## Chemistry Mid-Term Practice Exam

Multiple Choice. Identify the choice that best completes the statement or answers the question.
$\qquad$ 1. A measure of the 3-D space matter occupies is
a. density.
c. volume.
b. weight.
d. mass.
$\qquad$ 2. Energy includes all of the following except
a. x-rays.
c. smoke.
b. light.
d. microwaves.
3. A true statement about mass is that
a. mass if often measured with a spring scale.
b. mass is expressed in pounds.
c. as the force of Earth's gravity on an object increases, the object's mass increases.
d. mass is determined by comparing the mass of an object with a set of standard masses that are part of a balance.
4. Which statement best describes the electron cloud?
a. It is uniform throughout.
b. All electrons in it have the same energy.
c. Electrons closer to the nucleus have more energy.
d. Electrons farther from the nucleus have more energy.
$\qquad$ 5. An atom with more electrons than protons is called $\mathrm{a}(\mathrm{n})$
a. neutral atom.
b. cation.
c. anion.
d. isotope.
6. A statement that can be tested experimentally is a
a. variable.
c. generalization.
b. model.
d. hypothesis.
$\qquad$ 7. The metric prefix that represents the smallest unit of measure is
a. micro.
b. milli.
c. kilo.
d. nano.
8. The SI base units for length and time are
a. centimeter and second.
c. centimeter and hour.
b. meter and hour.
d. meter and second.
$\qquad$ 9. The symbol kg represents the SI Unit for
a. volume.
c. force.
b. length.
d. mass.
$\qquad$ 10. The quantity of matter per unit volume is
a. mass.
c. inertia.
b. weight.
d. density.
11. The unit $\mathrm{m}^{3}$ measures
a. length.
c. volume.
b. area.
d. time.
12. Which of these is the abbreviation for the SI base unit of time?
a. hr
c. sec
b. h
d. s
13. Which of these statements about density is true?
a. Larger objects are denser.
b. Density does not depend on temperature.
c. Density is the concentration of matter in a substance.
d. The density of an object depends on the force of gravity.
14. What is the density of 37.72 g of material whose volume is $6.80 \mathrm{~cm}^{3}$ ?
a. $\quad 0.180 \mathrm{~g} / \mathrm{cm}^{3}$
b. $\quad 5.55 \mathrm{~g} / \mathrm{cm}^{3}$
c. $30.9 \mathrm{~g} / \mathrm{cm}^{3}$
d. $256 . \mathrm{g} / \mathrm{cm}^{3}$
15. The number of grams equal to 0.5 kg is
a. 0.0005 .
b. 0.005 .
c. 500 .
d. 5000 .
16. How many hours are in 1 year ( 365 days)?
a. 168 h
b. 720 h
c. 8760 h
d. 455520 h
17. These values were recorded as the mass of products when a chemical reaction was carried out three separate times: $8.83 \mathrm{~g} ; 8.84 \mathrm{~g} ; 8.82 \mathrm{~g}$. The mass of products from that reaction is 8.60 g . The values are
a. accurate, but not precise.
b. precise, but not accurate.
c. both accurate and precise.
d. neither accurate nor precise.
18. Which of these measurements has been expressed to three significant figures?
a. 0.052 g
b. 0.202 g
c. 3.065 g
d. 500 g
19. Which of these measurements has only non-significant zeros?
a. $\quad 0.0037 \mathrm{~mL}$
b. $\quad 60.0 \mathrm{~mL}$
c. $400 . \mathrm{mL}$
d. 506 mL
20. The dimensions of a rectangular solid are measured to be $1.27 \mathrm{~cm}, 1.3 \mathrm{~cm}$, and 2.5 cm . The volume should be recorded as
a. $4.128 \mathrm{~cm}^{3}$.
b. $4.12 \mathrm{~cm}^{3}$.
c. $4.13 \mathrm{~cm}^{3}$.
d. $4.1 \mathrm{~cm}^{3}$.
21. How many significant figures would the answer to the following calculation have?
$3.475 \times 1.97+2.4712$ is
a. 2
b. 3
c. 4
d. 5
22. The average distance between the Earth and the moon is 386000 km . Expressed in scientific notation, this distance is written as
a. $386 \times 10^{3} \mathrm{~km}$.
b. $39 \times 10^{4} \mathrm{~km}$.
c. $3.9 \times 10^{5} \mathrm{~km}$.
d. $3.86 \times 10^{5} \mathrm{~km}$.
23. When $1.92 \times 10^{-6} \mathrm{~kg}$ is divided by $6.8 \times 10^{2} \mathrm{~mL}$, the quotient equals
a. $\quad 2.8 \times 10^{-4} \mathrm{~kg} / \mathrm{mL}$.
b. $2.8 \times 10^{-5} \mathrm{~kg} / \mathrm{mL}$.
c. $2.8 \times 10^{-8} \mathrm{~kg} / \mathrm{mL}$.
d. $2.8 \times 10^{-9} \mathrm{~kg} / \mathrm{mL}$.
24. An atom is electrically neutral because
a. neutrons balance the protons and electrons.
b. nuclear forces stabilize the charges.
c. the numbers of protons and electrons are equal.
d. the numbers of protons and neutrons are equal.
25. Nuclear forces exists because the particles in the nucleus are
a. oppositely charged.
c. highly energized.
b. close together.
d. moving very fast.
26. Most of the volume of an atom is occupied by the
a. nucleus.
c. electrons.
b. nuclides.
d. protons.
27. The smallest unit of an element that can exist either alone or in combination with other such particles of the same or different elements is the
a. electron.
c. neutron.
b. proton.
d. atom.
28. As the atomic number increases, the number of electrons in a neutral atom
