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Abstract 

Boundary algebra [BA] is a 〈--,(-),()〉 algebra of type 〈2,1,0〉, and a simplified notation for Spencer-
Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, 
() and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive no-
tion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA 
formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may 
be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any 
PA formula to either () or ⊥. 

The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a low-
er bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a 
distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, 
such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ 
true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational 
style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. 
Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne 
(1946), and the Boolean term schemata of Quine (1982). 
 
Keywords: Boundary algebra, boundary logic, primary algebra, primary arithmetic, Boolean    

algebra, calculation proof, G. Spencer-Brown, C.S. Peirce, existential graphs. 
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Preface 

“Logic is better presented as algebra.” Hehner (2004) 
 
This book sets out a simplified variant of the classic two-element Boolean algebra, and argues that 
this variant is an easy way to carry out the calculations elementary logic requires. 

In 1969, a British free-lance intellectual named George Spencer-Brown published a curious short 
book called Laws of Form (LoF). It was based on a university extension course in elementary logic 
he had taught for some years. In 1974, I chanced on the American mass market paperback edition of 
LoF, and over the next quarter century, intermittently struggled to grasp its content. In 2001, despite 
having no training in algebra or logic, I decided to make explicating LoF the primary focus of my 
academic research; thus began a decade’s reflection that culminated in this book. I began this 
research because I was especially intrigued by Spencer-Brown’s provocative claim that “…the cal-
culus published in this text renders [standard university logic problems] so easy that we need not 
trouble ourselves further with them...” (LoF, p. viii). 

LoF sets out a simplified approach, called the primary algebra (pa), to that hoary mathematical 
chestnut, the two-element Boolean algebra to which Paul Halmos gave the name 2. At the outset, I 
thought I was primarily exploring elementary logic, but soon saw that the logic was nothing more 
than an interpretation of 2. However, LoF confused this picture by claiming to do much more, phil-
osophically as well as mathematically. 

This book adopts a notation due to Croskin, one I call boundary notation, that is not only more 
keyboard-friendly than the notation of LoF, but is also more in the spirit of C.S. Peirce’s graphical 
logic which the pa startlingly parallels (Kauffman 2001). In the pa, the concatenation of subformu-
lae may be interpreted either as Boolean sum or as Boolean product. Because both interpretations 
are equally valid, the pa is self-dual. Because Boolean sum and product both associate, there is no 
need to indicate grouping, freeing up parentheses to denote Boolean complementation. LoF un-
wittingly rediscovered an enigmatic fact that Peirce discovered in the late 19th century: comple-
mentation with an empty scope (hence “()”) can be interpreted as a lattice bound and primitive 
value. 

Boundary algebra (BA) combines the pa with LoF’s primary arithmetic, also notated using bound-
ary notation. Employing conventional Boolean notation for the nonce, the primary arithmetic is 
grounded in two facts from Boolean arithmetic: 1∪1= 1, and “1′ may be written or erased at will.” 
The first fact is very well known; the second is is much less so. LoF then invoked two algebraic 
postulates: the distributive law and (a′∪a)′ = 0. That ‘∪’ commutes and associates was asserted true 
by default. This book sets out a new postulate set for the pa that first makes the commutativity and 
associativity of ∪ explicit, then invokes two very familiar laws, 0∪a = a and a′∪a = 1, and the less 
familiar a∪(a∪b)′ = a∪b′. These postulates often simplify proofs (here called “demonstrations,” as 
per LoF) of identities. This book also often draws on the fact that proving that α′∪β = β′∪α = 1 
amounts to a proof of α=β. 

While the pa is the focus of this book, I gradually came to appreciate that boundary notation can be 
applied to other algebraic structures. Thus chapter 3 also speaks to lattices and groups, and men-
tions other algebraic structures. The pa postulates I now prefer highlight how near the BA is to an 
abelian group. Chapter 5 shows by example how the methods of this book greatly facilitate the sort 
of exercises one does in undergraduate logic courses. It also shows how boundary methods can be 
employed in first order logic, and sheds light on the hoary syllogism. Chapter 6 lays out the close 
connection between BA and Peirce’s graphical logic. Chapter 7 proposes an explanation for why the 

pa has had little impact even though LoF has never gone out of print. Spencer-Brown intended that 



LoF be a contribution to philosophy, especially to the philosophy of mathematics and logic. A 
glance at the reference section for this book reveals that my intentions parallel his. 

This book is silent about my professional discipline, economics. More generally, it appears that 
economic reasoning never invokes Boolean algebra (Ba) in any way (although Boolean logic is 
fundamental to the computers economists use daily in their professional and personal activities). 
But starting around 1990, work in economic theory began to appear that drew on the generalisation 
of Ba called lattice theory. Topkis (1998) shows how the theories of the consumer, firm, general 
equilibrium, and non-cooperative games can be re-exposited using lattice theory. This is one reason 
why §3.3 introduces a boundary approach to lattice theory. 

This book’s preferred pa basis, B1-B4, and its numbering system for the derived consequences 
differ significantly from those in Meguire (2003). §§3.4, 4.3, 5.6, and 6.3 are all new, as are all 
appendices except A.6-9 and A.17. A new section on the syllogism, §5.5, replaces my earlier dis-
cussion of monadic predicate logic. §§2.3, 3.3, and the balance of §5 and §6 are revised and ex-
panded. The former §3.4 and §6.0 are now §4.1 and §6.1, respectively. I have moved material from 
§§3.1, 5.0, 5.2, and 6.1 in the earlier version, to §§4.4, 5.4, and 6.2-3 here. There are, of course, re-
visions of detail everywhere. 
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Prologue: Boundary Algebra and Theoretical Physics. 

 
Most of the technical terms appearing in this Prologue are defined elsewhere in this book; see 
especially the Appendix titled “A Precis of Mathematical Logic.” 

In a paper exploring a hypothetical ensemble of possible universes, the cosmologist Max Tegmark 
(1998: 1,3)1 conjectured that “all structures that exist mathematically exist also physically...” and 
that “physical existence is equivalent to mathematical existence [which is] freedom from contradic-
tion.” In other words, all consistent mathematical structures have a physical model somewhere in 
the universe, although not necessarily within that part of it we can observe. He (Tegmark 2004: Fig. 
21.7) then proposed a hierarchy of scientific theories, building on quantum field theory and general 
relativity, which he proposed to ground in pure mathematics. Later, Tegmark (2008) posited his 
“Mathematical Universe Hypothesis” to the effect that the universe itself is no more and no less 
than an abstract mathematical structure. Hence for Tegmark, all of physical and human reality is 
grounded in quantum field theory and general relativity. In turn, these theories are no more and no 
less than the mathematics required to exposit them. 

To further his modal realist program, Tegmark (1998: Fig. 1) set out a hierarchy of mathematical 
structures, positing that all of mathematics (or at least those parts relevant to physics) can be built 
up from one of three first order theories: semigroups, Peano arithmetic, and axiomatic set theory.2 
A first order theory is just first order logic augmented with some proper axioms and a bit of ontolo-
gy. In turn, Tegmark (1998; 2008) grounded first order logic in Ba, lingering over the latter in some 
detail. Hence for Tegmark, the mathematics of physics curiously begins with Ba. 

A more conventional path to Ba and the foundations of mathematics begins with first order logic, 
exposits some form of axiomatic set theory as a first order theory, defines ordered sets and lattices 
(§3.3), then introduces Ba as a type of lattice. First order logic is viewed as an autonomous formal-
ism, despite its connectives being a model of Ba. Tegmark’s approach requires a way of expositing 
Ba without presupposing a background set theory. I invite the reader to judge whether the formal-
ism set out in this book meets that requirement. 

Tegmark’s speculative approach to physics has affinities with that of John Wheeler. One of the two 
axiomatic principles undergirding boundary algebra is A2, which asserts that (()) can be written and 
erased at will. If enclosure by parentheses signifies a “boundary,” A2 holds because, by virtue of 
the notion of boundary adopted here, (()) signifies “nothing.” This usage appears consistent with the 
meaning of “boundary” in the following passage from Wheeler’s talk titled “It from Bit,” given at 
the Santa Fe Institute in 1989: 
 

“The boundary of a boundary is zero. This central principle of algebraic topology, 
identity, triviality, tautology though it is, is also the unifying theme of Maxwell’s 
electrodynamics, [general relativity], and almost every version of modern field 
theory. That one can get so much out of so little, almost everything from almost no-

                                                           
1.  I commend to the reader’s attention this sweeping, forceful, and readable essay. However, many of its key 

ideas are stated more precisely in Tegmark (2008).   

