

Motivation

 When interacting with the user, we need to
ensure that the data entered is valid.

 If an erroneous data is entered in the form, this
should be detected and the form should be
redisplayed to the user for correction.

 We don’t want to annoy the user by clearing the
form and asking for another round of form entry.

 Therefore a means of retaining and
redisplaying form data is required.

Validation

 Often one needs to test if a critical form element
was completed:

if ($_POST['strVar'] == NULL){

$booVar = 1;

}

...

if ($booVar) echo “Enter Var”;

Validation

 If all is ok

if (!$booVar) && isset($_POST[”submit”])) {
echo “<p>Starting calculations...” ;

}

 But what if you have 20 elements and just one
was missing?

 Data retention...

Data Retention

 Create an extra string to store the value

$strStoreVar = “ “; //assigned to NULL

...

if (isset($_POST[“submit”])) {
if($_POST[“strVar”] == NULL){

$booVar = 1;

} else {

$strStoreVar = $_POST[“strVar”];
}

}

Data Retention
<?php $boo_m = 0; $strStore_m = "" ; $boo_n = 0; $strStore_n = "" ;
if (isset($_POST['submit'])) {
if($_POST["m"] == NULL)

$boo_m = 1;
else $strStore_m = $_POST["m"];

if($_POST["n"] == NULL)
$boo_n = 1;

else $strStore_n = $_POST["n"];

if(!($boo_m + $boo_n) && isset($_POST["submit"])){
$intResult = $_POST['m'] * $_POST['n'];
print "The result of " . (int)$_POST['m'] . " * " . (int)$_POST['n'] . " = " . $intResult;

}
else {
if ($boo_m) echo "Please enter a number in the first field. ";
if ($boo_n) echo "Please enter a number in the second field. ";

}
}
else { echo "This is the first time the page is loaded
";}
?>
<form action='<?php echo $_SERVER["PHP_SELF"];?>' method="post">
<div><label>Number 1: <input name="m" size="5" value="<?php echo $strStore_m ?>" ></label></div>
<div><label>Number 2: <input name="n" size="5" value="<?php echo $strStore_n ?>" ></label></div>
<div><input type="submit" name="submit" value="Multiply"></div>
</form>
<h2>Self generating Multiply Using Single PHP file with POST</h2>
<?php print "Apache receives the following array: ";print_r($_POST) ?>

See php_retention.php

Automatic php file name extraction

<form action='<?php echo $_SERVER["PHP_SELF"]; ?>'
method='get'><p><input type='image' src='squarecircle.gif'
name='intImage'/></p>

</form>

predefined

Image Fields

<form action='<?php echo $_SERVER["PHP_SELF"]; ?>'
method='get'><p><input type='image' src='squarecircle.gif'
name='intImage'/></p></form>

<?php
if(isset($_GET["intImage_x"])){

$intImageX = $_GET["intImage_x"];
$intImageY = $_GET["intImage_y"];
if ($intImageX > 100 && $intImageX < 200){

if ($intImageY > 25 && $intImageY < 135)
echo "<p><h2>You clicked on the square</h2></p>";

if ($intImageY > 170 && $intImageY < 280)
echo "<p><h2>You clicked on the circle</h2></p>";

}
}
else echo "<p><h2>Nothing received</h2></p>“

?>

square/circle example
Origin is here

See php_imagefields.php

File Upload Form

<html>
<head><title>PHP File Upload Form</title></head>
<body>

<form enctype="multipart/form-data“ action="upload.php”
method="post">

<input type="hidden" name="MAX_FILE_SIZE” value="1000000">

File:<input type="file" name="userfile">

<input type="submit" value="Upload">

</form>
</body> </html>

upload.html:

Character Encoding of Form-Data

• The enctype attribute specifies how form-data should be encoded
before sending it to the server.

• By default, form-data is encoded to
"application/x-www-form-urlencoded”.

• This means that all characters are encoded before they are sent to
the server

• Spaces are converted to "+" symbols

• Special characters are converted to ASCII HEX values).

<form enctype=“value”>

Character Encoding

<form enctype=“value”>

Value Description

application/x-www-form-
urlencoded

• All characters are encoded before
sent (default setting)

multipart/form-data • No characters are encoded.
• This value is required when you are
using forms that have a file upload
control

text/plain • Spaces are converted to "+"
symbols
• Special characters are not encoded

File Upload Form
Label is automatically assigned

Receiving files

• $_FILES['userfile']['tmp_name']

– name of the temporary copy of the file stored on the
server.

• $_FILES['userfile']['name']

– name of uploaded file.

• $_FILES['userfile']['size']

– size of the uploaded file (in bytes).

