Of WLM Goals Velocity Goals

- The percentage of time workload is ready and able to run, and is not delayed for lack of resources
 - Example Velocity of 50 means that 50% of the time resources should be available for work to run
- Measure of acceptable delay
- Based on samples
- High velocity goals (example 90) are unreasonable
- Use high velocity goals for DBM1 and SSAS
 - Example set around 60

Velocity Goal Challenges

- At first glance easy to set
- Actually requires more analysis
- Systems, environments, and workloads will change over time
 - Operating system
 - ▶ Memory, CPU, DASD
 - Size and nature of workloads
- Velocity goals require regular review
 - As systems change, velocity goals may need 'fine-tuning'

Types Of WLM Goals Response Time Goals

- Average response time
 - Average response time for a given set of transactions
 - Include queue time and execution time
- Percentile response time
 - Percentile of transactions that need to complete within a desired response time
 - Reduces the impact of 'outliers'
- Rule of thumb
 - Work should have at least 10 completions in a 20 minute time frame to have adequate samples
- Consider Response time goals where possible for DB2 workloads
 - DDF requests, even batch jobs

Special Service Classes SYSTEM, SYSSTC, & SYSOTHER

SYSTEM

- For selected high priority system address spaces
- Get highest CPU and I/O dispatching priority in system

SYSSTC

- For selected high priority started tasks and workload
- Second highest priority behind SYSTEM
- Place very high importance workload items here
 - DB2 Example place IRLM here

SYSOTHER

- Unclassified work falls here
- Bottom of the resource food chain

Specifying The WLM Objectives

File Utilities Notes Options	s He	lp		
Functionality LEVEL011 I				
Definition data set : none				
Definition name DEMO		(Required)	All the vario	us WLM constructs
Description No or	verri	des		defined using the
Select one of the			WLM ISPF d	alogs
following options	1.	Policies		
	2.	Workloads		
	3.	Resource Groups		
	4.	Service Classes		
	5.	Classification Gr	coups	
	6.	Classification Ru	ıles	
	7.	Report Classes		
	8.	Service Coefficie	ents/Options	
	9.	Application Envir	conments	
	10.	Scheduling Enviro	onments	

 WLM provides an ISPF interface to define and manage the WLM Service Definition

WLM Service Class Definitions

Service	-Class V	iew Notes	Options	Help		
 1 to 14	- of 27	Serv	ice Class	Selection List		Row
Command	===>					_
Action 6=Delete		Create, 2=C	ору, 3=Мо	dify, 4=Browse,	5=Print,	
e=nerere	,	Menu Bar				
Action	Class	Description	on		Workload	
	BATHI	ExVel(70)	Imp(2)		BATCH	
	BATLOW	ExVel(40)	Imp(2,Di	sc)	BATCH	
	BATMED	ExVel(40)	Imp(2,3,	4)	BATCH	
	CICSHI		_		CICS	
	CICSLOW		_		CICS	
_ _ _ _	CICSMED		•		CICS	
	DB2HI	ExVel(80)	• ' '		DB2	
	DB2LOW	ExVel(60)			DB2	
	DB2MED	ExVel(60)	_		DB2	
	DDFHI	ExVel(80)	_		DB2	
	DDFLOW	ExVel(30)			DB2	
	DDFMED	ExVel(60)	Tub(5)		DB2	

- WLM Service Class definitions
 - Define the work to z/OS
 - Specify the goals of the workload
 - Specify the relative importance of the workload to the system

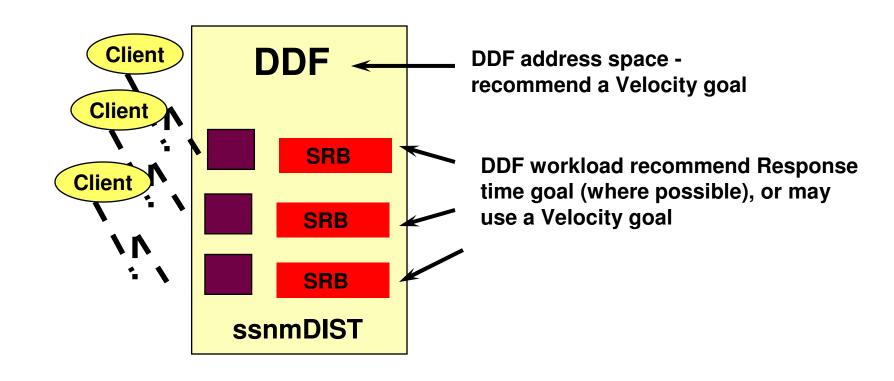
Workload Manager As A DB2 Priority Mechanism