2. Tegmark does not articulate just what axiomatic set theory he has in mind. Nor does he explain why he did 
not ground semigroups (and hence groups, rings, etc.) and Peano arithmetic in ZFC, when doing so is 
straightforward and conventional. In Metamath (http://us.metamath.org/mpegif/mmset.html ), whose set 
theory axioms are ZFC, the semigroup axioms are theorems grpcl and grpass. The axioms of Peano arith-
metic are peano3-5, nna0, nnmo, nnasuc, and nnmsuc. Closure of addition and multiplication are nnacl 
and nnmcl.  



thing, inspires hope that we will someday complete the mathematization of physics 
and derive everything from nothing, all law from no law.” Wheeler (1994: 302) 

 
I close by pointing out that Tegmark’s repeated invocation of “self-aware substructures” (a category 
which includes homo sapiens) in his speculative writings, and John Wheeler’s (1975) “participatory 
anthropic principle,” all bring to mind the following enigmatic passage from LoF: 
 

"Let us then consider, for a moment, the world as described by the physicist. It 
consists of a number of fundamental particles which, if shot through their own space, 
appear as waves... 

“Now the physicist himself [is] made of a conglomeration of the very particles he 
describes, no more, no less, bound together by and obeying such general laws as he 
himself has managed to find and to record. Thus we cannot escape the fact that the 
world we know is constructed in order (and thus in such a way as to be able) to see 
itself. 

“This is indeed amazing. Not so much in view of what it sees, although this may 
appear fantastic enough, but in respect of the fact that it can see at all. But in order to 
do so, evidently it must first cut itself up into at least one state which sees, and at 
least one other state that is seen... 

“It seems hard to find an acceptable answer to the question of how or why the world 
conceives a desire, and discovers an ability, to see itself, and appears to suffer the 
process. That it does so is sometimes called the original mystery. Perhaps, in view of 
the form in which we presently take ourselves to exist, the mystery arises from our 
insistence on framing a question where there is, in reality, nothing to question. 
However it may appear, if such desire, ability, and sufferance be granted, the state or 
condition that arises as an outcome is, according to the laws here formulated, abso-
lutely unavoidable."  LoF, pp. 104-053; emphasis in original. 

 

                                                           
3. Page numbers and the like refer to the 1972 American paperback edition. 





Chapter 1. 

Introduction. 
 

“No one should fear that the contemplation of characters will lead us away from the things them-

selves; on the contrary, it will lead us into the interior of things. For nowadays our notions are 

often confused because the characters we use are badly arranged, but with the aid of characters we 

will easily have the most distinct notions, for we will have at hand a mechanical thread of medita-

tion, as it were, with whose aid we can easily resolve any idea whatever into its components.” 
                Leibniz (1969: 193).1 

“…to unfold all truths of mathematics down to their ultimate grounds, and thereby provide all 

concepts of this science with the greatest possible clarity, correctness, and order, is an endeavour 

which will not only promote the thoroughness of education but also make it easier.” 
Bolzano.2 Emphasis in original. 

“Symbols have the same importance for thought that discovering how to use the wind to sail against 

the wind had for navigation. Thus, let no one despise symbols! A great deal depends on choosing 

them properly… without symbols we would scarcely lift ourselves to conceptual thinking.” 
                  Frege (1972: 84), writing in 1882. 

“By relieving the brain of… unnecessary work, a good notation sets it free to concentrate on more 

advanced problems, and in effect increases the mental power of [humanity].” 
  Whitehead (1948: 39), quoted in Roberts (1973: 118). 

"...a proper notation is like a live teacher, gently guiding us into the clear and keeping us from 

error and wooliness. A real effort should be made to express [logical] principles in as perspicuous a 

notation as possible."                  Martin (1978: 41). 

In 1969, Spencer-Brown3 published the first edition of his Laws of Form4 (hereinafter LoF), which 
begins by laying out a minimalist formal system, called the primary arithmetic, arising from the 
primitive mental act of making a distinction. He then let letters denote, indifferently, a distinction or 
its absence and obtained the primary algebra, the next rung on his ontological ladder. The primary 
arithmetic and algebra featured a single primitive symbol ⎯‘  ’ in LoF and ‘()’ here⎯indicating 
the boundary between the two states generated by a distinction. Meguire (2003) proposed the name 
boundary algebra (BA) for the union of the primary arithmetic and algebra. BA has two intended 
interpretations: the Boolean algebra 2 (Halmos and Givant 1998: 55), so called because its base set 
has cardinality two; and boundary logic, an equational variant of the classical bivalent sentential 

                                                           
1. Letter to Tchirnhaus, dated May 1678, quoted in translation by Ishiguro (1990: 44). 

2. Bolzano, Bernhard, 1804. Considerations on Some Objects of Elementary Geometry. Republished in 
Ewald (1996: 172).  

3. George Spencer-Brown entered Cambridge in 1947, the year Wittgenstein resigned his Chair; hence he 
cannot have studied under Wittgenstein (who only taught advanced classes), as some claim. He graduated 
with Honours in philosophy and psychology, then taught philosophy at Oxford, 1952−58. In 1957, he pub-
lished Probability and Scientific Inference. In 1963-68, while writing LoF, he taught mathematics in the 
University of London’s extramural program. He has held visiting appointments at Maryland, Stanford, and 
Western Australia. Source: http://www. lawsofform.org/gsb/vita.html . 

4. Page numbers and the like refer to the 1972 American paperback edition. 



 
 

2 BOUNDARY ALGEBRA

logic (hereinafter the calculus of truth values or CTV5). The research that culminates in this book 
began with my admiration for the simplicity and elegance of boundary logic. 

The primary algebra, as set out in LoF, consists of 2 axioms, 11 consequences in the form of equa-
tions, the usual rules governing uniform replacement and the substitution of equals for equals, 9 
“canons,” and a few informal definitions. There are 18 (meta)theorems, including but not limited to 
the standard metatheory of the CTV: soundness, completeness, and postulate independence. All this 
fills less than 55 small pages of large type.6 The balance of the book consists of 20pp of front mat-
ter, a chapter claiming that certain recursive Boolean equations have “imaginary” solutions, and 
60pp of notes and appendices relating the primary algebra to the CTV as it was understood circa 
1940, and to elementary Boolean algebra and syllogistic logic. Much of this peripheral material is 
frankly speculative and digressive. This book does not evaluate LoF‘s claim that it is useful to think 
of certain recursive Boolean equations as having “imaginary” solutions. 

I take as given that notational innovations can facilitate both the teaching of extant mathematics and 
the invention of new mathematics. Since the dawning of modern logic in 1847, three notations for 
the truth functors have acquired a significant following: 

• The notation begun by Boole, revised by C. S. Peirce, and systematised by Schröder in the 
1890s. This became the Boolean algebra 2, with the following arithmetic/set theory/logic inter-
pretations: a+b-ab / a∪b / a∨b, a×b / a∩b / a∧b, and 1-a / a  / ~a. Boolean algebra can be cast 
in terms of equations and inequalities (‘≤’ interprets the conditional) with unknowns. A classic 
treatment is Lewis (1918: chpts. II, III). Thorough modern expositions include Rudeanu (1974) 
and Givant and Halmos (2009);7 

• The binary prefix (Polish) notation introduced by Lukasiewicz in the 1920s. Fully exploiting the 
fact that formulae are ordered trees, this notation requires no brackets because it is free of the 
ambiguities plaguing its infix rivals; 

• The standard notation for first order logic, originated by Peano and modified by Whitehead and 
Russell in their Principia Mathematica (PM). While the notation of PM was canonical for much 
of the 20th century, it has been displaced by a variant notation due to Hilbert, Tarski, and their 
students, one employing ‘∧’, ‘→’, and ‘↔’ in place of ‘.’, ‘⊃’, and ‘≡’, and brackets instead of 
the dots of Peano and PM. This book makes free metalinguistic use of this notation.8 

                                                           
5. Synonyms for the CTV include Bostock’s (1997) logic of truth functors, sentential calculus (Kalish et al 

1980), logic of connectives (LeBlanc and Wisdom 1976), propositional calculus (Church 1956; Mendel-
son 1997; Halmos & Givant 1998; Cori and Lascar 2000), propositional logic (Smullyan 1968; Epstein 
1995; Wolf 1998; Hodges 2001), statement calculus, (Stoll 1974), Propcal (Machover 1996), truth func-

tional logic (Hunter 1971; Quine 1982), the theory of deduction (PM). 

6. Smullyan (1968: chpts. I, II) covers in 27pp as much ground as LoF. Nidditch (1962), Goodstein (1963: 
chpt. 4), and Mendelson (1997: chpt. 1) require 81, 17, and 35 pages, respectively, and include the Deduc-
tion Theorem. Hunter (1971: §§15-36), Cori & Lascar (2000: chpt. 1, §§4.1-2), Stoll (1974: §§2.1-4, 3.5), 
Machover (1996: chpt. 7), Epstein (1995: §§II.J-L), and Schütte (1977: chpt. I) require 79, 62, 43, 40, 31, 
and 12 pp, respectively. All treatments prove the CTV consist and complete; some also prove it compact. 

7. On Boolean algebra, see the references in the Bibliographic Postscript. Boolean algebra is distinct from 
Boole’s “algebra of logic” (on which see Kneebone 1963: 184-88, and Lewis 1918: §I.V), in good part 
because alternation in Boole was exclusive rather than inclusive. Hailperin (1986: 140) argues that the 
“algebra of Boole” is a “commutative ring with unit, having neither additive nor multiplicative nonzero 
nilpotents.” 