a. decreases.
c. remains the same.
b. increases.
d. is undetermined.
29. Chlorine has atomic number 17 and mass number 35 . It has
a. $\quad 17$ protons, 17 electrons, and 18 neutrons.
b. 35 protons, 35 electrons, and 17 neutrons.
c. 17 protons, 17 electrons, and 52 neutrons.
d. 18 protons, 18 electrons, and 17 neutrons.
30. Neon (symbol Ne) contains 10 neutrons. It also contains
a. 12 protons.
b. 22 protons.
c. 22 electrons.
d. 10 protons.
31. The frequency of electromagnetic radiation is measured in waves/second, or
a. nanometers.
c. hertz.
b. quanta.
d. joules.
32. The energy of a photon is related to its
a. mass.
c. frequency.
b. speed.
d. size.
33. A emission spectrum is produced when an electron moves from one energy level
a. to a higher energy level.
b. to a lower energy level.
c. into the nucleus.
d. to another position in the same sublevel.
34. The electron in a hydrogen atom has its lowest total energy when the electron is in its
a. neutral state.
c. ground state.
b. excited state.
d. quantum state.
35. The change of an atom from an excited state to the ground state always requires
a. absorption of energy.
b. emission of electromagnetic radiation.
c. release of visible light.
d. an increase in electron energy.
36. Isotopes of the same element have
a. the same atomic number.
c. the same atomic mass.
b. the same mass number.
d. the same number of electrons.
37. The average atomic mass of lead is 207.2 amu . The most abundant isotope is likely to be
a. lead-204
c. lead-207
b. lead-206
d. lead-208
38. Metals tend to form
a. anions.
b. cations.
c. neither anions nor cations.
d. both anions and cations.
39. Metalloids have properties that are
a. similar to metals
c. similar to halogens
b. similar to non-metals
d. in between metals and non-metals.
40. Which group of metals are the most reactive?
a. Rare earth metals
b. Transition metals
c. Alkaline earth metals
d. Alkali metals
41. Which of the following groups are the most reactive?
a. Noble gases
b. halogens
c. metalloids
d. Non-metals
42. Which group has its last electrons in the p sublevel?
a. Alkaline earth metals
b. Rare earth metals
c. Halogens
d. Transition metals
43. Which type of electromagnetic radiation has the shortest wavelengths?
a. x-rays
c. microwaves
b. radio waves
d. ultraviolet waves
44. Which color has the longest wavelength?
a. green
b. orange
c. blue
d. yellow
45. Which has more thermal energy?
a. ice at $-5^{\circ} \mathrm{C}$
c. ice at $-10^{\circ} \mathrm{C}$
b. ice at $-15^{\circ} \mathrm{C}$
d. ice at $0^{\circ} \mathrm{C}$
46. Which has more interaction energy?
a. carbon dioxide gas
c. solid carbon dioxide
b. liquid carbon dioxide
d. they all have the same
47. Which element's electron configuration ends in $6 p^{4}$ ?
a. tellurium
b. polonium
c. tungsten
d. uranium
48. Which element's electron configuration ends in $5 \mathrm{~d}^{2}$ ?
a. zirconium
b. titanium
c. hafnium
d. neodymium
49. Which has the highest electronegativity?
a. chlorine
b. astatine
c. potassium
d. magnesium
50. Which has the strongest Coulombic attraction?
a. selenium
c. sulfur
b. chromium
d. aluminum
51. Coulombic attraction has an indirect relationship with
a. atomic radius.
b. electronegativity.
c. ionization energy.
d. electron affinity.
52. Which of the following energy sublevels does not exist?
a. 5d
c. 4 s
b. 3d
d. 7 f
53. Which of the following is an isotope?
a. Chlorine-37
b. Calcium- 40
c. Hydrogen-2
d. They are all isotopes.
54. In a stable nucleus which force is stronger?
a. nuclear strong force
c. gravitational force
b. electrostatic force
d. they are equal
55. According to the quantum theory of an atom, in an orbital
a. an electron's position cannot be known precisely.
b. an electron has no energy.
c. electrons cannot be found.
d. electrons travel around the nucleus on paths of specific radii.
56. How many quantum numbers are needed to describe the energy state of an electron in an atom?
a. 1
b. 2
c. 3
d. 4
57. Each atomic orbital is described by its principal quantum number followed by the
a. value of the electron's spin state.
c. number of electrons in the sublevel.
b. magnetic quantum number.
d. letter of the sublevel.
58. A spherical electron cloud surrounding an atomic nucleus would best represent
a. an $s$ orbital.
b. a $p_{x}$ orbital.
c. a combination of $p_{x}$ and $p_{y}$ orbitals.
d. a combination of an $s$ and a $p_{x}$ orbital.
59. In the electron configuration for scandium (atomic number 21), what is the notation for the three highestenergy electrons?
a. $3 d^{1} 4 s^{2}$
b. $4 s^{3}$
c. $3 d^{3}$
d. $4 s^{2} 4 p^{1}$
60. What is the electron configuration for nitrogen, atomic number 7 ?
a. $1 s^{2} 2 s^{2} 2 p^{3}$
b. $1 s^{2} 2 s^{3} 2 p^{2}$
c. $1 s^{2} 2 s^{3} 2 p^{1}$
d. $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{1}$

