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Abstract: The growing availability of financial and macroeconomic data sets including a large number

of time series (hence the high dimensionality) calls for econometric methods providing a convenient and

parsimonious representation of the covariance structure both in the time and the cross-sectional dimen-

sions. Currently, dynamic factor models constitute the dominant framework across many disciplines for

formal compression of information. Recent econometric research has produced a rich body of theory for

the estimation of these models and their subsequent use for forecasting and for the estimation of structural

economic models.

To overcome the challenges of dimensionality, many forecast approaches proceed by somehow reducing

the number of predictors. Principal component regression (PCR) approach proposes computing forecasts

as projection on the first few principal components of the predictors. Bayesian model averaging (BMA)

approach combines forecasts to extract information from different possible relationships between the

predicted variable and the predictor variables. These two literature apparently moved in two different

directions. However, recent findings by De Mol et al. [2008] and the Ouysse and Kohn [2009] suggest

there are theoretical and practical reasons to connect the two literatures.

This paper provides empirical evidence for connecting these two seemingly different approaches to fore-

casting. We study the performance of BMA as a forecasting method based on large panels of time series

as an alternative to PCR. We show empirically that these forecasts are highly correlated implying simi-

lar mean-square forecast errors. Applied to forecasting Industrial production and inflation in the United

States, we find that the set of variables deemed informative changes over time which suggest temporal

instability. The results can also be driven by the nature of the macroeconomic data which is characterized

by collinearity and that the variable selection is sensitive to minor perturbations of the data. The empirical

results serve as a preliminary guide to understanding the behavior of BMA under double asymptotics, i.e.

when the cross-section and the sample size become large.

Keywords: Bayesian variable selection, shrinkage regression, principal components analysis, factor mod-

els, forecasting.
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1 INTRODUCTION

This study provides empirical evidence for connecting these two seemingly different approaches to fore-

casting. With the exception of De Mol et al. [2008] who compare the forecasts performance of PCR and

Bayesian shrinkage, little is known about the links between BMA and PCR forecasts. De Mol et al. [2008]

study the empirical and theoretical properties of Bayesian shrinkage and Ridge regression forecasts and

compared them with PCR forecasts. They find that the two methods produce forecasts which are highly

correlated with similar out-of-sample performance. De Mol et al. [2008] are the first to consider double

(N,T ) asymptotics for the case of shrinkage regression with Gaussian prior. They find that consistency

of the Bayesian (Ridge) regression forecast requires that the amount of shrinkage grows asymptotically

at a rate equal to the number of predictors N . In the context of Bayesian variable selection, Ouysse and

Kohn [2009] find that under empirical Bayes prior, more evidence is extracted from the data with a larger

number of cross-sections and not necessarily from longer time series. These findings are consistent with

the convergence result shown by Ouysse [2006] in the context of classical analysis of factor models.

Using the notation in De Mol et al. [2008], consider the (n× 1) vector of covariance stationary processes

Zt = (z1t, · · ·, znt)′ with mean zero and unitary variance. We are interested in forecasting linear trans-

formations of some elements of Zt using all the variables as predictors. Precisely, the aim is to estimate

the linear projection, yt+h|t = proj{yt+h|It}, where It = span{Zt−s, s = 0, 1, 2, · · ·} is a potentially

large information set, and yt+h = (y1,t+h, · · · , ym,t+h) is an m−vector of filtered versions of zit, where

for specific i = 1 · ··, n and 1 ≤ m ≤ n, yj,t+h = fj,h(L)zi,t+h and L is the lag operator defined as

Llzt = zt−l for any integer l.

Traditional time series methods approximate the projection using a finite number, p, of lags of Zt. In

particular, they consider the following regression model:

yj,t+h = Z ′
tβj,0 + · · ·+ Z ′

t−pβj,p + ut+h = X ′
tβj + uj,t+h,

where βj = (βj,0, · · · , βj,p)
′ and Xt = (Z ′

t, · · ·, Z ′
t−p) for each target series j, j = 1, · · · ,m. Given a

sample of size T , let X = (Xp+1, · · ·, XT−h)
′ be the (T−h−p)×n(p+1) matrix of observations for the

predictors and yj = (yj,p+h+1, · · · , yj,T )′ is the (T −h−p)×1 matrix of observations for the dependent

variable. The traditional forecast is given by ŷLS
j,T+h|T = X′β̂LS , where β̂LS

j = (X′X)−1X′yj , j =
1, · · · ,m.

