
Pseudocode: A LATEX Style File for Displaying

Algorithms

D.L. Kreher

Department of Mathematical Sciences

Michigan Technological University

Houghton, MI 49931

kreher@mtu.edu

and

D.R. Stinson

Department of Combinatorics and Optimization

University of Waterloo

Waterloo ON, N2L 3G1

dstinson@uwaterloo.ca

January 15, 2005

1 Introduction

This paper describes a LATEX environment named pseudocode that can be
used for describing algorithms in pseudocode form. This is the style used
in our textbook Combinatorial Algorithms: Generation, Enumeration and

Search [2]. The style file pseudocode.sty is available for free downloading
from the web page http://www.math.mtu.edu/~kreher/cages.html

This package is quite easy to use, and allows algorithms to be described
in a LATEX document using a natural Pascal-like syntax. In the remaining
sections of this note, we describe how to use the pseudocode environment
and we present some examples. Readers familiar with LATEX (see [3]) should
be able to easily customize the style file to include additional desired fea-
tures.

The pseudocode environment requires the fancybox package by Tim-
othy Van Zandt. This package is described in Section 10.1.3 of [1]. Other
environments for describing algorithms include alg, algorithmic, newalg

1

and program. These style files, as well as fancybox, are all available from
the CTAN web site http://www.ctan.org/

2 The pseudocode Environment

Within the pseudocode environment, a number of commands for popular
algorithmic constructs are available. In general, the commands provided
can be nested to describe quite complex algorithms.

The pseudocode environment is invoked as follows:

\begin{pseudocode}{<Name>}{<Parameters>}

pseudocode constructs

\end{pseudocode}

The argument <Name> is the name of the algorithm, and <Parameters> is
a list of parameters for the algorithm. For example, the commands

\begin{pseudocode}{CelsiusToFahrenheit}{c}

f \GETS {9c/5} + 32\\

\RETURN{f}

\end{pseudocode}

produce the following output when included in a LATEX document:

Algorithm 2.1: CelsiusToFahrenheit(c)

f ← 9c/5 + 32
return (f)

Notice that the command \GETS produces a left arrow, which we use
to indicate an assignment of a variable. The user could use instead some
other symbol, if desired. For example, \GETS could be replaced by =, as is
done in the “C” programming language.

2.1 The begin-end Construct

To form compound statements from simple statements, the begin-end con-
struct is used as follows:

\BEGIN

some statement\\

another statement\\

yet another statement

\END

2

This generates the following:

some statement
another statement
yet another statement

The effect of this construct is to group a collection of statements using a
left brace bracket of the appropriate size.

In the sections that follow we will use the notation <stmt> to indicate
a simple statement or a compound statement. Note that the contents of
statements are typeset in math mode. Therefore, non-math mode text must
be enclosed in an \mbox{}.

Observe that the double backslash \\ plays the same role as the semi-
colon in Pascal, i.e., it is used to separate statements, and should never
appear before \END.

2.2 The if-then-else Construct

The if-then-else construct takes various forms, such as the following:

\IF <condition> \THEN <stmt>

\IF <condition> \THEN <stmt> \ELSE <stmt>

\IF <condition> \THEN <stmt> \ELSEIF <stmt> \THEN <stmt>

Note that there is no limit placed on the number of \ELSEIFs that may be
used in an if-then-else construct. For example, the commands:

\IF some condition is true

\THEN

\BEGIN

some statement\\

another statement\\

yet another statement

\END

\ELSEIF some other condition is true

\THEN

\BEGIN

some statement\\

another statement\\

yet another statement

\END

\ELSEIF some even more bizarre condition is met

\THEN

do something else

\ELSE

do the default actions

3

would produce the following output:

if some condition is true

then

some statement
another statement
yet another statement

else if some other condition is true

then

some statement
another statement
yet another statement

else if some even more bizarre condition is met
then do something else
else do the default actions

2.3 The for Loop

The for loop takes the following forms:

\FOR <var> \GETS <lower> \TO <upper> \DO <stmt>

\FOR <var> \GETS <upper> \DOWNTO <lower> \DO <stmt>

\FOREACH <condition> \DO <stmt>

For example,

\FOR i \GETS 0 \TO 10 \DO

some processing

produces

for i← 0 to 10
do some processing

and

\FOREACH x \in \mathcal{S} \DO

some processing

produces

for each x ∈ S
do some processing

2.4 The while Loop

The while loop takes the following form:

\WHILE <condition> \DO <stmt>

For example,

4

\WHILE some condition holds \DO

some processing

produces

while some condition holds
do some processing

2.5 The repeat-until Loop

The repeat-until loop takes the following form:

\REPEAT <stmt> \UNTIL <condition>

For example,

\REPEAT

some processing

\UNTIL some condition is met

produces

repeat

some processing
until some condition is met

2.6 Main Programs and Procedures

We can describe a main program that calls one (or more) procedures as
follows:

\begin{pseudocode}{<Name>}{<Parameters>}

\PROCEDURE{<ProcedureName>}{<ProcedureParameters>}

some stuff

\ENDPROCEDURE

\MAIN

some stuff\\

\CALL{<ProcedureName>}{<ActualParameters}>\\

more stuff

\ENDMAIN

\end{pseudocode}

Here is a simple example to illustrate the use of a main program calling
a procedure. The commands