• $_FILES['userfile']['type']

– MIME type of the file such as image/gif.

• $_FILES['userfile']['error']

– error that may have been generated as a result of the
upload.

Upload error check
$userfile_error = $_FILES['userfile']['error'];

if ($userfile_error > 0) {
echo 'Problem: ';
switch ($userfile_error){

case 1:
echo 'File exceeded upload_max_filesize';
break;

case 2:
echo 'File exceeded max_file_size';
break;

case 3:
echo 'File only partially uploaded';
break;

case 4:
echo 'No file uploaded';
break;

}
exit;

}

PHP.ini : upload_max_filesize = 2M

HTML form : MAX_FILE_SIZE directive.

bool is_uploaded_file (string $filename)

• Returns TRUE if the file named by filename was uploaded
via HTTP POST.

• This is useful to help ensure that a malicious user hasn't tried to trick the
script into working on files upon which it should not be working
--for instance, /etc/passwd.

bool move_uploaded_file (string $filename ,
string $destination)

•This function checks to ensure that the file designated by filename is a
valid upload file (meaning that it was uploaded via PHP's HTTP POST
upload mechanism).

• If the file is valid, it will be moved to the filename given by destination.

Move the uploaded file
$tempfile = $_FILES['userfile']['tmp_name'];
$userfile = $_FILES['userfile']['name'];

// Destination file on server
$destfile = '/var/www/html/a_______/temp' . $userfile;

// Do we have an uploaded file?
if (is_uploaded_file($tempfile)) {

// Try and move uploaded file to local directory on server
if (!move_uploaded_file($tempfile, $destfile)) {

echo 'Problem: Could not move to destination directory';
exit;

}
}
else {

echo 'Possible file upload attack. Filename: '. $userfile;
exit;

}
echo 'File uploaded successfully

';

Note: The target folder must exist for this example to work! See Upload.html, upload.php

As well as displayed hypertext, PHP can be used

to add http headers in the server-client response

string.

header(text);

Particularly useful for specifying MIME extensions

Must be executed first before any content is sent!

Direct header manipulation

Image Creation with PHP

<?php
header("Content-type: image/png");//example of header

$image = imagecreate(280, 180) or die("Failed to create");

$bgcolour = ImageColorAllocate($image, 100, 200, 255);
$fgcolour = ImageColorAllocate($image, 255, 0, 255);

ImageString($image, 10, 60, 50, "Hello there!", $fgcolour);

ImagePng($image);
Imagedestroy($image);
?>

Note: You need to enable the loading of the

gd2 extension module through php.ini

bool imagestring (resource $image , int $font , int $x , int $y , string $string , int $color)

<?php
header("Content-type: image/png");
$image = imagecreate(580, 280) or die("Failed to create");
$bgcolour = ImageColorAllocate($image, 80, 200, 255);
$fgcolour = ImageColorAllocate($image, 255, 255, 100);

ImageString($image, 10, 60, 50, "Hello there!", $fgcolour);
ImageTTFText($image, 40, 0, 30, 160, $fgcolour,
“Fonts/SCRIPTBL.TTF","Testing Script True Type Font");
ImagePng($image);
Imagedestroy($image);

?>

Windows: true type fonts

Directory (relative to where the
php scripts are) where Font files
reside

array imagettftext (resource $image , float $size , float $angle , int $x , int $y , int $color , string $font
file , string $text)

Output on screen

Results into an image that could
be saved.

You can find *.ttf fonts in Linux:

#find /usr -name '*.ttf'

e.g., in it026945:

<?php
header("Content-type: image/png");
$image = imagecreate(580, 280) or die("Failed to create");
$bgcolour = ImageColorAllocate($image, 80, 200, 255);
$fgcolour = ImageColorAllocate($image, 255, 255, 100);

ImageString($image, 10, 60, 50, "Hello there!", $fgcolour);
ImageTTFText($image, 40, 0, 30, 160, $fgcolour,
"/usr/X11R6/lib/X11/fonts/TTF/luxirr.ttf","Testing luxirr");
ImageTTFText($image, 40, 0, 30, 250, $fgcolour,
"/usr/java/jdk1.5.0_01/jre/lib/oblique-fonts/LucidaSansOblique.ttf",
"testing LucidaSans");
ImagePng($image);

?>

In Linux:

PHP redirection

 Use header() to tell client to load another URL,

 e.g.

<?php

$url = “http://www.nzherald.co.nz”;
header(“Location: “ + $url);

?>

Prevent page caching:

<?php
// Date in the past
header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
header("Cache-Control: no-cache");
header("Pragma: no-cache");

?>
<html>
<body>
...
...