When the size of the information set is large, this projection involves estimation of a large number of

parameters, implying loss of degrees of freedom and poor forecasts. In addition, if n × (p + 1) > T ,

ordinary least squares is not feasible. There are three strands of the literature on forecasting using large

datasets. The first uses factor models and principal components regression (PCR). The second shrinks

to zero the coefficients of the noninformative predictors. Such methods include among others shrinkage

regression such as ridge and lasso. The third is based on model averaging which combines forecasts from

an ensemble of models. In this study, we compare the out-of-sample performance of PCR and BMA

based forecasts. We find that these are highly correlated with marginal differences suggesting that BMA

and PCR may in fact be two sides of the same coin.

2 PRINCIPAL COMPONENT REGRESSION

We consider forecasting situation in which both N and T are large, hence the double (N,T ) asymptotics

with no requirements on the relative rates of convergence of N and T . The number of predictor series can

be very large, often larger than the number of observations as it is the case in macroeconomic forecasting.

Many studies have simplified the high-dimensional problem (N > T ) by modeling the covariability

of the series (the target variables to be forecast and the predictor series) in terms of few number of

unobserved factors. This literature predominately uses principal components analysis (PCA) to estimate

these common factors which are then used in forecasting. To be specific, we assume the following

‘diffusion index’ forecasting framework of Stock and Watson [2002] where (Xt, yt+h) admit a factor

model representation with r common latent factors Ft

Xt = ΛFt + ξt (1)

yj,t+h = δjFt + vj,t+h, j = 1, · · · ,m, (2)
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where Ft = (f1t, · · · , frt)′ are r−dimensional stationary processes, ξt is an N × 1 vector idiosyncratic

disturbances and vt+h is the forecast error. We follow De Mol et al. [2008] and make the following

assumptions about the factors, the N × r matrix Λ of factors loadings, the forecasting equation (2)

and the error terms (ξt, vt+h). The factors Ft are unobserved and the number of common factors r
is also unknown. Principal components regression (PCR) computes the forecasts as a projection on

the first few principal components. Let F̂t be the T × r matrix of the first r principal components of

the predictors X and let Ift = span{f̂1t, · · ·, f̂rt} with r ≪ N be a parsimonious representation of

the information set It. Following De Mol et al. [2008], let Sx be the sample covariance matrix of the

predictors X , Sx = X′X/(T − h − p) and consider the spectral decomposition of Sx: SxV = V D
where D = diag(d1, · · · , dN ) is a diagonal matrix with di corresponding to the ith highest eigenvalue

of Sx, and V = (ν1, · · · , νN ) is the matrix whose columns corresponds to the normalized eigenvectors

of Sx. The normalized principal components are defined as :

f̂it =
1√
di
v′iXt, for i = 1, · · · , N∗

where N∗ ≤ N is the number of non zero eigenvalues.

The principal component forecast is defined as:

yPC
j,T+h|T = proj{yj,T+h|IfT }. (3)

Once the factors are estimated via PCA, the projection is computed by OLS treating the factors as ob-

served:

yPC
T+h|T = θ̂′F̂T , (4)

θ̂j = (F̂T F̂
′
T )

−1F̂ ′
T yj , F̂T = (f̂1T , · · ·, f̂rT )′. (5)

2.1 Shrinkage regression

Ridge regression and the lasso are classical approaches to shrinkage regression defined as:

β̂j

(κ)
= argminβj

{
(yj −Xβj)

′(yj −Xβj) + λ
N∑

k=1

|β(κ)
j,k |

}
(6)

for some penalization parameter λ ≥ 0. Choosing κ = 2 yields ridge regression where β̂j

ridge
=

(X′X+ λIN )
−1

Xyj . Choosing κ = 1 yields the lasso which has no closed form solution but the entire

path of λ can be obtained using the LARS algorithm. Both of the ridge and lasso estimators can be inter-

preted as the posterior mode under a particular prior that assumes independence of the parameters. For

ridge regression the prior is βj |σ2
ǫ ∼ N (0, σ2

ǫλ); for the lasso it is an independent identically distributed

Laplace (double exponential) p(βj,k|σ2
ǫ ) =

λ
2σǫ

e−λ|βj,k|/σǫ .

