DUBLIN INSTITUTE OF TECHNOLOGY

KEVIN STREET, DUBLIN 8

Diploma in Electronic Engineering
 YEAR 3

AUTUMN EXAMINATION 2000

ELECTRIC CIRCUITS AND SIGNAL PROCESSING

Mr. P. Tobin
Mr. K. Tiernan
Mr. C. Bruce
DATE:
Attempt three questions
Smith chart
Laplace tables
Butterworth and Chebychev tables

$$
c=3.10^{8} \mathrm{~m} / \mathrm{s}
$$

1. (a) Obtain a transfer function for a third-order high-pass filter, which uses a Butterworth loss function, and which meets the following specification:
The maximum passband loss $A_{\max }=3 \mathrm{~dB}$
The minimum stopband loss $A_{\text {min }}=28 \mathrm{~dB}$
The passband edge frequency $\omega_{p}=6000 \mathrm{rs}^{-1}$
The stopband edge frequency $\omega_{s}=2000 \mathrm{rs}^{-1}$
(b) A second-order IGMF bandpass active filter is shown in Figure 1. Show, by means of nodal analysis, how the transfer function is:

$$
-\frac{s \frac{1}{R_{1} C}}{s^{2}+s \frac{2}{C R_{2}}+\frac{1}{C^{2} R_{1} R_{2}}}=\frac{V_{\text {out }}}{V_{\text {in }}}
$$

[8 marks]
Calculate a value for the centre frequency ω_{o}, the -3 dB bandwidth and the passband gain for the circuit values given.
$R_{1}=1 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega, C=15 \mathrm{nF}$.
[7 marks]

Figure 1
2.(a) (a) Discuss the effect, component tolerance, has on the performance of active filters.
[5 marks]
(b) The frequency spectrum of a 1 kHz squarewave is shown in figure 2. It is desired to extract, from this squarewave, a 1 kHz sinusoidal signal. Obtain a transfer function for a low-pass filter, which will produce a maximum attenuation of the fundamental component of 1 dB . The third harmonic (3 kHz) should be attenuated by 12 dB (Butterworth loss functions tables are available for use in your analysis).

Figure 2
(c) Show how you could implement the transfer function obtained in part (a) using a Sallen and Key VCVS active filter.
[8 marks]
3 (a) Define the term voltage reflection coefficient. Use the solution for the voltage along a transmission line $V=V_{1} e^{-(\alpha+j \beta) z}+V_{2} e^{(\alpha+j \beta) z}$ in your answer.
[7 marks]
(b)A transmission line with characteristic impedance Z_{o} equal to 75Ω, is terminated in an impedance $Z_{L}=40+\mathrm{j} 20 \Omega$. Calculate
(i) The reflection coefficient,
(ii) The voltage standing ratio, and
(iii) The input impedance.
[6 marks]
(c) Hence use a Smith chart to verify approximately, the three values calculated in (i) to (iii).