Subsyst	em-Type	Xref Notes	Options	Help		
	С	reate Rules	for the Su	ıbsystem Typ	e	Row 1 to 5 of 5
Descripti	on		. Example	DB2		
		action code		B=Before	С=Сору	D=Delete
m=Move I=				e R=Repeat		21
		Qualifier		-	-	Class
M=Move I=		Qualifier		-	Service	Report
Action		Qualifier		-	Service	Report
Action	 Type	Qualifier Name	Start	-	Service PRDBATCH	Report H
Action 1	Type	Qualifier Name DB2A ONLINE	Start	-	Service PRDBATCH PRDBATCH	Report H H
Action 1 2 2 2	Type SI CN	Qualifier Name DB2A ONLINE	Start	-	Service PRDBATCH PRDBATCH PRDONLIN	Report H

Thread Attributes

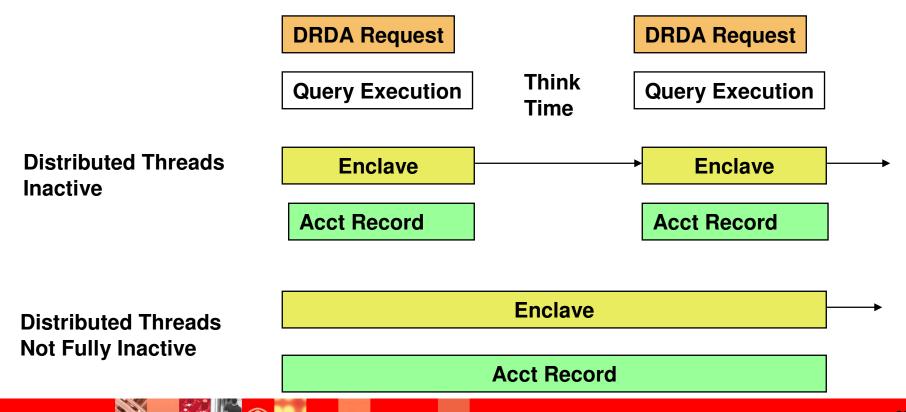
- Al (Accounting Information)
- CI (Correlation Information)
- CN (Collection Name)
- CT (Collection Type)
- LU (LU Name)
- NET (Net ID)
- PK (Package Name)
- PN (Plan Name)
- SI (Subsystem Instance)
- UI (Userid)
- Procedure Name Be aware of limitations

Thread attributes in WLM allow for considerable granularity in the classification of DB2 workloads


DB2 Workload Priority How Does WLM Assign Priority To DB2 Workload?

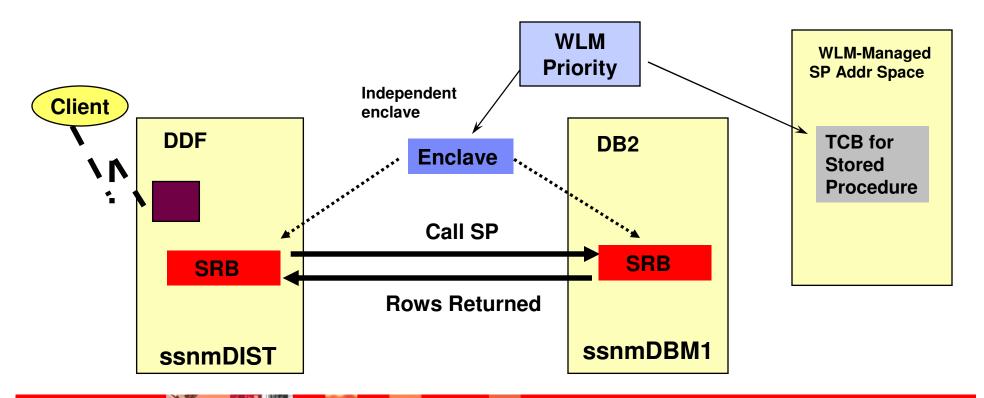
- The priority of the DB2 workload will vary depending upon the origin of the workload
- DB2 workload originating from a local application (IMS, CICS, TSO, Batch)
 - Priority is inherited from the invoking application
 - ▶ This applies to Stored Procedures invoked locally
- DB2 Distributed requests (DDF)
 - Priority controlled by DDF Service Class definitions
- DB2 Stored Procedure request via DDF
 - Priority controlled by Service Class definitions