Completion. Complete each statement.
61. A direct relationship between two variables means that as the one variable increases the other variable
$\qquad$ .
62. An indirect relationship between two variables means that as the one variable increases the other variable
$\qquad$ -
63. Ionization energy $\qquad$ as you go across a period from $\qquad$ to $\qquad$ .
64. The part of the atom that has the highest density is the $\qquad$ .
65. Magnesium-24 has $\qquad$ neutrons.

Short Answer. Answer the questions below in a complete sentence.
66. Why does Coulombic attraction decrease down a group?
67. Explain the differences between qualitative and quantitative observations.
68. Distinguish between precision and accuracy.
69. What is the atomic number of an atom?
70. What is the mass number of an atom?

Open Answer. Answer the questions as directed in the problems below.
71. Explain why electronegativity increases as the atomic radius decreases.
72. Draw a visual model of a neutral boron (symbol B) atom. Be sure to label the name and number of subatomic particles and the two regions of the atom.

Problem. Show all work and include the correct units and sig figs with your answer.
73. A metal object has a volume of $105 \mathrm{~cm}^{3}$ and a mass of 902 g . What is its density?
74. An object has a volume of $152.5 \mathrm{~cm}^{3}$ and a density of $0.875 \mathrm{~g} / \mathrm{cm}^{3}$. What is its mass?
75. How much energy must be added to 82.5 grams of water to raise its temperature from $71.5^{\circ} \mathrm{C}$ to $89.0^{\circ} \mathrm{C}$ ?
76. Use orbital notation to write aluminum's electron configuration.
77. What is the frequency of a photon with a wavelength of 1555 nm Hz ?
78. What is the energy of a photon with a wavelength of 1555 nm Hz ?
79. Write the noble-gas electron configuration for silicon.

