
© 2011 Xilinx, Inc. All Rights ReservedLab1 IntroThis material exempt per Department of Commerce license exception TSU

Laboratory 2: Addings

Solution

Appendix for using Xilinx EDK/SDK 10.1 SP3

University of Pannonia
Dept. Of Electrical Engineering and Information Systems

Instructor: Zsolt Vörösházi, PhD.

SDK 10.1 –

Step

1)

�

Run

Xilinx

Platform Studio

SDK

�

Select

workplace

/ XPS Project directory

Select

Application

Wizard

�

Create

a new

SDK Application

project

Add project name

�

Add project name: „DipTest”

and

processor

instance

„MicroBlaze_0”

Add project type

�

Project type: Xilinx

MicroBlaze

Executable

�

Configurations: Debug

/ Release

/ Profile

DipTest

–

main.c

�

Simple

DipTest

main.c

application

created

�

Automatic

build

is set

by

default

(Project

→ Build

Automatically)

�

SW platform created

(generated

from
 .MSS file)

SW platform

Microblaze_0_sw_platform

(right click

-> generate
 Libraries

and BSP or
 LIBGen

icon)

�

Archives: .a (binary)

�

Microblaze_0
–

Code

–

Include*
�

See

xparameters.h

(generated

from

.MHS)

–

Lib

–

LibSrc

DipTest

SW application

DipTest

{microblaze_0_sw_platform}

�

Binaries

(.elf)

�

Debug

(.elf)

�

main.c

�

Additional

headers

and sources

GPIO drivers

and applications

�

c:\Xilinx\10.1\EDK\sw\XilinxProcessorIPLib
 \drivers\

–

gpio_v2_12_a: GPIO v2.12 driver functions
 (low-

and high-level

driver functions

[cpp, h])
�

/Build: OS dependent

Makefiles

�

/Data: gpio_header.h + .tcl + .mdd (declares
 GPIOInput/OutputExample() functions

�

/Doc: API in

html

form

(see index.html)

�

/Examples: simple

example

applications

(use
 drivers)

–

e.g. xgpio_tapp_example.c

�

/Src: sources

of low-, and higher-level

drivers

gpio_header.h

�

Declares

GpioInputExample() function
 for

prototyping

• XStatus GpioInputExample (Xuint16

DeviceId, Xuint32 *DataRead);

–

#include

"xbasic_types.h"

–

#include

"xstatus.h"

xgpio_tapp_example.c

�

Declares

GpioInputExample()
function
–

This performs a test on the GPIO driver/

device with
the GPIO configured as INPUT

–

Invokes

low

level

drivers

XStatus GpioInputExample(Xuint16 DeviceId,
Xuint32 *DataRead); /*Function
Prototype*/

XGpio GpioInput; /* The driver instance
for GPIO Device configured as I/P */

xgpio_tapp_example.c

(cont.)
Defines

GpioInputExample() function

as

follows:

Status GpioInputExample (Xuint16 DeviceId, Xuint32 *DataRead){

XStatus Status;

/*

* Initialize the GPIO driver so that it's ready to use,

* specify the device ID that is generated in xparameters.h

*/

Status = XGpio_Initialize(&GpioInput, DeviceId);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Set the direction for all signals to be inputs */

XGpio_SetDataDirection(&GpioInput, GPIO_CHANNEL,
0xFFFFFFFF);

/*

* Read the state of the data so that it can be verified */

*DataRead = XGpio_DiscreteRead(&GpioInput, GPIO_CHANNEL);

return XST_SUCCESS;

}

Dependencies

• #define GPIO_INPUT_DEVICE_ID

XPAR_DIP_DEVICE_ID

–

Cames

from

xparameters.h

(generated

from

.MHS)

• #define DIP_CHANNEL 1

–

Cames

from

DIP IP core

(remark: GUI settings)

• #define GPIO_BITWIDTH 8

–

Cames

from

8 DIPSwitches

are

located

on

Nexys2 board

�

Important

note: xil_printf() function

must be used

instead
 of normal

printf() because

the

consumes

less memory
– #include stdio.h

Step

2.) Generate

Linker

Script

�

If

necessary, set

all

sections

of the

.elf

file

into

the

internal

BRAM memory

–

Select

[ilmb_cntlr_dlmb_cntlr] -> Generate

SDK: Custom

program segments

(compile

sw

application)

�

.text — the

executable

code

�

 .rodata — any

read-only

data used in the
 execution

of the

code

�

.data — where read-write

variables

and
pointers

are

stored

�

.bss — a part of the data segment

containing
statically-allocated

variables

�

.heap — where dynamically

allocated

memory
 is located

�

 .stack — where

function-CALL

parameters
 and other

temporary

data

is stored

Step

3.) Build

SW application

�

After

building the

DipTest sw

application
 the

size

of the

generated, downloadable
 DipTest.elf

file as

follows:

************** Determining Size of ELF File **************

mb-size DipTest.elf

text data bss dec hex filename

5758 332 1080 7170 1c02 DipTest.elf

OK.