DDF Goal Considerations

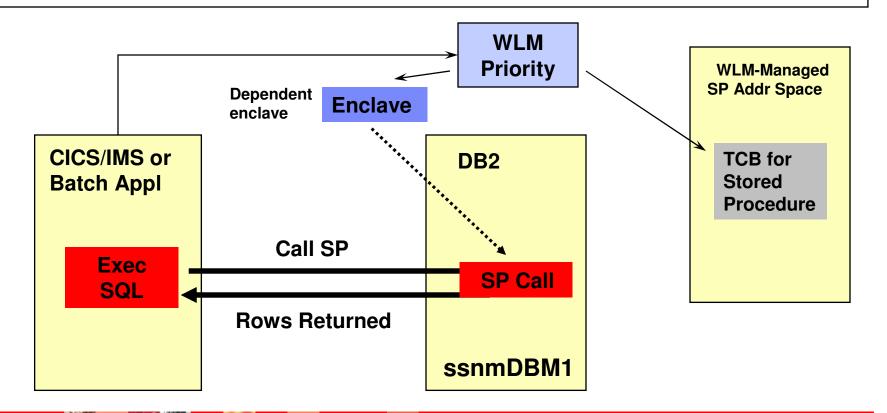

- DDF workload may call for a combination of Velocity and Response time goals
 - DDF address space versus DDF workload

DDF WLM Goal Considerations

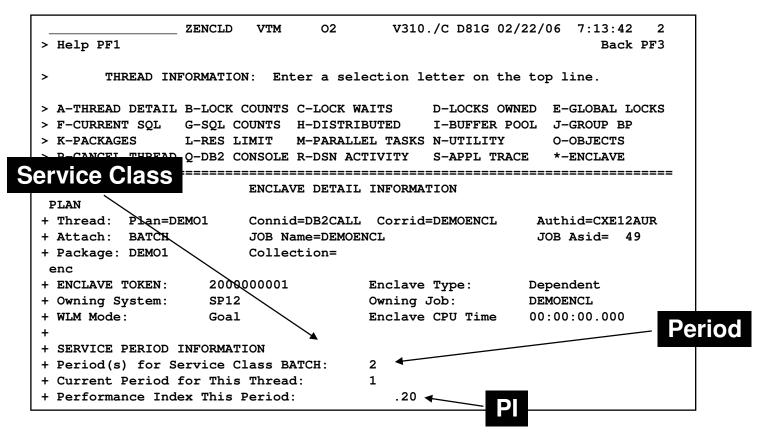
- DB2 Distributed thread options control enclave creation and how DB2 accounting records get created
 - Impacted by KEEPDYNAMIC options, cursor with hold, and zparm settings
 - ▶ This impacts whether to use velocity or response time goals


DDF WLM Goal Considerations

- THREADS=INACTIVE and DBAT is pooled (Connection inactive)
 - DDF creates one enclave per active interval
 - Response times do not include user think time
 - Response time goals and multiple periods can be used
- THREADS=ACTIVE
 - DDF creates one enclave for the life of the thread
 - Enclave response time includes user think time
 - Response time goals should not be used
 - Multiple periods should not be used


DDF Stored Procedure Priority

- When a Stored Procedure is called from DDF thread
 - ▶ DB2 references the enclave created for the DDF request for Stored Procedure
 - Stored Procedure priority is the priority of the DDF request



Stored Procedure Priority Called From A Local Application

- When a Stored Procedure is called from an application on z/OS or OS/390
 - ▶ DB2 creates an enclave for use by the Stored procedure
 - Stored Procedure priority is the priority of the calling application address space

Service Classes And Thread Priorities

 Depending upon how an enclave is created (local allied address space or via DDF) controls what service class, etc that is assigned to a given thread

DB2 DDF Considerations Things To Note

- Look for overly simplistic Service Class definitions
 - Example type DDF and nothing more than DB2 subsystem name
 - This does little to exploit the ability of WLM to prioritize DB2 workloads
 - Some workloads will inherently be more important than others
- Look for Distributed workloads that run longer than expected but use little resource
 - Indicative of workload that drops into less than optimal Service Classes – example SYSOTHER