Note:

There are options that users may set to change the browser's default caching settings.

By sending the headers above, you should override any of those settings and force the
browser not to cache!

Screen scrapers

Taking information from other web sites.

Open URLs in the same way you open local files

$fp = fopen([URL], “r”);

$webpage = file_get_contents(„http://www.example.com‟);

Reads entire file into a string

string file_get_contents (string $filename
[, bool $use_include_path = false
[, resource $context
[, int $offset = -1
[, int $maxlen = -1]]]])

<?php
// <= PHP 5
$file = file_get_contents('./people.txt', true);
// > PHP 5
$file = file_get_contents('./people.txt', FILE_USE_INCLUDE_PATH);

?>

Searching within the include_path

<?php
// Read 14 characters starting from the 21st character
$section = file_get_contents('./people.txt', NULL, NULL, 20, 14);
var_dump($section);
?>

Reminder on how email works

 Email messages are delivered across the Internet
using the SMTP protocol

 Simple Mail Transfer Protocol
 Comes under the application level in the Internet

protocol stack

 Works similar to HTTP where email transactions
involve the exchange of request/response strings

Sending email

 Involves a three way interaction between
sender, recipient, and email client

 Email client sends request strings to smtp
server and gets back response strings

Sample email sending session

1. Client establishes connection to SMTP server

 Server sends 220 level response string

2. Client sends HELO request string identifying itself

 Server sends back 250 OK

3. Client sends mail from: request specifying address of sender

 Server sends back 250 sender OK

4. Client sends rcpt to: request to tell server who to send the email to

 Server responds with 250 rcpt ok

5. Client specifies body of email message between DATA and . Lines

 Server responds with 250 accepted for delivery

6. Server then queues the message for delivery

A similar sequence of transactions is then carried between the SMTP
server and recipient

Sample smtp interaction

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Sample email sending session

Sending e-mail with PHP

mail(to, subject, message, headers)

You may need to specify the location of your

mail server in php.ini

[mail function]
SMTP = smtp.hotmail.com
sendmail_from = me@hotmail.com

<html>
<head>
<title>Invitation</title>
<body>
<h1> Are you going to the party? </h1>

<form method="POST" action="response.php">
<p>
<select name="attend">

<option selected value="Y"> Yes, count me in! </option>
<option value="N"> Sorry, can't be bothered </option>

</select>
</p>

<p><input name="comment" type=text value="*type comments in here*" /></p>

<p><input type="submit" value="submit"></p>

</form>
</body></html>

mail(to,subject,message,headers,parameters)

Parameter Description

to Required. Specifies the receiver / receivers of the email

subject Required. Specifies the subject of the email.
Note: This parameter cannot contain any newline characters

message Required. Defines the message to be sent.
Each line should be separated with a LF (\n).
Lines should not exceed 70 characters

headers Optional. Specifies additional headers, like From, Cc, and Bcc.
The additional headers should be separated with a CRLF (\r\n)

parameters Optional. Specifies an additional parameter to the sendmail
program

response.php
<?php
$mailto = "a_______@localhost";
$subject = "Party RSVP";
$message = "";
$comment = $_POST['comment'];
if ($comment == "*type comments in here*") {

$comment = "I have no comment";
}
$willgo = $_POST['attend'];

if ($willgo == "Y") {
$message .= "Yes I am going\n";

}
elseif ($willgo == "N") {

$message .= "No!\n";
}
$message .= "$comment\n";

if (mail($mailto, $subject, $message)) {
print "<h3>Mail was sent successfully</h3>
";

}
else {

print "<h3>Could not send mail</h3>
";
}
?>

Optional headers

$headers = “From: my@domain.com” . "\r\n";
$headers .= “Cc: you@yourdomain.com” . "\r\n";
$headers .= “Bcc: her@herdomain.com”;

…

mail($mailto, $subject, $message, $headers);

Extending SMTP

 SMTP is just a text sending/receiving protocol
(like HTTP)

 To send other types of data (e.g. graphics
attachments), we need an additional protocol

 Multipurpose Internet Mail Extensions
 MIME is an addition to the standard protocols that just

sends simple text messages

Content type

 The key feature of MIME is the content-type
identifier

 Each data segment in a complex email is preceded
by a number of content specification headers:

Content-Type: image/jpeg; name=“goofy.jpg”
Content-Transfer-Encoding: 7bit

 Of course, the client needs to understands these
terms

PHP and MIME

 PHP itself does not have support for
sending emails with attachments

 A number of 3rd party libraries have been
developed for this

 See the PEAR repository at:

 http://pear.php.net

References

• Php on-line documentation: http://nz.php.net/manual/en/