8. On the importance of Peano’s notational innovations, see Quine (1995: §28). Kneebone (1963: 49-51, 
§6.4, 87) discusses Polish notation and the notation of Frege (never emulated). The notations ‘∀x’ and 
‘∃x’ descend from the ‘∏x’ and ‘∑x’ of Peirce (W5: 162-90) and his student Mitchell, a notation the Poles 
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The notation for BA is, arguably, a notational innovation of the same order as the above. The nota-
tion of LoF, however, cannot be reproduced using standard word processing software. Hence I em-
ploy an alternative notation Bricken and others have employed to discuss LoF, a notation in which 
Latin letters, ‘()’, and the blank page are atomic. To the best of my knowledge, Croskin (1978: 187) 
was the first to employ this notation, a mild variant of that in Peirce (4.378-383, 1902).9 The syntax 
of the primary arithmetic consists of balanced parentheses strings. Inserting Latin letters anywhere 
in a primary arithmetic formula yields a primary algebra formula. 

The domain of analysis is the real and complex numbers; that of geometry, space, Euclidian or not. 
Algebra studies mathematical structure without commiting to a specific domain. Logic studies the 
mathematical structure of statements and deductive systems so that, as Peirce, and Halmos and Giv-
ant (1998: §§35-39), have maintained, logic can be viewed as an application of algebra. Boundary 
logic is very much a case in point.10 

The content of this book comes under four headings: syntax, semantics, proof theory, and the histo-
ry of ideas. My purpose is mainly expository, in that much of what I say has already appeared 
somewhere in the literature. LoF was written as if the mathematics it advocates were wholly new; in 
fact, Spencer-Brown was unwittingly reinventing the wheel. Kauffman (2001) shows how the nota-
tion of LoF was anticipated by C. S. Peirce ⎯in papers written in 1886 but not published in full 
until 1993⎯and Nicod (1917). Kauffman also touches on Peirce’s alpha existential graphs, dis-
cussed in §6, whose semantics and proof theory are very much in the BA spirit. In §7, I give possi-
ble reasons why the mathematics and logic of LoF have made no headway since LoF was first pub-
lished nearly 40 years ago. 

This book includes an appendix, titled “A Precis of Mathematical Logic” (hereinafter “Precis”), in-
tended for readers lacking prior exposure to formal logic. I assume the reader has an intuitive grasp 
of elementary set theory, including the notion of function. LoF, however, is quite innocent of set 
theory, other than a brief mention, near the end and free of all rigor, of the Boolean algebra of sets. 

                                                                                                                                                                                                 

adopted. While Prior (1962) and Zeman (1973) adopted Polish notation, and texts still mention it, it ap-
pears to have died out. The syntactic (‘ ’) and semantic (‘ ’) turnstiles should be seen as part of the stand-
ard metalanguage. 

9. To Bricken I owe my awareness of Croskin’s work. Here and elsewhere, I cite Peirce’s Collected Papers 
(Peirce 1931-35) in the following standard manner: x.y, z refers to section y of volume x of the Collected 

Papers, first published or written in year z. 

10. Bricken (2001), building on James (1993), uses boundary notation to explore analysis (e.g., by represent-
ing ex as (x) ) and the integers, rationals, reals, etc. Kauffman’s (2001) term boundary mathematics refers 
to formal systems, mainly algebraic structures, having one or more syntactical boundaries and mathemat-
ical as well as logical interpretations. §3.4 shows how to notate a number of common algebraic structures 
using boundary notation.  

 



Chapter  2. 

The Primary Arithmetic (PA). 
 
“The theme of [LoF] is that a universe comes into being when a space is severed or taken apart… 

By tracing the way we represent such a severance, we can begin to reconstruct… the basic forms 

underlying linguistic, mathematical, physical, and biological science, and can begin to see how the 

familiar laws of our experience follow inexorably from the original act of severance.”    LoF, p. v. 

“A common image schema of great importance in mathematics is the Container schema [having] 
three parts: an Interior, a Boundary, and an Exterior. This structure forms a gestalt, in the sense 

that the parts make no sense without the whole. There is no Interior without a Boundary and an Ex-

terior, no Exterior without a Boundary and an Interior, and no Boundary without sides. The struc-

ture is topological in… that the Boundary can be made larger, smaller, or distorted and still remain 

the Boundary of a Container schema.“         Lakoff & Núñez (2001: 33).1 

In the beginning there is a featureless space, normally a plane surface, upon which symbols (a 
primitive notion because undefined), especially ‘(‘ and ‘)’, may be inscribed. A pair of ‘(‘ and ‘)’, in 
that order, divide the space into two parts, one “inside” or “between” ‘(‘ and ‘)’, and the balance 
being outside ‘(‘ and ‘)’. A sign is one or more symbols representing some human intention. The 
sign ‘()’ marks the boundary2 between these two parts of the space. Letting x be a token or marker, 
x can be inside a boundary, as in ‘(x)’, or outside, as in ‘()x’. Each side of a boundary forms one of a 
pair of mutually exclusive and exhaustive entities. ‘()’ can also indicate either member of this pair 
of entities, in which case ‘()’ signifies a boundary’s content as well as its fact. A boundary ‘()’ 
results when one wishes to distinguish that which is inside ‘()’ (which may be nothing) from the 
remainder of the space. 2.0.1 attempts to codify these admittedly enigmatic ruminations: 
 
2.0.1. Definition. The sign ‘()’ inscribed in some space both signifies a boundary and denotes the 
marked state. Any space on which ‘()’ does not appear represents the unmarked state. 
 
The unmarked state can also be called “not ()”, “nothing”, “the void”; I will grant it a symbol 
shortly. The formal system whose sole atoms are ‘()’ and “the void” is the primary arithmetic (LoF 
also employs the term “calculus of indications”), which I abbreviate to PA. Boundary logic3 begins 
by interpreting ‘()’ as one of true or false. (I will often refer to the usual notation for first order logic 
as conventional logic.) 

Now consider a plane surface, of indefinite extent, on which the four symbols (not necessarily 
interpreted or related to each other) #, ∴, ∋, and ♦ are inscribed, as in Fig. 1. Note that ‘∴’ appears 
twice. If one wished to represent Fig. 1 more concisely, one could assert that the symbols in that 
Figure form a list and write ‘#∴∋∴♦’, without separators such as commas. Note that multiple 
instances of the same object, namely ‘∴’, are allowed. One could also depict Fig. 1 as a set and 

                                                           
1. Container schema and image schema are terms of art in cognitive science, and are defined in Lakoff & 

Núñez (2001). 

2. ‘Boundary,’ as employed in this book, is unrelated to the use of that term in topology. At the same time, I 
do not wish to deny that topology and the mereotopology of Simons (1987: §2.10) and Casati and Varzi 
(1999: chpts. 4,5) may shed light on boundary mathematics; see §5, fn. 6. 

3. By grounding BA in the “mental act” of drawing a distinction, Spencer-Brown and I distance boundary 
logic, for good or ill, from Kneebone’s (1963: §12.2.1) reading of PM, in which “…logic deals with prop-
ositions, not with mental acts; and it follows that… mathematics likewise is essentially propositional.” 



 BOUNDARY ALGEBRA 5 

write {#,∋,∴,♦}, keeping in mind that a set cannot have multiple instances of any of its members; 
hence the set corresponding to Fig. 1 has four members but the list has five elements. 
 

#  ∴ 
         ∋ 

       ∴  ♦ 

          Fig. 1. 
 
For both lists and sets, the order in which elements are listed is immaterial. Hence when using list 
or set notation, the elements can be permuted at will without affecting meaning, consistent with the 
symbols having no necessary relation to each other. BA should be thought of as consisting of spatial 
arrangements such as Fig. 1. Wishing to defer to typographical custom in mathematics and conven-
tional logic, and in order to save space, I represent such arrangements as lists. 

Any closed curve that does not intersect itself, and with a distinguishable ‘inside’ and ‘outside,’ can 
depict a boundary. Boundaries can also be nested at will. The objects of BA should be seen as 
inscribed on a surface of dimension at least 2. All objects on a given side of a boundary, other 
boundaries excepted, have equal status. Hence boundary purists deem jejune the algebraic notions 
of commutativity and associativity when these are applied to BA. I do invoke these notions, but 
only as metalinguistic manners of speaking, doing so mainly out of deference to readers accustomed 
to conventional notations for logic and Boolean algebra. I revisit this syntactic curiosity in §3.2. 
 
 

2.1.  PA: Syntax. 

‘‘Although some material may be very familiar, …one of our main themes is the development of 

new perspectives for familiar concepts. Hence… these concepts [should] be re-appraised, and 

explicit discussion be provided of things that to many will have become second nature.” 
                  Goldblatt (1984: 4). 
 
2.1.1. Definition.  A PA symbol is an instance of ‘(’, ‘)’, ‘⊥’, and ‘=’. ‘Symbol’ is otherwise 
undefined. The symbol ‘⊥’ is improper; the remaining symbols are proper. 