5

\begin{pseudocode}{TemperatureTable}{lower, upper}

\PROCEDURE{CelsiusToFahrenheit}{c}

f \GETS {9c/5} + 32\\

\RETURN{f}

\ENDPROCEDURE

\MAIN

x \GETS lower \\

\WHILE x \leq upper \DO

\BEGIN

\OUTPUT{x, \CALL{CelsiusToFahrenheit}{x}}\\

x \GETS x+1

\END

\ENDMAIN

\end{pseudocode}

produce the following output:

Algorithm 2.8: TemperatureTable(lower, upper)

procedure CelsiusToFahrenheit(c)
f ← 9c/5 + 32
return (f)

main

x← lower
while x ≤ upper

do

{

output (x,CelsiusToFahrenheit(x))
x← x + 1

2.7 Comments

A comment statement may be inserted in an algorithm using the following
command:

\COMMENT{<stmt>}

For example, the commands

A \GETS B\\

\COMMENT{Now increment the value of A}\\

A \GETS A+1

produce the output

6

A← B
comment: Now increment the value of A

A← A + 1

Note that comments are assumed to be text. Thus, in order to include
mathematical expressions in a comment, math mode must be used explic-
itly.

2.8 Other Predefined Keywords

Several other predefined keywords are available. We summarize their usage
in Table 1.

Table 1: Other Predefined Keywords

command output
\LOCAL{list of variables} local list of variables
\GLOBAL{list of variables} global list of variables
\EXTERNAL{list of procedures} external list of procedures
\RETURN{list of values} return (list of values)
\OUTPUT{list of values} output (list of values)
\EXIT exit

\AND and

\OR or

\NOT not

\TRUE true

\FALSE false

\GETS ←

Also note that all of the keywords \IF, \WHILE, \CALL{}{}, \NOT, etc.
are available for use outside of the pseudocode environment, but they must
be input in math mode. For example,

The \WHILE loop is our friend.

generates

The while loop is our friend.

2.9 Statement Numbering

Statements can be numbered and given a reference key so that they can be
referenced in a LATEX document using a \ref{} command (see section 4.2
of [3]). This is done as follows:

7

\STMTNUM{<space>}{<key>}

The argument <space> is the amount of space to be left between the text
and the statement number. This is a length that is specified by the user, and
generally will require some experimentation in order for it to look nice. The
argument <key> is the reference key used in the LaTeX \ref{} command
to refer to the given statement.

The default numbering for statements is arabic. However, it can be
changed by a suitable \renewcommand{}. An example is provided in the
next section.

3 An example

The following example demonstrates the use of the pseudocode environ-
ment to describe a complete algorithm, the familiar “mergesort” algorithm.
The LATEX input

\renewcommand{\thepseudonum}{\roman{pseudonum}}

\begin{pseudocode}{MergeSort}{n,X}

\label{MergeSort}

\COMMENT{Sort the array X of length n}\\

\IF n=2 \THEN

\BEGIN

\IF X[0]>X[1] \THEN

\BEGIN

T \GETS X[0]\\

X[0]\GETS X[1]\\

X[1]\GETS T

\END

\END

\ELSEIF n>2 \THEN

\BEGIN

m\GETS \lfloor n/2 \rfloor\\

\FOR i\GETS 0 \TO m-1 \DO A[i] \GETS X[i]\\

\FOR i\GETS m \TO n-1 \DO B[i] \GETS X[i]\\

\COMMENT{Now sort the subarrays A and B}\\

\CALL{MergeSort}{m,A}\\

\CALL{MergeSort}{n-m,B}\\

i\GETS 0\\

j\GETS 0\\

\FOR k \GETS 0 \TO n-1 \DO

\BEGIN

\IF A[i] \leq B[j] \THEN

8

\BEGIN

X[k]\GETS A[i] \STMTNUM{1in}{st.1}\\

i\GETS i+1

\END

\ELSE

\BEGIN

X[k]\GETS B[j] \STMTNUM{1.03in}{st.2}\\

j\GETS j+1

\END

\END

\END

\end{pseudocode}

produces the following output:

Algorithm 3.1: MergeSort(n, X)

comment: Sort the array X of length n

if n = 2

then

if X[0] > X[1]

then

T ← X[0]
X[0]← X[1]
X[1]← T

else if n > 2

then

m← ⌊n/2⌋
for i← 0 to m− 1
do A[i]← X[i]

for i← m to n− 1
do B[i]← X[i]

comment: Now sort the subarrays A and B

MergeSort(m,A)
MergeSort(n−m,B)
i← 0
j ← 0
for k ← 0 to n− 1

do

if A[i] ≤ B[j]

then

{

X[k]← A[i] (i)
i← i + 1

else

{

X[k]← B[j] (ii)
j ← j + 1

The counter pseudonum keeps track of the statement numbers. The
style of the counter values can be changed using the method described in
Section 6.3 of [3]. For example, we used the command

9

\renewcommand{\thepseudonum}{\roman{pseudonum}}

in our example so that statements were numbered with lowercase Roman
numerals. We also assigned a label to the algorithm using the \label{}

command that is described in Section 4.2 of [3]. Finally, by trial and error,
we determined spacing so that the statement numbers would be vertically
aligned.