Large values of the penalty parameter λ cause the coefficients of β̂
(κ)
j to be shrunk towards zero. PCR

and Ridge regression give non zero weight to all predictors. The Laplace prior puts more mass near zero

and in the tails inducing either large or zero estimates of the regression coefficients. Therefore the lasso

favors sparse regression coefficients instead of many fairly small coefficients as might result in the ridge

regression.

De Mol et al. [2008] provide conditions under which the ridge forecast is consistent and converges to

the unfeasible optimal forecast obtained if factors are observed. They find that the prior should shrink

increasingly all regression coefficients to zero as the number of predictors rises. Moreover, the shrinkage

parameter λ must grow asymptotically at a rate equal to the number of predictors N .

3 BAYESIAN MODEL AVERAGING

Using the notation in Ouysse and Kohn [2009], consider the econometric model

y = (Im ⊗X)β + ǫ, (7)
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where, y = (y′1, · · · , y′m)′, β = (θ′1, · · · , θ′m), ǫ is an m × T vector of error terms, and Im is an

m×m identity matrix. The specification (7) enables the estimation and inference for the m variables to

be forecast simultaneously as in a system of seemingly unrelated regression. Therefore any correlation

across the idiosyncratic components is taken into account in the posterior inference and therefore allows

for gains of efficiency.

Bayesian variable selection defines a selector vector γ = {γj , j = 0, · · · , N}, where N is the total

number of possible predictors in X, and γj is a Bernoulli random variable that takes value one if predictor

j is allowed in the forecasting model, and zero otherwise. Therefore γ = {γj , j = 0, 1, ..., N} is a

selector vector over the columns of X = (X0, X1, ..., XN ) , where X0 = ιT . Let qγ = γ0 + · · · + γN
be the number of predictors (columns of X) in model γ. Adopting this notation, we can write (7) under

model γ as

y
mT×1

= (Im ⊗Xγ)
mT×mqγ

βγ
mqγ×1

+ ǫ
mT×1

, (8)

where the subscript γ indicates that only columns and elements with the corresponding γ element being 1
are included. Since γ is a binary sequence, the number of models to be evaluated is 2N , which corresponds

to a very large sample space for the empirical example we are treating in this paper with N = 131 and

2N = 2.77× 1039 possible models.

In Bayesian analysis, model selection, estimation of the parameters and inference about γ are done si-

multaneously allowing for uncertainty about all model unknowns to be integrated out in the posterior

inference. We consider a standard hierarchical Bayes prior:

p(β, γ,Σ) = p(β|Σ, γ)p(Σ|γ)p(γ). (9)

A commonly used prior for γ is

p(γ) =
N∏

j=1

πγj (1− π)(1−γj),

with π prespecified. We follow Fernandez et al. [2001] and choose π = 0.5 implying that p(γ) = 2−N .

Using a Normal inverse-Wishart conjugate prior, we implement Bayesian variable selection by specifying

a g-prior for β|Σ as N(0, cΣ ⊗ (X′X)
−1

). The tuning parameter c can be model and data dependent as

in the empirical Bayes prior (EB), hence the notation ĉγ . The larger the value of c, the more diffuse

(flatter) is the prior over the region of plausible values of β. In univariate analysis, the case of c = T
corresponds to the so called unit information prior which has the same amount of information about β
as that contained in one observation. This prior leads to Bayes factors with asymptotic behavior similar

to the Bayesian information criterion (BIC). The risk information prior (RIC) is obtained for c = N2.