2.1.2. Definition.  A PA string consists of a single symbol, or of two or more symbols juxtaposed.4 
A PA formula is a string constructed recursively as follows: 

Base case.    Any atomic formula: the string ‘()’, the blank page, any space between symbols. 
Recursive rule.  If ‘α’ and ‘β’ are formulae, ‘(α)’ and ‘αβ’, i.e., ‘α’ and ‘β’ juxtaposed, are form-

ulae. This rule may be repeated any finite number of times.5 

2.1.2 introduces an important notational convention: Greek letters are metalogical symbols standing 

for arbitrary formulae or strings. (N.B. LoF also invokes this convention, albeit silently.) I revisit 
the blank page as atomic formula in §2.2. 

                                                           
4. I intend ‘juxtaposition’ (a term I appropriated from Hehner 2004) and ‘concatenation’ to be synonymous. 

String concatenation is mathematically nontrivial, by virtue of its being a model of a semigroup (monoid, 
if the notion of empty string is accepted) over a base set whose members are atomic strings (Halmos and 
Givant 1998: §12). 

5. I crafted 2.1.2 so as to resemble the recursive formula definitions in conventional treatments of logic (e.g. 
Bostock 1997: 21; Machover 1996: §7.1.2) and other formal systems. In linguistics and computer science, 
2.1.2 defines a Dyck language of order 1 with a null alphabet, the simplest instance of a Chomskian 
context-free language (Davis et al 1994: §10.7). 
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2.1.3. Definition.  If the formula ‘α’ can be obtained by applying the recursive rule in 2.1.2 to the 
formula ‘β’ one or more times, then ‘β’ is a proper sub-formula of ‘α’. A subformula of ‘α’ is 
either ‘α’ itself or a proper subformula of ‘α’. 
 
LoF has no synonym for subformula, a lacuna giving rise to occasional awkward periphrases. In no 
way are ‘string’ and ‘formula’ peculiar to BA. I employ these words mainly to facilitate expositing 
BA to those who have studied formal systems in the usual way. ‘String’ and ‘formula’ are 
synonyms for ‘arrangement’ and ‘expression,’ which LoF employs without defining. I will write 
‘arrangement’ only when quoting LoF. 

In everyday language, a formula must satisfy the rule: reading from left to right, any left parenthesis 

must eventually be paired with a right parenthesis. A string satisfying this rule is known as a bal-

anced parenthesis string. The following algorithm determines whether a given string is balanced 
and hence a formula. 
 
2.1.4. Algorithm. 
a) Let d be a counter variable, and initialise it to 0. 
b) Starting from one end of the string and working towards the other end, increase d by 1 for each 

‘(‘ and reduce d by 1 for each  ‘)’. 
c) IF d is ever positive [negative], it must always be nonnegative [nonpositive]. 
d) ELSE the string is not a formula. STOP 
e) ELSE IF d is nonzero when the end of the string is reached, the string is not a formula. STOP 
f) ELSE the string is a formula. 
End of Algorithm 

 

2.1.4 is required only because not all possible strings involving only ‘(‘ and ‘)’ are well-formed. 

This is a drawback (and, I trust, a minor one) of the notation I propose. This problem does not arise 

with the notation of LoF, its signal virtue. That notation is based on the symbol ‘    ’, called the 

mark, and placed to the right and over that which ‘()’ encloses. E.g., ‘         ’ in LoF corresponds 

to ‘((()())())’ here. All possible concatenations and nestings of ‘   ’ are well-formed, as long as the 

upper part of any ‘    ’ extends over the left extremity of all ‘   ’ under it. 
 

2.1.5. Definition.  When applying 2.1.4 to ‘α’, the absolute value of the counter d at any point 
inside ‘α’ is the depth of ‘α’ at that point. Henceforth, d refers to this absolute value. The place in 
‘α’ where d attains its largest value is the greatest depth, *dα , of ‘α’.6 
 

2.1.6. Definition.  Corresponding to every value of d is a subspace sd. The subspace sd pervades 
any sub-formula situated at depth d. Given some formula ‘α’, the subspace of depth 0, s0, is the 
pervasive space of ‘α’. Let ‘β’ be a sub-formula occurring at depth d of ‘α’. Then the subspace sd 
pervades ‘β’ (is the pervasive space of ‘β’). 
 
‘()’ marks the boundary between the subspace “inside” and the pervasive space “outside.” Each 
subspace sj contains all subspaces sk, for which i<k≤d*. Hence a formula creates a system of d* 
nested subspaces. (The terms space and subspace are also fundamental to analysis and linear alge-

                                                           
6. A BA formula can be seen as a finite ordered tree (Smullyan 1968: 4-5), whose level corresponds to depth 

in the sense of 2.1.5. LoF operationalizes formula depth in a different manner. 
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bra, but this is coincidental.) A subspace can pervade more than one sub-formula, a fact giving rise 
to the following definition: 
 

2.1.7. Definition. Given a formula of the form ‘…((β)(γ)…)…’, the sub-formulae ‘(β)’, ‘(γ)’, etc. 
constitute divisions of the subspace containing ‘(β)’, ‘(γ)’, etc, and these sub-formulae are said to 
divide the subspace. 
 
I now explicate ‘⊥’. 
 
2.1.8. Definition. The symbol ‘⊥’ represents the null formula. It designates “the unmarked state”, 
“nothing”, “the void”. 
 
‘⊥’ is a sub-formula of every formula, so that the null formula is a formula in the same sense that 
the empty set is a set.7 
 
2.1.9. Definition. () and ⊥ are the primitive values of BA. B={(),⊥} is the base set of BA. In Ba, a 
synonym for base set is carrier. 
 
LoF invokes the Principle of Relevance (cf. §3.1) to argue that there is no need for a symbol to de-
note the unmarked state or the null formula: “...a recessive value is common to every [PA formula] 
and... by this Principle, has no necessary indicator there” (LoF, p. 43). Although LoF is silent about 
the null formula, it (pp. 15-18, 37, 47-48, 56-57) repeatedly employs ‘n’ to refer to the unmarked 
state; the semantics of ‘n’ and ‘⊥’ are identical. The counterpart to ‘n‘ is ‘m’, denoting the marked 
state. n and m are presumably metalinguistic. 

By including the symbol ‘⊥’ in BA, I defer to established usage in logic and Boolean algebra, which 
all feature a symbol akin to ‘⊥’. Moreover, ‘=’ with nothing to one side (and strings of this form do 
occur in LoF) leaves the mind guessing at a possible typographical problem. ‘⊥’ is a placeholder 
like the number 0; I created it in good part simply out of respect for the dyadic character of ‘=’. The 
controversy surrounding the role of ‘⊥‘ in BA is analogous to that surrounding a possible role for 
the null individual in mereology, the formal theory of the relation of part to whole. For a review of 
this controversy, see the Appendix titled “The Controverted Ontology of the Null Individual.” It 
would seem that both controversies stem from assuming that a name necessarily denotes some 
thing, when in fact the null individual and ‘⊥‘ denote not things but “nothing” and “the unmarked 
state,” respectively. 
 

 

2.2.  PA: Axiomatics, Simplification, Semantics. 

“I have for a long time been urging… the importance of demonstrating all the secondary axioms… 

by bringing them back to axioms which are primary, i.e., immediate and indemonstrable…” 
                 Leibniz (1996: 408). 

The LoF axioms are: 
 
A1. ()()  =  () A2. (())  =  ⊥. 
 

                                                           

7. ‘T’ (‘top’) and ‘⊥’ (‘bottom’) are standard notation for the bounds of a bounded lattice (3.3.6), and are the 
primitives of Hehner’s (2004) binary algebra. ‘⊥’ is also analogous to Bostock’s (1997: 12-13) empty se-

quent, false by definition. 
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In Spencer-Brown’s inimitable Zen-like words (LoF, pp. 1-2): 
 
“A1.  The value of a call made again is the value of the call.    Calling 
A2.  The value of a crossing made again is not the value of the crossing. Crossing” 
 
A2 is arguably self-evident, A1 perhaps less so. I ignore the distinction LoF draws between 
“axiom,” meaning Calling and Crossing (also referred to as Number and Order) stated in natural 
language, and the corresponding “arithmetic initials” ()()=() and (())=⊥. 

A1 and A2 reveal that ‘()’ has an “inside” distinguishable from its “outside” by virtue of what each 
does to another instance of ‘()’ with which it is in contact. A1 lays down that the exterior is 
idempotent; A2, that the interior is nilpotent. A1 and A2 can also be seen as defining ‘(‘ and ‘)’ as 
the two halves of a single operator, with A1 [A2] being the defining property of the convex 
[concave] side of a parenthesis. When a pair of parentheses enclose a sub-formula, the pair func-
tions as an (unary) operator; the subformula⎯ which may be no more than an instance of ‘()’⎯is 
the corresponding operand. Note that ‘(())’ has an interior while the constant ‘⊥’ does not. This is 
the sense in which ‘⊥’ is synonymous with ‘(())’ but not redundantly so. 