DB2 Velocity Goals Setting Optimal Goals

- Use Velocity goals for always running and long running work
- Velocity goals at first glance seem easy to set
 - Require more ongoing review
 - Should be validated as the operating environment changes – changes to operating system, hardware, and workload
- If using Velocity goals make them realistic
- Review Velocity goals regularly

DB2 Subsystem Address Spaces Using Velocity Goals

- Use a high Velocity goal for
 - ▶ DB2 address spaces (SSAS and DBM1)
 - CICS and IMS regions (if not using response time goals)
- Use the SYSSTC service class
 - Typical for VTAM & DB2 IRLM address space
 - Suggested for high performance/always running work
- Use a Velocity goal for the DB2 DDF address space
 - DDF address space has internal tasks that govern thread creation that should have high performance goal

DB2 Response Time Goals Setting Optimal Goals

- Use Response Time goals when possible
 - Less need for ongoing maintenance and review
 - WLM will manage resources dynamically to achieve goals
- Response Time goals work well for certain types of DB2 workloads
 - DB2 Distributed workloads in e-business and WebSphere transactional type workloads
 - Transactional type workloads in general including distributed workloads that invoke Stored Procedures
 - Repetitive workloads that have multiple events for WLM to measure and manage

General DB2 & WLM Recommendations

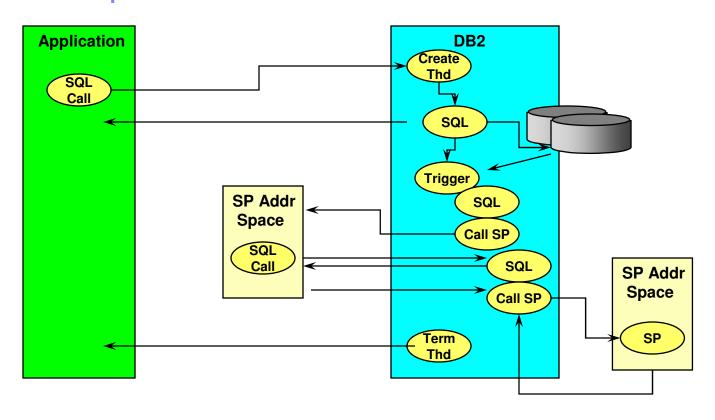
- Define realistic goals
- Understand the difference between Velocity and Response Time goals
- Use Velocity goals for always running work
 - Example DB2 subsystem address spaces
- Review Velocity goals regularly
- Use Response time goals when possible
- Watch for workload going to SYSOTHER
 - Indication of unclassified work low priority

WLM General Recommendations

- KISS method (Keep It Simple Stupid)
 - Avoid overly complex implementations
 - Avoid overly simplistic standards
 - Example a service class and/or application environment for each application
 - Too many Application Environments and Service Classes can result in an over abundance of server address spaces
 - Increases number of queues that WLM must manage
- Avoid too many service classes
 - WLM analyzes service classes in a round-robin manner
 - Too many and WLM is unable to manage them all effectively

About Intelligent Resource Director

- LPAR Weight management
 - ▶ The "weight" of an LPAR may be moved across LPARs
 - Manages the number of CPs for an LPAR
 - ▶ LPAR weight is part of WLM CPU delay analysis
- Dynamic Channel Path management
 - Lets WLM move channel paths from one I/O control unit to another
- Channel Subsystem I/O Priority Queuing
 - Allows WLM to assign a priority to an I/O request
 - Channel subsystem may use a priority managed queue as opposed to FIFO queue
 - Complementary to other I/O queuing mechanisms in the I/O subsystem