A conjugate g-prior with fixed c ∼= 4 corresponds asymptotically to Akaike’s AIC. Finally, George and

Foster [2000] defines the data dependent local empirical Bayes prior

ĉEB
γ = max{Fγ − 1, 0}, where Fγ =

R2
γ/qγ

(1−R2
γ)/(T − 1− qγ)

,

and R2
γ is the R-squared of the regression of y on the covariates of the model γ. See Ouysse and Kohn

[2009] for an adaptation to the multivariate case.

The prior on the covariance of ǫ is a inverse-Wishart Σ−1 ∼ Wm(ω,Φ−1) where Φ is an m × m scale

parameter, ω > m + 1 is a shape parameter. We choose ω = m + 2 which reflects a minimum amount

of prior information and Φ = Σ̂ + s2Im, where Σ̂ is the maximum likelihood estimator for Σ in the

regression of Y on X and s2 is the sample variance in the pooled regression of y on (Im⊗X). The mean

β̃γ of the posterior density p(β|y,Σ, γ) is β̃γ = ηγ β̂γ with ηγ =
cγ

1+cγ
. Therefore the posterior mean of β

shrinks the maximum likelihood estimator β̂γ of model γ towards zero. The term ηγ can be interpreted as

the relative importance or weight that is given to the sample information relative to the prior information.

It also measures the amount of shrinkage implied by the choice of the tuning parameters.
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Table 1: Correlation of BMA out-of-sample forecasts of industrial production with Lasso, Ridge and PC.

Forecast period 1970 : 12 to 2002 : 12

Correlation of forecasts: LASSO with BMA

Number of non zero coefficients

1 3 5 10 25 50 75 Ê (q̂pm)
cγ = T 0.43 0.74 0.80 0.86 0.85 0.78 0.61 7.25

cγ = N2 0.50 0.82 0.85 0.85 0.78 0.69 0.51 2.55

cγ = 4 0.49 0.75 0.80 0.87 0.91 0.91 0.80 32

Correlation of forecasts: RIDGE with BMA

In sample residual variance, κ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν 6 25 64 141 292 582 1141 2339 6025

cγ = T 0.65 0.77 0.81 0.82 0.81 0.79 0.74 0.64 0.41

cγ = N2 0.57 0.73 0.79 0.83 0.83 0.82 0.78 0.69 0.46

cγ = 4 0.84 0.90 0.89 0.87 0.85 0.82 0.77 0.69 0.50

Correlation of forecasts: PC with BMA

Number of principal components, r
1 3 5 10 25 50 75

cγ = T 0.21 0.72 0.77 0.79 0.79 0.73 0.61

cγ = N2 0.26 0.77 0.82 0.83 0.80 0.66 0.50

cγ = 4 0.16 0.69 0.72 0.76 0.79 0.82 0.71

Note that in the case the target variables in y are predicted equation by equation and the prior on βj has a

prior N (0, σ2
ǫjcIN ) with data independent covariance, the posterior mean of βj |yj ,X, γ corresponds to

the ridge solution β̂ridge
j with ridge penalization parameter ν = 1/cγ and cγ ≡ σ2

βj

σ2
ǫj

, see De Mol et al.

[2008]. When there is no shrinkage (ν → 0), the ridge solution is the least squares estimator of β. The

latter case corresponds to cγ → ∞, that is a prior with large variance and very little information about β.

In BMA the posterior distributions of quantities of interest are obtained as mixtures of the model-specific

distributions weighted by the posterior model probabilities. The BMA estimate of the posterior predictive

density of yt+h, conditional on y and X (the information at time T ) is:

p(yT+h|y,X) =
∑

γ

p(yT+h|y,X, γ)p(γ|y,X). (10)

The BMA forecast for yt+h, defined as the expected value of the density in (10), is

ŷBMA
T+h|T =

∑

γ

(Im ⊗Xγ)β̃γp(γ|y,X). (11)

Implementation of (11) is difficult because the sum over the 2N possible models is impractical when N is

large. One approach to get around this difficulty is to use MCMC and the simulated Markov chain from

the posterior distribution p(γ|y); γ(j), j = 1, ...,M . The quantity in (11) is therefore approximated using

ŷ
pm
T+h|T =

1

M

M∑

j=1

(Im ⊗Xγ(j))β̃γ(j) , (12)

where γ(j) is the posterior model in the jth MCMC iteration and M is the number of MCMC iterations.