Pp. 104-06 of LoF, perhaps the most sweeping and poetic pages of the book, were intended to lead 
the reader to a deeper understanding of the plausibility of A1 and A2.  These pages suggest 
Spencer-Brown saw A1 and A2 as ineluctable features of not only the abstract realm, but also of the 
physical universe and how humans perceive it. 

A1 and A2 do not make explicit what value to assign to a formula containing both ‘⊥’ and 
parentheses. LoF is not to blame for this lacuna; having no null formula, it states A2 with nothing to 
the right of ‘=’, namely as “(())= “. I propose to remedy this omission in either of two ways: 
 
1. Invoke a third axiom making explicit that when ‘⊥’ is combined with ‘()’ in any way, nothing is 

altered: 
 

A3.  ⊥() = (⊥) = ()⊥ = (); ⊥⊥ =  ⊥. 
 
  Or, in the Zen-like spirit of LoF: 
 

A3.  The void is perfect inaction. 

2. Restate A2 as follows: An instance of ‘(())’ or ‘⊥’ may be written anywhere or erased at will. I 
submit that a generous reading of LoF points to this definition. The four cases covered by A3 
above then all follow. 

 
Under either approach, ‘⊥’ can appear anywhere in a formula without affecting its meaning or 
value. ‘⊥’ is a synonym for ‘(())’ and as such is, in all essentials, optional. Hence parentheses alone 
suffice to build any PA formula. A2 as restated above has a curious and deeper consequence. Since 
‘(())’ aliases with the blank page, and since by 2.1.9 ‘(())’ is a primitive value, the following three 
things stand for the same atomic formula and can denote the same primitive value: the “space” 
between any two juxtaposed symbols, an entire blank page, and any blank part thereof. We shall see 
in §6.1 that Peirce reached a related conclusion at the end of the 19th century while devising his 
graphical logic. 

Table 2-1 summarises the discussion thus far, with each cell in that Table giving one of the six 
possible ways of forming pairs from ‘()’ and ‘⊥’, keeping in mind that ‘()’ has both an “interior” 
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and “exterior”. Table 2-1 and Definition 2.1.2 essentially define the PA. A1 and A2 each yield the 
value of one cell. The remaining four cells contain the string “A3”, which stands for either of the 
two paths proposed above: either invoke a new axiom, A3, or alter A2 to allow ‘⊥’ to be erased at 
will. Henceforth, I will take the latter course, so that A2 includes the four equalities in the cells 
labelled A3. The cell ‘⊥⊥ =⊥’ implies that strings consisting of iterated instances of ‘⊥’ designate 
the null formula. Once I define Boolean algebra (§3.3), it will be clear that Table 2-1 defines the 
corresponding Boolean arithmetic. A numerical interpretation of that arithmetic is 1⇔(), 1−α ⇔ 
(α), and max(α,β) ⇔ αβ.8 
 

Table 2-1. 

Axiomatic PA operation table, 
With a numerical interpretation. 

1a. Juxtaposition  1b. Enclosure 

()() = ()      A1 
0×0 = 0 

⊥() = ()       A3 
1×0 = 0 

 (()) = ⊥       A2 
1−0 = 1 

()⊥ = ()       A3 
0×1 = 0 

⊥⊥ = ⊥       A3 
1×1 = 1 

 (⊥) = ()       A3 
1−1 = 0 

 

A1, A2, and Table 2-1 may appear trivial. However, in 3.3.2 we shall see that A1 and A2 imply that 
B is a partially ordered set. Ordered sets are rich in mathematical (cf., e.g., Davey and Priestley: 
2002) and logical (Curry 1963: chpt. 4) content. 

Table 2-1 implies that a pair of parentheses can serve as either an operator or an operand. In a sub-
formula of the form ‘⋅(⋅)⋅’, the parentheses can be seen as denoting a three-place operator (functor), 
such that one or more of ‘⋅’ can be left blank. Leaving all three places blank takes us back to the 
boundary sign ‘()’, a primitive value and hence an operand. Chapters 3 and 4 will say more about 
‘()’ as operand and operator. In the PA, the distinction between operator and operand is purely con-
textual and has effectively degenerated, a situation to which LoF (p. 88) refers as the “partial identi-
ty of operator and operand.”9 Any notation proposed for the PA must do justice to this degeneracy. 
I chose parentheses with this degeneracy uppermost in mind. 

Definitions 2.2.1, 2.2.2, and 2.2.4 lay out the principle use of Table 2-1, and the meaning of the 
symbol ‘=’. 
 

2.2.1. Definition. A step is any alteration of a formula justified by invoking the contents of a cell in 
Table 2-1. Steps are of two kinds: slimming and expansion. Let α be some PA formula. To replace 
‘()()’ with ‘()’, or to erase an instance of ‘(())’ occurring in α is to slim α. To replace an instance of 
‘()’ with ‘()()’, or to insert ‘(())’ anywhere in α, is to expand α. 
 

                                                           
8. Since the two cells in Table 2-1b form a dual pair (cf. 4.1.3), duality (§4.1) suggests that only one of these 

cells is strictly necessary. Note that max(α,β) = (α+β)−(α×β). The dual interpretation is 1⇔⊥ and 
min(α,β) ⇔ αβ ⇔ α×β. Another numerical interpretation of Table 2-1 is ⊥ ⇔ −1 < 1 ⇔ (), αβ ⇔ 
max(α,β), and (α) ⇔ −α (dually, ()⇔−1 < ⊥⇔1, αβ ⇔ min(α,β)). A Boolean interpretation of the PA is 
() ⇔ 1, ⊥ ⇔ 0, (α) ⇔ −α, and αβ ⇔ α∪β [α∩β]. In this case, A1 is 1∪1=1; A2, −1=0, 0∪1=1∪0=1, 
0∪0=0, −0=1. Under this interpretation, A1 and A2 are (3b) and (7b) in Shannon (1938). For more re 
arithmetical axiomatizations of Ba and sentential logic, see §6, fn. 17. 

9. LoF (p. 88) asserts that this partial identity characterizes Ba as well, albeit in disguised form. 
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A1 (A2) justifies the first (second) action mentioned in the last two sentences of 2.2.1. Slimming 
and expansion can be thought of as an inverse pair of operations, whose arguments are formulae. 
 

2.2.2. Definition. To simplify a formula ‘α’ is to slim ‘α’ one or more times until the result is a 
member of B. That member is the value of ‘α’, denoted ‘|α|’.  
 

2.2.3. Algorithm. The following algorithm operationalises what is meant by simplifying the 
formula ‘α’ with greatest depth *dα : 
1. Go to the subspace of ‘α’ whose depth is *dα −1. 
2. IF this subspace pervades one or more sub-formulae of the form ‘()()’, THEN invoke A1 and 

replace every ‘()()’ with ‘()’. Repeat this step until only one ‘()’ is left. 
3. ELSE go to the subspace at depth *dα −2, which must pervade one or more sub-formulae of the 

form ‘(())’. Invoke A2 and eliminate all instances of ‘(())’.  
4. IF what remains of α is ‘()’ or ’⊥’, THEN STOP. 
5. REPEAT 2 through 4, decrementing the depth of the subspace by 1 each time.10 
End of Algorithm 

Remark. The simplification of ‘α’ is the value of α when the algorithm 2.2.3 terminates. For more 
about on simplification and expansion see §2.3, specifically T3, T4, and the Hypothesis of 
Simplification. 
 
I now define the symbol ‘=’ (the ’equal sign’) as follows: 
 

2.2.4. Definition. The string ‘α=β’, called an equation or identity, signifies that the formulae ‘α’ 
and ‘β’ have the same simplification and hence are equivalent.11 
 
Corresponding to the adjective ‘equivalent’ is the noun ‘equivalence’ which I , following LoF, de-
note by the mathematician’s common-garden ‘=’. The equation ‘α=β’ implies nothing whatsoever 
about the literal appearance of ‘α’ and ‘β’. I revisit equivalence in 2.3.8-10. 

The semantics of the PA are an elusive aspect of LoF, and perhaps the greatest obstacle to a wider 
appreciation of BA. I intend by “semantics of the PA” no more than some asserted interpretation of 
the PA, defined as: 
 
2.2.5. Definition.  An interpretation of the PA is a one-to-one correspondence between B and ano-
ther two-member set. 
One such two-member set is {1,0}, containing the Boolean primitives in Table 2-1. Other possibili-
ties include {V,Λ} (set theory), {top ‘T’, bottom ‘⊥’} (lattice theory), {True,False} (logic), and the 
everyday meaning of {On,Off}. Hehner (2004) even proposes the numerical reading {∞,-∞}. I do 
not claim that these minimalist semantics necessarily do justice to the philosophical intent of LoF. 

LoF leaves the PA uninterpreted, saying little more about the possible semantics of the PA than 
what can be found in the first few paragraphs of its Appendix II, and barely hinting at what I say in 
§2.0 above. Could the degeneracy of the PA extend even to the distinction between syntax and sem-
antics? 