## Chemistry Mid-Term Practice Exam

Answer Section

## MULTIPLE CHOICE

1. ANS: C OBJ: 1
2. ANS: C OBJ: 1
3. ANS: D OBJ: 1
4. ANS: B OBJ: 3
5. ANS: D OBJ: 3
6. ANS: D OBJ: 3
7. ANS: B OBJ: 3
8. ANS: D OBJ: 2
9. ANS: D OBJ: 2
10. ANS: D OBJ: 2
11. ANS: C OBJ: 2
12. ANS: D OBJ: 2
13. ANS: C OBJ: 4
14. ANS: B

$$
\text { Solution: } \begin{aligned}
& D & =\frac{m}{V} \\
& D & =\frac{37.72 \mathrm{~g}}{6.80 \mathrm{~cm}^{3}}=5.55 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

PTS: 1
STA: 3.1.12.D. 3
15. ANS: C OBJ: 5

DIF: III
REF: 2

DIF: II
OBJ: 4

REF: 2
16. ANS: C

Solution: $\quad 1$ year $\times \frac{365 \text { days }}{1 \text { year }} \times \frac{24 \mathrm{~h}}{1 \text { day }}=8760 \mathrm{~h}$
PTS: 1
DIF: II
REF: 2

REF: 2

REF: 2
REF: 2

REF: 2

REF: 2
REF: 1

REF: 1

REF: 2

REF: 2

REF: 2
REF: 2

REF: 2

REF: 2

STA: 3.1.12.D. 1
17. ANS: B OBJ: 1
18. ANS: B OBJ: 2
19. ANS: A OBJ: 2
20. ANS: D OBJ: 3
21. ANS: B OBJ: 3
22. ANS: D OBJ: 4
23. ANS: D OBJ: 4
24. ANS: C OBJ: 3
25. ANS: B OBJ: 3
26. ANS: C OBJ: 4
27. ANS: D OBJ: 4
28. ANS: B OBJ: 2
29. ANS: A OBJ: 3
30. ANS: D OBJ: 3
31. ANS: C OBJ: 1
32. ANS: C OBJ: 3
33. ANS: B OBJ: 3
34. ANS: C OBJ: 4
35. ANS: B OBJ: 4
36. ANS: A OBJ: 1
37. ANS: B OBJ: 1
38. ANS: A OBJ: 2
39. ANS: A OBJ: 2
40. ANS: A OBJ: 3

PTS: 1 DIF: II
STA: 3.2.12.B.1
PTS: 1 DIF: II
STA: 3.2.12.B.1
PTS: 1
STA: 3.2.12.B.1
PTS: 1 DIF: III
STA: 3.2.12.B.1
PTS: 1
STA: 3.2.12.B.1
PTS: 1
STA: 3.2.12.B.1
PTS: 1 DIF: III
STA: 3.2.12.B.1
PTS: 1

PTS: 1

PTS: 1

PTS: 1

PTS: 1 DIF: I
STA: 3.4.12.A. 3
PTS: 1 DIF: III
STA: 3.4.12.A. 3
PTS: 1
STA: 3.4.12.A. 3
PTS: 1
STA: 3.4.12.C.1
PTS: 1

PTS: 1

PTS: 1

PTS: 1

PTS: 1
STA: 3.4.12.A. 4

REF: 3

REF: 2

REF: 2

REF: 2

REF: 2

REF: 3

REF: 3

REF: 3

REF: 1

REF: 1
41. ANS: A OBJ: 3
42. ANS: B OBJ: 3
43. ANS: B OBJ: 4
44. ANS: B OBJ: 1
45. ANS: A OBJ: 2
46. ANS: B OBJ: 3
47. ANS: A OBJ: 1
48. ANS: A OBJ: 1
49. ANS: C OBJ: 1
50. ANS: B OBJ: 1
51. ANS: B OBJ: 2
52. ANS: C OBJ: 4
53. ANS: C OBJ: 4
54. ANS: A OBJ: 4
55. ANS: A OBJ: 3
56. ANS: D OBJ: 4
57. ANS: D OBJ: 4
58. ANS: A OBJ: 5
59. ANS: A OBJ: 3
60. ANS: A OBJ: 3

PTS: 1 DIF: II
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4 PTS: 1
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1 DIF: I
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1 DIF: II
STA: 3.4.12.A. 4
PTS: 1
STA: 3.4.12.A. 4
PTS: 1
PTS: 1
DIF: I