It

is (7170 bytes

of total

program code) fitted to

the

32KByte BRAM internal

memory.

Step

4. Terminal Program

�

Set

the

following

parameters

properly
(see

the

parameters

of xps_uartlite

in

the
 .mhs

file!)

–

Com

port: COMX

–

Baud

Rate: 9600

–

Data Bits: 8

–

Stop Bits: 1

–

Parity

Bit: None

–

Flow control: none

�

Select Device Configuration menu -> Bitstream settings
–

Select

compiled

DipTest.elf file for

running

MicroBlaze

sw

codes

�

Connect the Xilinx JTAG-Platform USB cable to Nexys-2
board’s JTAG interface

�

Select Device Configuration menu -> Program FPGA
–

Bitstream

(system.bit)

–

BRAM Memory

Map (.bmm)

+ DipTest.elf

–

-> D:\FPGA\BEAGYAZOTT_RENDSZEREK\10_1\02_LAB\SDK\
SDK_projects\implementation\download_sdk.bit

Step

5. Method

a.) Programming

the
 FPGA via

Xilinx

Impact

Step

5. Method

b.) Programming

the

FPGA

via

Digilent

Adept

�

Instead

of using

the

Xilinx iMpact, we

use
 Digilent Adept Suite! programmer

provided

by
 DigilentInc

(vendor

of

the

FPGA board).

�

Browse

your

SDK_project\implementation\

directory

for

„download_sdk.bit”

bitstream

file.

�

Use

and set

properly

the

terminal

program (e.g.
 Windows Hyperterminal, Teraterm

Pro, or

Putty
 etc.)

�

At

the

final

step

Program the

FPGA!

�

At now the Lab 2/A is completed in SDK 10.1

SP3 

© 2011 Xilinx, Inc. All Rights Reserved For Academic Use Only

Lab2 Intro

Questions

�

Open the system.mhs file, study its contents, and answer the
following questions

�

Number of external ports: ___________________

�

Number of external ports that are output (O): ___________________

�

Number of external ports that are input (I): ___________________

�

Num. of external ports that are bidirectional (IO): ___________________

�

Number of clock ports: ___________________ Freq: _________

�

Number of reset ports: ___________________ Polarity: _________

© 2011 Xilinx, Inc. All Rights Reserved For Academic Use Only

Lab2 Intro

Questions

�

List the instances to which the clk_s is connected:

�

List the instances connected to the mb_plb bus:

__

__

© 2011 Xilinx, Inc. All Rights Reserved For Academic Use Only

Lab2 Intro

Questions

�

Draw the address map of the system, providing

instance names:

© 2011 Xilinx, Inc. All Rights Reserved For Academic Use Only

Lab2 Intro

Questions
�

Check Report files (system.par) or log messages in Consol window after the
placement process step):

Logic Utilization:

Number of Slice Flip Flops: _____ out of 17,344 11%

Number of 4 input LUTs: _____ out of 17,344 19%

Logic Distribution:

Number of occupied Slis: _____ out of 8,672 29%

Number of External IOBs _____ out of 250 22%

Number of External Input IOBs _____

Number of External Output IOBs _____

Number of External Bidir IOBs _____

Number of BSCANs _____ out of 1 100%

Number of BUFGMUXs _____ out of 24 8%

Number of DCMs _____ out of 8 12%

Number of MULT18X18SIOs _____ out of 28 10%

Number of RAMB16s _____ out of 28 71%

Number of Slices _____ out of 8672 29%

Number of SLICEMs _____ out of 4336 6%

© 2011 Xilinx, Inc. All Rights Reserved For Academic Use Only

Lab2 Intro

Laboratory task 2/B: Push

Buttons
�

In

XPS/EDK:
–

Similar

to

the

Task

2/A add Push

Buttons

(4 bit) as

new

peripheral

into

the

elaborated

embedded

system

design

–

Rename

it: „push”, and add a particular

address

–

Generate

netlist

and bitstream

�

In

XPS/SDK:
–

Similar

to

the

Task

2/A, create

modify

the

previous

DipTest
sw

application

in

SDK

–

Create

PeripheralTestsApp_bsp

–

Implement

BSP, generate

Linker

Script (.ld)

–

Compile

MB codes

(.elf

file)

–

Generate

Bitstream

(.bit)

�

Download

bitstream

(.bit), and analyze

the

desing

on
 the

Digilent

Nexys2 FPGA board.
�

Try

to

answer

the

questions

according

to

the

TASK 2/A.

© 2011 Xilinx, Inc. All Rights Reserved For Academic Use Only

Lab2 Intro

Question

�

What is the size of .elf program, and the different

program sections?

�

Which is the base_address and high_address (or

address size) of the push button GPIO

peripheral?

�

Which header .h file contains the MicroBlaze

system parameters for various peripherals?