                                                           
10. Compare this algorithm to that on p. 13 of LoF. After devising 2.2.3, I discovered the following related 

definitions in Machover (1996): degree of complexity of a formula (§§7.1.7, 8.1.8), weight of a string 
(§§7.1.9, 8.2.1), parity of a formula (§8.8.3). 

11. Synonyms for ‘α=β’ include ‘α↔β’ (common in conventional logic), and ‘α β’ (Bostock 1997: 36). 
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Croskin (1978) concludes that A1 and A2 form a one-to-one mapping between B and ‘()()’ and 
‘(())’, the two simplest nonatomic formulae. I prefer to see A1 and A2 as arbitrary defining choices 
of the sort that necessarily ground any formal system. Mapping each of ‘()()’ and ‘(())’ onto any 
member of {(), ()(), (())} gives rise to 2x3=6 possible pairs of distinct axioms, one of which is (A1, 
A2). §3.4 shows that (A1, (())=() ) hold in group theory. I leave to future research possible interpret-
ations (e.g., Peano arithmetic, sets, multisets) of the four other possible axiom pairs. 
 
PA Semantics: A Technical Digression. 
Given some standard notions from mathematical logic, the following argument renders plausible in-
terpreting ‘()’ and ‘(())’ as the classical bivalent truth values. Let the extension of an n-place atomic 
formula be the set of ordered n-tuples of individuals that satisfy it (i.e., for which it comes out true) 
(Carnap 1958: §10b). Let a sentential variable be a 0-place atomic formula; its extension is a class-
ical truth value by definition. An ordered 2-tuple is known as an ordered pair, whose standard set 
theoretic definition is 〈a,b〉 =df  {{a},{a,b}}, where a,b are individuals. Ordered n-tuples for any 
n>2 may be constructed from ordered pairs in a well-known recursive way (cf. Stoll 1963: §1.6). 
Bostock (1997: 83, fn. 11, 12) states that Scott (whom he does not cite) has argued that the exten-
sion of a sentential variable can also be seen as the empty ordered pair (ordered 0-tuple), {{},{}}, 
equal to {{}} by set extensionality. Hence T interprets {{}}. Reading {} as F follows naturally, if 
the curly braces of set notation are read as a boundary notation. 

One can go much further. Angell (1960) showed how to notate denial, conjunction, quantified vari-
ables, and set membership using only parentheses. Angell’s notation requires setting A1 and A2 
aside. Angell codes the first quantified variable as ‘()’, the second as ‘()()’, and so on. Letting φ and 
ϕ be metalogical notation for formulae, the truth functional part of Angell’s notation is (φ) ⇔ ~φ 
and (ϕφ) ⇔ φ∧ϕ. The outer parentheses of (ϕφ) are needed only because of peculiarities of An-
gell’s notation for quantification and set membership, not described here. Because his notation 
allows for membership, Angell unwittingly showed that PA syntax suffices for set theory. Angell 
supplied no axioms or proof theory, as he only wanted to show that his notation was capable of ex-
pressing the system of Quine (1951), whose primitives were the Sheffer stroke, universal quantifi-
cation, and set membership. 
 

 

2.3. PA: Canons and (Meta)theorems. 

“The more important structures of command are sometimes called canons. They are the ways in 

which the guiding injunctions appear to group themselves in constellations, and are thus by no 

means independent of each other. A canon bears the distinction of being outside (i.e., describing) 

the system under construction, but a command to construct (e.g., ‘draw a distinction’), even though 

it may be of central importance, is not a canon. A canon is an order, or set of orders, to permit or 

allow, but not to construct or create.”                 LoF, p. 80. 

 “…the primary form of mathematical communication is not description but injunction… Music is a 

similar art form, the composer does not even attempt to describe the set of sounds he has in mind, 

much less the set of feelings occasioned through them, but writes down a set of commands which, if 

they are obeyed by the performer, can result in a reproduction, to the listener, of the composer’s 

original experience.”                   LoF, p. 77. 
 
The Six Canons. 

LoF includes nine canons, which Spencer-Brown intended to serve mainly as injunctions, i.e., 
directives (see quote above). The PA canons and theorems establish protocols for altering, and rea-
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soning about, PA formulae. They are about the primary arithmetic, hence metamathematical. The 
PA is too elementary for logical/mathematical proof as conventionally understood to apply to its 
formulae. In a sense, the canons and theorems stand in for the absent PA proof theory. 

As best as I can determine, the mathematical and philosophical literatures include no counterpart to 
LoF’s concept of canon. I list below the PA canons in the order in which they appear in LoF, re-
ferring to them by the names LoF gives them. In what follows, I have taken the liberty of replacing 
the LoF term “expression” by the term “formula.” Letting X be some word or phrase, any sentence 
below of the form “X is undefined” (or words to that effect) is shorthand for “LoF does not define X 
with the precision that generally characterizes mathematics, mathematical logic in particular.” 

Convention of Intention 

What is not allowed is forbidden. 

Remark: I trust that no reader has so misunderstood my purpose as to take this Convention as a 
political or ethical assertion. 

Contraction of Reference 

Let injunctions be contracted to any degree in which they can still be followed. 

Remark: “Injunction”, “contract”, and “degree” are not defined. LoF (p. 8) states that this canon is 
shorthand for the following list of instructions: 
1. Write ‘()’ in some space. 
2. Mark ‘()’ with a name, eg, a. 
3. Let a be the name of ‘()’. 
4. Let the name a indicate ‘()’. 

Expansion of Reference 

Let any form of reference be divisible without limit. 
Remark: I take “form of reference” to mean “space or subspace” in the sense of 2.1.6, and “divisible 
without limit” to mean that divisions of a subspace in the sense of 2.1.7 can be created at will, using 
A1. More generally, this canon permits expanding a formula, with each step justified by A1 or A2. 
 

Convention of Substitution 

In any formula, any subformula can be replaced by an equivalent subformula. 

Remark: This canon is: 
• An important example of what is meant by a “step”; 
• The first LoF canon or theorem to mention “equivalent,” a term LoF does not discuss until 13 

pages later. I shall revisit “equivalent” below when discussing T5-T7 and 2.3.8. 
LoF wrote “arrangement” and “changed” where I write “subformula” and “replaced,” respectively. 
 
LoF distils the sense of 2.2.1–3 into the following canon: 

Hypothesis of Simplification 

Suppose the value of a formula, |α|, to be its simplification. 

Remark. Thus LoF defines “simplification.” 
 

Rule of Dominance 

If a formula α shows a dominant value, then |α|=(). Otherwise, |α|=⊥. 

Remark: This canon introduces “dominant value,” which is nowhere defined. 
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The canons would seem to be assertions of the sort requiring proof; in fact, they are informally 
motivated at best.12 The canons sometimes serve as definitions; e.g., the Hypothesis of Simplifica-
tion and the Rule of Dominance effectively define the value of a formula. Curiously, for a work of 
logic/mathematics, LoF contains only one sentence preceded by the word “definition”. That sen-
tence, the third one in the body of LoF, simply reads: Distinction is perfect continence. What this 
sentence purports to define is less than obvious. §3.1 presents three more canons, bearing on the pri-
mary algebra. 
 

 

The Seven Meta-Theorems of the PA. 

2.3.1. Definition.  A theorem is metalinguistic statement asserted true because it is the last of an 
ordered finite sequence of metalinguistic statements known as an informal proof. 
 
All theorems about the PA are proved informally in the metalanguage, the academic dialect of 
contemporary written English, using devices that tacitly draw on the reader’s previous mathematical 
experience. (Those lacking such experience will find LoF and PA challenging.) An informal proof 
may draw on concepts that, strictly speaking, are not defined or proved within PA as of the point at 
which they are invoked. In particular, an informal proof relies strongly on natural language, and 
may invoke informal reasoning and mathematical concepts that are not part of PA. “Informal proof” 
is in contrast to “formal proof,” defined in the Precis. 

Following LoF, I number PA theorems consecutively, with the mth theorem denoted Tm. The 
proofs are freely adapted from LoF. 
 

Establishing Consistency. 

2.3.2 (T1).  Any string composed of finite instances of ‘(‘ and ‘)’, and satisfying the formation rule 
2.1.2, is a formula. 

Remarks. 
1. A formula must be finite in order for the algorithm 2.1.4 to terminate. 
2. I state T1 only out of loyalty to LoF; the formula formation rule 2.1.2 renders it unnecess-

ary. T1 in LoF (p. 12) says that, starting from ‘()’, “any conceivable arrangement” can be 
constructed by repeated application of A1 and A2. This version of T1 sounds trivial 
because it is predicated on LoF’s ‘ ’ notation, in which all possible strings are formulae. 
LoF does not articulate the operational meaning of “conceivable.” LoF (p. 22-24) unac-
countably invokes T1 in the proofs of J1 and J2, to justify asserting that a pa variable can 
only take on the values ‘()’ and ‘⊥’. 

 

2.3.3 (T2).  If any space pervades the formula ‘()’, the value indicated in the space is the marked 
state. Notation: ()α=(). 

Proof. If |α|=(), then ()α is ()(), which simplifies to () by A1. If |α|=⊥, then ()α simplifies to 
() by A2.             