4 COMPARISON OF BMA AND PC FORECASTS

The data series we use is the same as the one used in De Mol et al. [2008]. The total number of predictors

N = 131 in X includes real variables such as sectoral industrial production, employment and hours

worked; nominal variables such as consumer and price indices, wages, money aggregates; in addition

to stock prices and exchange rates. The data series are transformed to achieve stationarity: monthly

growth rates for real variables (industrial production, sales, etc) and first differences for variables already

expressed in rates (unemployment rate, capacity utilization, etc).
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Let us define IP as the monthly industrial index and CPI as the monthly consumer price index. The

variables we forecast are

zhIP,t+h = (ipt+h − ipt) = zIP,t+h + · · ·+ zIP,t+1

zhCPI,t+h = (πt+h − πt) = zCPI,t+h + · · ·+ zCPI,t+1

IPT = 100 log IPt is the rescaled log of IP , cpit = 100 × log CPIt
CPIt−12

IP enters the panel in first

differences of the logarithm while annual inflation enters in first differences. In this section we compare

the performance of BMA forecasts to those based on principal components and shrinkage (ridge and

lasso) regression. Table 1 show the sample correlation among BMA forecasts and Ridge forecasts ρ̂Ridge,

among BMA forecasts and lasso forecast ρ̂lasso, and among BMA forecasts and principal components

forecasts ρ̂PC . The PCR forecasts depend on the number of factors allowed in the factor structure 1.

Similarly, the Ridge and lasso regression forecasts depend on the choice of the regularization parameter λ
in 6. We follow De Mol et al. [2008] and report sample correlation for r = 1, 3, 5, 10, 25, 50, 75. For the

Ridge regression, the priors are chosen for which the in-sample fit explains a given fraction 1− κ of the

variance of the variable to be forecast. For the Lasso, the prior on β is selected to deliver a given number

(= r) of non zero coefficients.

The results in Table 1 suggest the following. First, a ranking of the sample correlation with respect to the

choice of the tuning parameter cγ is apparent especially for the shrinkage based forecasts. The sample

correlation is highest or at least reaches a maximum for cγ = 4, followed by the case of cγ = T . The

sample correlation when cγ = N2 comes last. This means that the more informative the priors (therefore

more shrinkage towards zero) the higher is the correlation between the forecasts generated by BMA and

the three methods. Second, for cγ = 4, T the maximum correlation between the lasso forecasts and BMA

is the highest compared to Ridge and PCR. Third, for lasso and PCR, the maximum correlation with BMA

forecasts is reached at the same abscissa, that is for number of non zero coefficients equal to the number

of principal components allowed in the model. This number tends to be small (= 3, 5) for cγ = t,N2

and large (= 50) for cγ = 4.

Table 1 further shows that these patterns generally hold for the full sample and the two subperiods. Under

the priors cγ = T and cγ = N2, the sample correlation ρ̂lasso and ρ̂PC reach a maximum at the same

values of r (10 and 5 respectively). Under the prior cγ = 4, the highest correlation between BMA and

lasso is reached when the number of non zero coefficients is 25 while the correlation of BMA and PC

forecasts is at its maximum for r = 50. The BMA and ridge correlation ρ̂ridge is highest for κ = 0.5
and ν = 292 when cγ = N2, κ = 0.4 and ν = 141 for cγ = T , and κ = 0.2 and ν = 25 for cγ = 4.

The ridge regression shrinks all coefficients towards zero with more shrinkage on low-variance directions.

This means that the ridge will results in many small coefficients. As the shrinkage penalization ν increases

so does the number of non zero coefficients in β̂ridge. A high shrinkage parameter ν corresponds to a

small tuning parameter cγ (cγ ≡ 1/ν). This may explain why the highest correlation between the BMA

and ridge forecasts occurs when cγ = 4 with a 80% explained in sample variance.