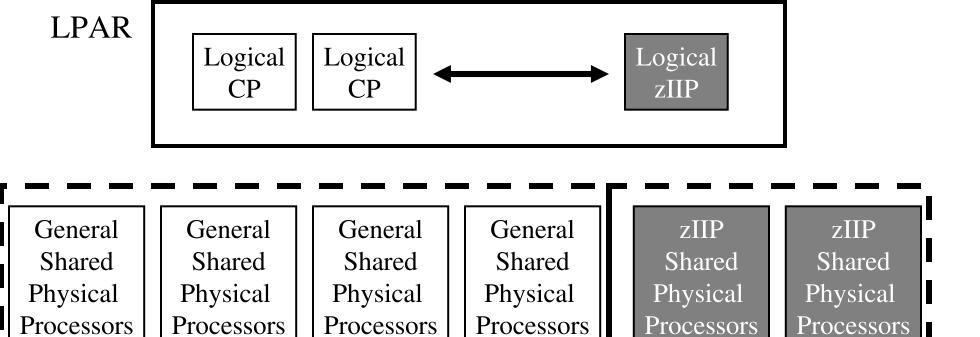


WLM Contention Management Enhancements

- WLM Contention Management helps addressing chronic or long lasting contention situations
 - ▶ WLM provides interfaces to allow resource managers (for example DB2) to signal contention situations
 - WLM has had the ability to promote (increase the DP) for a short duration to resolve the issue
- DB2 example scenario
 - Lock/latch contention in DB2 may impact performance
 - Often contention may be resolved with a short boost of resource
 - DB2 may notify WLM if a contention occurs
 - WLM may optionally raise the priority for the holder to complete the work
- In z/OS 1.10 WLM can promote units of work for longer periods of time, and promote them to the priority of the highest-priority units of work waiting for a resource they are holding.

WLM Enhancement For Nested Stored Procedure Requests

- Triggers, Stored Procedures, and UDFs actions may be nested, sometimes multiple layers of nesting
- WLM has had the ability to promote workload to resolve an issue



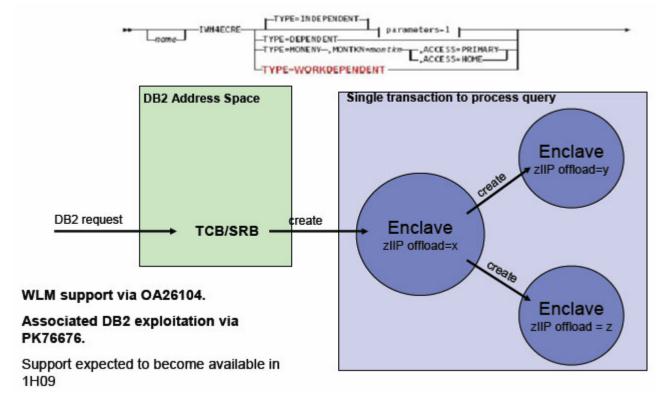
WLM Stored Procedure Enhancements

- The original assumption
 - All work requests inserted by DB2 (example Stored Procedures)
 were independent requests
- The reality
 - Procedures may recursively call other procedures
 - The processing may be inter-dependent
- The new logic
 - DB2 tells WLM about dependent stored procedure requests
 - WLM gives dependent requests priority
 - WLM may start server regions more aggressively, if needed

About zIIP Processors

- A specialty processor for offloading certain types of work
- DB2 for z/OS V8 was one of the first IBM exploiters of the zIIP

More About zIIP Processors


- Work on z/OS may have all or a portion of its resource usage on an enclave Service Request Block
 - Enclave SRB work may be directed to the zIIP
- Certain types of DB2 work may take advantage of zIIP
 - DRDA Queries that access DB2 for z/OS V8/V9 via DRDA over a TCP/IP connection are dispatched within z/OS in enclave SRBs. z/OS directs a portion of this work to the zIIP
 - Complex parallel queries
 - DB2 utilities for index maintenance
 - LOAD, REORG, and REBUILD
- WLM management of zIIP is similar to zAAP processors
 - > z/OS 1.10 provides more WLM zIIP management

About Work-dependent Enclaves

- Extension to an independent, dependent, or other work-dependent enclave
 - ▶ Extends the transaction the creating enclave.
 - Runs like an independent enclave when created by non-enclave work
- Allows control of zIIP offload by entitled products.

WLM Managed BP

- DB2 V9 will provide a WLM-managed buffer pool management capability
 - AUTOSIZE(YES) option
- The AUTOSIZE(YES) option of the ALTER BUFFERPOOL command allows dynamic buffer pool size adjustments based on real time workload monitoring
- Potential benefits
 - Frees the storage for use by mission-critical subsystems on the same LPAR
 - DB2 and WLM will "fine tune" the buffer pool size, based on long term trends and steady state growth
- Currently disabled
 - ▶ PK75626 will eventually re-enable function when available

Summary

Workload Manager As The Priority Manager Of DB2

- Workload Manager (WLM) is the priority and resource manager for z/OS and DB2
- WLM manages critical DB2 address spaces
- These resources have an impact on how DB2 applications perform
- Workload Manager is used to manage DB2 workflow
- Important to have a basic understanding of WLM
- WLM is constantly being enhanced to provide new features and functions