 Remark. T2 is the PA version of the primary algebra consequence C2 (§3.1). LoF makes 
frequent use of T2, which arguably defines the “marked state.” 

 

 

                                                           
12. LoF (pp. 40-41) calls T14 and T15 ‘canons,’ thereby sowing terminological confusion. 
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2.3.4 (T3).  The simplification of a formula is unique. 

 Proof. Review the algorithm 2.2.3. This algorithm systematically reduces a formula, starting 
from its greatest depth. Each step has only two possible outcomes: ()α or (()). By T2, ()α 
reduces to (); by A2, (()) can be erased. Given each outcome, the next step is unambiguous. 
Hence there is only one possible simplification.        

 Remarks. Let A be the set of all possible PA formulae. Simplification can be represented by 
the mapping f: A → B⊂A. T3 implies that f is a homomorphism (Halmos and Givant 1998: 
§27) and an isotone function (Rudeanu 1974: §11.3), whose fixed points are ‘()’ and ‘⊥’. 

2.3.5 (T4).  The value of a formula constructed by taking steps starting from a primitive value is 
that same primitive value. 

Proof. Let α be a formula constructed by taking steps starting with the primitive value x. 
The steps can be retraced back to x, so that x is a possible simplification of α. By T3, all 
possible simplifications of α must yield x, hence x is also the simplification of α. Hence we 
can write |α|=x.            

Remark. T3 [T4] says that the value of a PA formula is invariant under simplification 
[complication]. T3 and T4 together imply that every PA formula has a unique value. Hence 
the PA is consistent (the preferred term nowadays is sound) and LoF refers to T1-T4 as the 
“theorems of consistency.” 

 

Procedural Theorems 

2.3.6 (T5).  Identical formulae express the same value. Notation: α=α. 

Proof. Use 2.2.3 to simplify the formula α to some member of B; call that member x. By T3, 
x exists and is unique. Hence α is equivalent to x, so that we write α=x. Beginning with x, 
we reverse each step in the simplification of α, recreating α. By T4, the value of this 
recreated α will also be x, so that we can write α=α.        

 Remark. The verb “express” in T5 is undefined. 

2.3.7 (T6).  Formulae having the same value can be equated. Notation: Let x∈B. If α=x and β=x, 
then α=β. 

Proof. Identical to the proof of T5, except that we proceed by steps from x to β rather than 
α, by reversing the simplification of β.         

Remark. T6 in effect means “if |α|=|β|, then α=β.” 
 
T7 requires some preliminary definitions. 
 
2.3.8. Definition (Wolf 1998: §§6.1-2; Stoll 1974: §1.7).  Let A be a set. A binary relation R is a 
subset of A×A, the Cartesian square of A. A is the field of R. Hence R is a set whose members are 
all ordered pairs. The notation xRy denotes that the ordered pair (x,y) is a member of R. R is Euclidi-

an iff (aRc ∧ bRc) → (aRb). R is an equivalence relation iff ∀a,b,c∈A, (aRa)∈R (R is reflexive), 
aRb ↔ bRa (symmetric), and (aRb ∧ bRc) → aRc (transitive). If R is an equivalence relation whose 
field is A, an equivalence class is a set A*⊂A, such that ∀x,y∈A*, xRy comes out true.13 

                                                           
13. A slightly more general definition of relation goes as follows. If A,B are sets, a binary relation is a subset 

of A×B and its field (or carrier set) is A∪B. The term Euclidian honors the first of Euclid’s “common no-
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2.3.9 (T7).  Formulae equivalent to the same formula are equivalent to one another. More formally, 
if α=ν and β=ν, then α=β. 

 Proof. Let |ν|=e. Then |α|=e and |β|=e, by hypothesis. Now simplify α to e, then retrace the 
simplification of β, starting from e and ending with β. Since by T3 and T4, no allowed step 
alters value, |α|=|β|, so that α=β.          

Remark. T7 is T6 with ν replacing x. T7 can be recast as “the relation of logical equivalence 
is Euclidian.” LoF invokes T7 repeatedly, but invokes T5 and T6 only to prove the pa 
initials J1 and J2. 

 
I now invoke a result from the logic of relations.  
 
2.3.10. Theorem. R is an equivalence relation iff R is reflexive and Euclidian. 

Proof. Even though the proof is neither long nor difficult, I relegate it to §A.2 as it employs features 
of BA not yet explained in this book. 
 
Let A in 2.3.8 be the set of all possible PA formulae, and let R be logical equivalence, ‘=’. Then ‘=’ 
is reflexive (by T5) and Euclidian (by T7). Hence by 2.3.10, ‘=’ is an equivalence relation. T3 says 
that logical equivalence partitions A into two equivalence classes, each corresponding to an element 
of B. Hence T3 is but an instance of the very well-known result that an equivalence relation parti-

tions its field into equivalence classes (Wolf 1998: Th. 6.6). Let [α] denote the equivalence class of 
which α is a member. T4 can then be restated more formally as: ∀α∈A, there exists a one-to-many 
relation g: B→A, corresponding to expansion, such that [f(g(f(α)))] = [f(α)] = [α]. When one of 
True or False interprets ‘()’, ‘=’ denotes logical equivalence. 

I denote equivalence by ‘⇔’ when one or both formulae linked by ‘⇔’ are not BA formula. The 
sign ‘⇔’ is part of the metalanguage, and two formulae linked by ‘⇔’ form a sequent, a metalingu 
istic term. More generally, ‘⇔’ can be read as denoting a translation from one syntax to another. 
 

2.3.11. Recapitulation. The primary arithmetic (abbreviated PA) is a very elementary formal 
system whose primitive basis (cf. Précis) consists of: 
• The symbols ‘(‘, ‘)’, ‘⊥’, and ‘=’; 
• The operator-operand ‘()’, which can have itself as argument, resulting in the formula (()). The 

defined constant ⊥ is a synonym for (()); 
• ‘()’ and the blank page as primitive values; 
• The definitions of a formula (2.1.2) and the null formula ‘⊥’ (2.1.8), and the algorithms for 

verifying (2.1.4) and simplifying (2.2.3) formulae; 
• Table 2-1, taken as axiomatic; 
• Six procedural “canons”; 
• Equivalence of formulae, an equivalence relation by virtue of T5 and T7, denoted by infix ‘=’. 

Two formulae linked by ‘=’ form an equation. 

By virtue of T1-T4, the PA is sound; its intended interpretation is Boolean arithmetic. 

                                                                                                                                                                                                 
tions” (Eves 1990: 35). Introductory logic texts usually do not mention relations; Carnap (1958: §§29-
38) and Suppes (1957: chpt. 10-11) are exceptions. For a nice exposition of how relations are grounded 
in axiomatic set theory, see Suppes (1960: chpt. 3). 

 



Chapter 3. 

The Primary Algebra (pa): Syntax and Algebra. 
 
“It is… valuable to meditate on algebraic notation; the whole of the formal and symbolic part, hav-

ing gradually broken away and developed immensely, is of great interest.” 
            Paul Valéry, quoted in Le Lionnais (1948: 10).1 

At any point in a PA formula, one can insert a marker that can take on either primitive value. Latin 
letters, termed (sentential) variables, will serve as such markers. The set of possible values a varia-
ble can assume is its domain; the domain of a pa variable is B. Thus the primary algebra (hereinaf-
ter abbreviated pa, by analogy with the abbreviation PA for the primary arithmetic) is born. Like 
the PA, the pa consists of formulae and equations, and includes canons, rules, and theorems. We 
begin by setting out the pa symbols: 
 
3.0.1. Definition. The notation of the pa consists of proper and improper symbols. The proper 
symbols are: 
• The PA proper symbols  ‘(‘, ‘)’; 
• Lower case Latin letters, ‘a’, ‘b’, etc., often called statement letters or sentential variables. A 

letter may have a positive integer subscript, so that the number of possible variables is denumer-
able. 

The improper symbols are ‘⊥’, the prime ‘′’, and the ellipsis ‘…’ combined with the subscript i 
ranging over some range of the positive integers. Improper symbols are merely convenient notation-
al shorthand. Symbols are concatenated into formulae: 
 

3.0.2. Definition. The recursive definition of a pa formula is identical to 2.1.2, except that the 
atomic formulae include any single Latin letter. 
 
Definitions similar to 3.0.2, e.g., Bostock (1997: 21), are standard in the literature. Synonyms for 
formula include well-formed formula (wff) and schema (Quine 1982: 33). 

Because ‘()’ is an atomic formula, 3.0.2 implies that a PA formula is also a pa formula. The pairing 
rule for parentheses, and the algorithm 2.1.4, both hold in the pa as well as in the PA. A nonobvi-
ous implication of 3.0.2 is that the result of inserting strings of Latin letters anywhere into a PA 
formula is a pa formula. Subformulae, proper and otherwise, are defined by obvious analogy with 
2.1.3. Informally speaking, a subformula is any “part of” a pa formula that is itself a formula. An 
atomic formula has no proper subformulae other than ‘⊥’, which is a proper subformula of all 
formulae other than itself. 