The PC regression leaves the r directions with the highest variance alone and discards the remaining

N −r directions. The lasso also truncates at zero and results in r large coefficients and sets the remaining

N − r to zero. This may explain the similarities of the patterns observed in the the sample correlation

between BMA forecasts and those generated by lasso and PCR. In the last column in Table 1, we report

the BMA estimate of the model size for the three priors. The results reflect the amount of shrinkage

implied by these choices of cγ . The size of the posterior mean model is decreasing in cγ with cγ = N2

resulting in the smallest posterior mean estimate of the model size. We observe that the BMA estimate

for the model size q̂pm = 2.55 under cγ = N2 and the maximum correlation between BMA and both

PCR and lasso forecasts is reached when r = 3. We also have notice that under cγ = T , q̂pm = 7 and

the maximum correlation between BMA forecasts and lasso occurs for r = 10 and for BMA and PCR

forecasts this number is r = 3. Finally for cγ = 4, the maximum correlation between BMA and both

lasso and PCR forecasts is at r = 50 at the same time we have q̂pm = 32.

To examine the relative performance of BMA compared to PCR, we report the MSFE relative to the

random walk and the variance (number in parenthesis) of the forecasts relative to the variance of the

series to be forecast in Table 2. Under each MSFE row, we report the variance of the forecast relative
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Table 2: Comparison of principal component and Bayesian model averaging forecasts.
Industrial Production

Bayesian model averaging Principal Component

BMA r

cγ = T cγ = 4 ĉEB
γ cγ = N2 5 10 25

MSFE 1971 − 2002 0.8779 0.8635 0.8592 0.8700 0.56 0.54 0.65

(0.66) (0.51) (0.49) (0.50) (0.97) (1.28)

MSFE 1971 − 1984 0.5645 0.6997 0.6882 0.7039 0.35 0.34 0.46

(0.54) (0.47) (0.44) (0.45) (0.93) (1.11) (1.43)

MSFE 1985 − 2002 1.8071 1.3490 1.3664 1.3625 1.16 1.13 1.21

(1.01) (0.62) (0.63) (0.62) (0.33) (0.51) (0.79)

Consumer Price Index

Bayesian model averaging Principal Component

BMA r

cγ = T cγ = 4 ĉEB
γ cγ = N2 5 10 25

MSFE 1971 − 2002 0.7861 0.7761 0.8045 0.7777 0.57 0.69 0.83

(0.50) (0.52) (0.53) (0.52) (0.61) (0.63) (0.69)

MSFE 1971 − 1984 0.6773 0.6789 0.7137 0.6839 0.39 0.48 0.56

(0.49) (0.49) (0.50) (0.50) (0.57) (0.57) (0.60)

MSFE 1985 − 2002 1.2970 1.2327 1.2308 1.2179 1.43 1.71 2.11

(0.53) (0.61) (0.61) (0.59) (0.73) (0.83) (0.95)

to the variance of the series. We examine the results for BMAX which refers to the econometric model

(7) where we apply BMA directly to all available predictors in X. In terms of MSFE and over the three

sample periods, PCR performs its best when r = 10 for industrial production and r = 5 for consumer

price index. It also outperforms BMA for all the choices of cγ . However, BMA forecasts tend to have

lower variance relative to the forecasts of the series of interest. This observation holds also for the

consumer price index forecasts.

5 CONCLUSIONS AND RECOMMENDATIONS

To overcome the challenges of dimensionality in forecasting with large number of predictors, PCA and

BMA stand out as the most popular methods in the recent literature. This study compares these seemingly

unrelated approaches in an empirical application. The results are promising and suggest that for the

purpose of forecasting, the two approaches are capturing the same information from the data. The out-

of-sample forecasts are highly correlated and the two methods are relatively similar in terms of mean

squared forecast errors. These results are purely empirical and provide a motivation to establishing the

theoretical foundations that link the two approaches in the forecasting framework.
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