We now give an example of how the numbered statements in the above
algorithm can be referenced in a LATEXdocument. The commands

On lines (\ref{st.1}) and (\ref{st.2}) of Algorithm

\ref{MergeSort}, we determine the kth element of the

sorted array.

produce the following output:

On lines (i) and (ii) of Algorithm 3.1, we determine the kth element of the
sorted array.

4 Framing

The pseudocode environment also has an optional parameter, <frame>.
The complete form of the pseudocode environment is

\begin{pseudocode}[<frame>]{<Name>}{<Parameters>}

pseudocode constructs

\end{pseudocode}

The possible values of <frame> are:

shadowbox doublebox ovalbox Ovalbox

framebox plain ruled display

The values ending with “box” draw various types of frames around the
algorithm. The value plain is the default and adds no frame to the algo-
rithm. The value display is used for displaying sections of code without
the algorithm name or parameters. Here are some examples with input:

\begin{pseudocode}[<frame>]{SquareAndMultiply}{x,b,n}

\COMMENT{ Compute $x^b \pmod{n}$}\\

z\GETS 1\\

\WHILE b > 0 \DO

\BEGIN

z \GETS z^2 \pmod{n} \\

\IF b\mbox{ is odd}

10

\THEN z \GETS z \cdot x \pmod{n} \\

b \GETS \CALL{ShiftRight}{b}

\END\\

\RETURN{z}

\end{pseudocode}

where we give <frame> each of the values described above.

When <frame> is shadowbox we obtain:

Algorithm 4.1: SquareAndMultiply(x, b, n)

comment: Compute xb (mod n)

z ← 1
while b > 0

do

z ← z2 (mod n)
if b is odd
then z ← z · x (mod n)

b← ShiftRight(b)
return (z)

When <frame> is doublebox we obtain:

Algorithm 4.2: SquareAndMultiply(x, b, n)

comment: Compute xb (mod n)

z ← 1
while b > 0

do

z ← z2 (mod n)
if b is odd
then z ← z · x (mod n)

b← ShiftRight(b)
return (z)

When <frame> is ovalbox we obtain:

11

✎

✍

☞

✌

Algorithm 4.3: SquareAndMultiply(x, b, n)

comment: Compute xb (mod n)

z ← 1
while b > 0

do

z ← z2 (mod n)
if b is odd
then z ← z · x (mod n)

b← ShiftRight(b)
return (z)

When <frame> is Ovalbox we obtain:

✎

✍

☞

✌

Algorithm 4.4: SquareAndMultiply(x, b, n)

comment: Compute xb (mod n)

z ← 1
while b > 0

do

z ← z2 (mod n)
if b is odd
then z ← z · x (mod n)

b← ShiftRight(b)
return (z)

When <frame> is framebox we obtain:

Algorithm 4.5: SquareAndMultiply(x, b, n)

comment: Compute xb (mod n)

z ← 1
while b > 0

do

z ← z2 (mod n)
if b is odd
then z ← z · x (mod n)

b← ShiftRight(b)
return (z)

When <frame> is plain or if [<frame>] is omitted we obtain:

12

Algorithm 4.6: SquareAndMultiply(x, b, n)

comment: Compute xb (mod n)

z ← 1
while b > 0

do

z ← z2 (mod n)
if b is odd
then z ← z · x (mod n)

b← ShiftRight(b)
return (z)

When <frame> is ruled we obtain:

Algorithm 4.7: SquareAndMultiply(x, b, n)

comment: Compute xb (mod n)

z ← 1
while b > 0

do

z ← z2 (mod n)
if b is odd
then z ← z · x (mod n)

b← ShiftRight(b)
return (z)

The purpose of the value display is to allow portions of algorithms
to be displayed with out the algorithm header. Thus for example to dis-
play the section of code in the while loop of the SquareAndMultiply()
algorithm one could write

\begin{center}

\begin{minipage}{2in}

\begin{pseudocode}[display]{}{}

z \GETS z^2 \pmod{n} \\

\IF b\mbox{ is odd}

\THEN z \GETS z \cdot x \pmod{n}\\

b \GETS \CALL{ShiftRight}{b}

\end{pseudocode}

\end{minipage}

\end{center}

which would produce the following output:

13

z ← z2 (mod n)
if b is odd
then z ← z · x (mod n)

b← ShiftRight(b)

References

[1] M. Goossens, F. Mittelbach and A. Samarin, The LATEXCompanion,
Addison-Wesley, 1994.

[2] D.L. Kreher and D.R. Stinson, Combinatorial Algorithms: Generation,

Enumeration and Search, CRC Press, 1999.

[3] L. Lamport, LATEX, A Document Preparation System, Addison-Wesley,
1994.

14

