13.1 Concept Review - Section: Work, Power, and Machines

- 1. Define each of the following terms and write the equation for each.
 - a. work
 - b. power
 - c. mechanical advantage
- 2. Explain the *relationship* between work and power.
- 3. Explain how machines make work easier if they still require that the same amount of work be done
- 4. Calculate the amount of work done when a grocery store stocker uses 120 N of force to lift a sack of flour 1.5 m onto a shelf.

Givens:	Equation:	Show your work:	Answer with unit:

5. Calculate the average power in kilowatts required to pull a car up a ramp if the amount of work is 250 kJ over a period of 45 s. (no conversion is needed!)

Givens:	Equation:	Show your work:	Answer with unit:

6. Calculate the mechanical advantage of a group of pulleys used to raise an engine from a car. The engine is raised 1.2 m with the pulleys when 4.8 m of rope is pulled through the pulleys.

Givens:	Equation:	Show your work:	Answer with unit:

Match each of the words below with the correct unit(s). Some have more than one answer!

,

7. Distance	a. m/s
	b. kg
8. Work	c. meter
	d. kilometer
9 Force	e. km/hr up
	f. joules
10. Power	g. Newtons
	h. gram
11. Time	i. seconds
	j. watts
12. Mass	k. m/s^2
	l. mph
13. Velocity	m. hours
14. Speed	

____15. Acceleration

16. Calculate the mechanical advantage of a ramp that is 5 meters high and 15 meters long.

Givens:	Equation:	Show your work:	Answer:

17. Work is done when a ______ is applied that ______ an object in the direction of the applied force.

18. Power is the ______ at which ______ is done.

- 19. _____ is a number that tells you how much easier it is to use a machine than to perform the same work without a machine. This number SHOULD be greater than ______. It does not have a unit.
- 20. The work that YOU do is called the ______. The ______ is the amount of force applied to the object or the distance it moved.
- _____ is something that decreases the force necessary by increasing 21. A the distance or direction of the force. Ex: ramp, pulley