DIF: I
DIF: II

DIF: III
DIF: II
PTS: 1

REF: 1
REF: 1
REF: 1

REF: 2

REF: 2

REF: 2
REF: 3
REF: 3

REF: 3
REF: 4
REF: 4
REF: 4
REF: 4

REF: 4
REF: 2
REF: 2

REF: 2
REF: 2
REF: 3
REF: 3

## COMPLETION

61. ANS: increases

PTS: 1
STA: 3.4.12.A
62. ANS: decreases

DIF: I
REF: 1
OBJ: 1

PTS: 1 DIF: I REF: $1 \quad$ OBJ: 1
STA: 3.4.12.A
63. ANS: state, solid, liquid

PTS: 1 DIF:
REF: 2
OBJ: 2
64. ANS: liquid

PTS: 1 DIF: II
REF: 2
OBJ: 3
STA: 3.4.12.A. 4
65. ANS: gaseous

PTS:
DIF: I
REF: 2
OBJ: 3
STA: 3.4.12.A. 4

## SHORT ANSWER

66. ANS:

Gas particles do not attract one another, and can easily and quickly move from one place to another.
PTS: 1 DIF: I REF: 2 OBJ: 3
STA: 3.4.12.A. 4
67. ANS:

In qualitative observations, the data are descriptive and non-numerical. In quantitative observations, the data are numerical.

PTS: 1 DIF: II REF: 1 OBJ: 2
STA: 3.2.12.C. 4
68. ANS:

Precision is how close a set of measurements of the same quantity are. Accuracy is how close a measurement is to the true value.

PTS: 1 DIF: II REF: $3 \quad$ OBJ: 1
STA: 3.2.12.B.1
69. ANS:

The number of protons in the nucleus of an atom.
PTS: 1 DIF: I REF: $3 \quad$ OBJ: 1
STA: 3.4.12.A. 3
70. ANS:

The sum of the number of protons and neutrons in an atom.
PTS: 1 DIF: I REF: $3 \quad$ OBJ: 1
STA: 3.4.12.A. 3

## ESSAY

71. ANS:

Gases have the fastest speed of motion, followed by liquids, and then by solids, which only vibrate in fixed positions. Gases have the largest range of motion. Liquids have much shorter range of motion and solids have even less range of motion. For a given substance gases have the highest temperature, whereas solids have the lowest temperature. Gases have the highest thermal and interaction energies, solids have the least, and liquids are in between. Solids, however, have the strongest attractive forces, while gases have the weakest attractive forces.

PTS: DIF: III REF: 2 OBJ: 3
STA: 3.4.12.A. 4
72. ANS:

PTS: 1
DIF: III
REF: 2
OBJ: 3
STA: 3.4.12.A. 4

## PROBLEM

73. ANS:
$D=\frac{m}{V}=\frac{902 \mathrm{~g}}{105 \mathrm{~cm}^{3}}=8.59 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$

PTS: DIF: III REF: 4 OBJ: 4
STA: 3.4.12.A. 4
74. ANS:
$m=V \times D=152.5 \mathrm{~cm}^{3} \times 0.875 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=133 \mathrm{~g}$
PTS: 1 DIF: III
REF: 4
OBJ: 4
STA: 3.4.12.A. 4
75. ANS:
$Q=m C \Delta T=82.5 \mathrm{~g} \times(4.184 \mathrm{~J} / \mathrm{g} \bullet \mathrm{C}) \times(89.0 \mathrm{C}-71.5 \mathrm{C})=6040 \mathrm{~J}$
PTS: 1
DIF: III
REF: 4
OBJ: 4
STA: 3.4.12.A. 4
76. ANS:
$Q=m \Delta H_{f}=95.5 \mathrm{~g} \times 333.4 \mathrm{~J} / \mathrm{g}=3180 \mathrm{~J}$

PTS: DIF: III REF: 4 OBJ: 4
STA: 3.4.12.A. 4
77. ANS:
$f=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{1555 \mathrm{~nm}} \times \frac{1 \times 10^{9} \mathrm{~nm}}{1 \mathrm{~m}}=1.93 \times 10^{-14} \mathrm{~Hz}$

PTS:
DIF: III
REF: 5
OBJ: 3
STA: 3.4.12.A. 4
78. ANS:
$E=\frac{h c}{\lambda}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \bullet \mathrm{~s}\right) \times\left(3.00 \mathrm{x} 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{1555 \mathrm{~nm}} \times \frac{1 \times 10^{9} \mathrm{~nm}}{1 \mathrm{~m}}=1.29 \times 10^{-19} \mathrm{~J}$

PTS: 1 DIF: III
STA: 3.4.12.A. 4
79. ANS:
$[\mathrm{Ne}] 3 s^{2} 3 p^{2}$

PTS: 1
DIF: III
REF: 3
OBJ: 3