In this book, ‘ =df ’ is part of the metalanguage and serves to define a new notation or concept. Let 
the string x contain an instance of some new symbol, and let the string y contain only familiar sym-
bols. The notation ‘x =df  y’ defines the new symbol by asserting that the strings x and y, however 
they differ in appearance, have the same meaning by definition. Let a, b, and r be pa formulae. I 
now define the improper symbols the prime, ‘′’, the ellipsis ‘…’, and the letter i subscript as fol-
lows: 
 

a′ =df  (a) ai… =df   a1a2…        1 2ia a a′ ′ ′=df… …          (air)… =df  (a1r)(a2r)…   

 

                                                           
1. From a letter to Pierre Honnorat, dated February 1932. The translation is mine. 
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‘a′’ is nothing more than a synonym for ‘(a)’, in which case ‘a’ is said to be primed. Using ‘a′’ in 
place of ‘(a)’ is purely a matter of convenience and aesthetics. The letter i subscript and the ellipse 
always appear in tandem. The improper symbols are not mentioned in 3.0.2, and hence play no 
essential role in the syntax of the pa. Foremost among the virtues of the pa is its succinct syntax. 
The notation I propose for BA is more compact than that of LoF and requires only standard typo-
graphic symbols. 

Observant readers will have noticed that thus far, I have enclosed symbols and formulae between 
single quotation marks. I have done so hoping to steer clear of Quine’s bête noire: metadiscourse 
confusing use of a symbol with the mention thereof. Henceforth, I will rely on the following general 
rule, adapted from Conventions (I) and (II) in Suppes (1957: 125-26): all symbols and formulae 

from BA and conventional logic are to be taken as names of themselves. I deferred invoking this 
convenient rule until the syntax of BA was fully set out. 
 

 

3.1.  Consequences, Canons, Theorems. 

 “Algebra is a science of the eye.” Peirce (1.34).2 
 

3.1.1. Definition. T (true) and F (false) are the possible truth values. A statement is an object 
language formula, or piece of metalinguistic discourse, that can be assigned a truth value. 

Remark. An individual sentential variable is a trivial statement. The last paragraph of §4.0 
operationalises the assignment of truth values to pa statements. 
 
3.1.2. Definition. An n-ary truth functor [or simply functor when ‘truth’ can be omitted without 
ambiguity] is a symbol combining n statements into a single statement (Bostock 1997: §2.2; Quine 
1982: §§20, 45). A connective [operator] is a truth functor such that n≥2 [1]. Constants such as () 
and ⊥ are 0-ary (or ‘medadic’) functors by convention.3 

 
Truth functors, such as ~, →, ∧, ∨, and ↔, make up the core of the CTV. BA consists of one unary 
functor, enclosure by parentheses, and one binary functor, juxtaposition. Table 4-2 gives BA 
translations of the usual CTV truth functors. 
 
3.1.3. Definition. Given some formula in which n sentential variables appear, an atomic valuation 
assigns a member of B to each of the n variables. 
 
The PA definition of equation, 2.2.4, carries over to the pa, mutatis mutandis. 
 
3.1.4. Definition. If α evaluates to () or ⊥ for a given atomic valuation, that valuation satisfies α, 
and α is satisfiable. If all 2n possible atomic valuations satisfy α in the same way, then α and the 
equation α=() [or α=⊥] are both tautologies. If α↔β is a tautology, α and β are tautologically 

equivalent so that we may write α=β. 

                                                           
2. Sylvester wrote “mathematics” not “algebra” (Ewald 1996: 515), but Peirce’s misquotation is perhaps 

more apt. 

3. “A functor is a sign that attaches to one or more expressions of a given grammatical kind or kinds, to 
produce an expression of a given grammatical kind. [A functor] is grammatical in import but logical in 
habitat…” (Quine 1982: 129). ‘Statement’ is the only grammatical kind that concerns us here. Carnap 
(1958: §18) employs ‘functor’ in a sense not used in this book, namely to denote what others call a “first 
order logic operator.” 
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The definition of tautology in 3.1.4 differs from the standard one, which defines a tautology as a 
formula evaluating to T for all possible atomic valuations. α=β says nothing about the truth value of 
α or β taken in isolation. It does say that, given any atomic valuation, α and β have the same value. 
Translating ‘=’ as ‘↔’ assumes that the biconditional can be seen as an equivalence relation. This is 
indeed the case; see §A.5. On occasion, I will refer to an equation as a tautology, but strictly speak-
ing, this is an abus de language. 

The preceding can be put a bit more formally. Let ℵ be the set of possible PA formulae, and let f be 
the simplification function defined in 2.2.3. T3 and T4 assure us that f maps every member of ℵ 
uniquely onto one of () or ⊥. We can then say the following about f: 
• The image of ℵ under f is B; 
• f is order preserving; 
• f partitions ℵ into two equivalence classes. 
The pa is a bit more complicated. Let A be the set of possible pa formulae. Letting the domain of f 
be A, f then partitions A into two non-empty subsets. The subset of A whose image under f is () or ⊥ 
consists of tautologies; the complement of that subset consists of the satisfiable formulae. 

I now turn to proof and related notions, beginning with the following definitions. 
 
3.1.5. Definition. A consequence is a tautological equivalence. An initial is a consequence proved 
via a decision procedure; hence an initial is a PA theorem. An identity is either an initial or a 
consequence. A demonstration formally verifies (“proves”) a consequence. 
 
A decision procedure can verify any consequence. My variant of the LoF decision procedure is 
exposited in §5.1 and named truth value analysis (TVA). An initial is not an axiom, but can be in-
voked just like an axiom or consequence. Again, A1 and A2 in §2.2 are the only pa axioms. In con-
formity with standard mathematical practice, a demonstration consists of a sequence of steps, each 
relying on one or more BA axioms and theorems (especially the initials), canons, the rules of 
substitution/replacement (3.1.7-8), and consequences already proved. 

Each step in a demonstration is justified by an annotation, enclosed in square brackets and 
formatted as follows: 

 α [annotation] = β [annotation for next step] = ... 

If a step requires more than one consequence, these and the substitutions they may require are listed 
sequentially, separated by semicolons. If a step includes a rearrangement of subformulae, ‘TR’ an-
notates that fact. If symbols appearing in α are absent from β, I indicate that fact by underlining the 
relevant parts of α. If β contains subformulae absent from α, the additions to α are shown in bold. 
When a subformula in α is moved or copied to a greater or lesser depth in β, the part of β that is 
freshly moved or copied is also printed in bold. For more re demonstration, see §5.0 and the Precis. 

LoF numbers its initials, consequences, and theorems consecutively, with a letter (J for initials, C 
for consequences, T for theorems) followed by an integer. I do likewise in order to facilitate cross-
references to LoF.4 The LoF initials are: 
 
3.1.6. J1. (a′a) = ⊥  J2. ((ar)(br)) = (a′b′)r 
 
The verification of J1 and J2 proceeds as follows: 
                                                           
4. LoF, Bricken, and Kauffman, following the example of PM (p. xii), give Latinate names to the pa identi-

ties. I decline to follow their example, as the names they propose are not mnemonic. 
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3.1.7. Theorem. J1 and J2 are tautological equivalences. 

Proof: 
J1: Let a=(). Then the lhs of J1 is ((())()) [A2] = (()) [A2] = ⊥. Now let a=⊥, so that the lhs of J1 
becomes ((⊥)⊥) [A2] = (()) [A2] = ⊥. By T1, () and ⊥ are the only possible values of a. Hence J1 
always holds. 

J2: By T2, α()=() for any formula α. Begin by setting r=(), in which case the lhs of J2 evaluates to 
((a())(b())) [T2,2x] = ((())(())) [A2,2x] = (). The rhs evaluates to (a′b′)() [T2] = (). If r=⊥, then 
simply erase r from J2. Both sides of J2 then amount to the same thing, namely (a′b′), for all 
possible values of a and b. By T1, () and ⊥ are the only possible values of r. Hence J2 always holds.
               

Remark. The proof of J1 is trivial. That of J2 is, in all essentials, a trivial instance of the method of 
truth value analysis explained in §5.1. An immediate consequence of J1 is that the formula (α′α), α 
being any subformula, can be inserted at will anywhere. The repeated application of J1 allows the 
maximum depth of a formula to be increased at will, without affecting its value under any atomic 
valuation. 
 
The BA initials used in this book will not be J1 and J2, but B1-B4. I defer discussion of B1 to §3.2. 
B2 is ⊥a = a, an algebraic equivalent of A2. B3 is a′a = (). Taking the complement of both sides of 
B3 yields J1. B3 is a trivial variant of J1 and, when combined with B2, is a bit more natural than J1. 
Finally, B4 is (ba)a = b′a. B4 is C2 in LoF, and will be called C2 when I wish to refer to the LoF 
consequence of that name. §A.1 includes demonstrations of B2 and B3 from LoF identities. B2-B4 
make easy most demonstrations needed in this book. 
 

Table 3-1. The Identities Invoked Here and in LoF. 

BA LoF  How employed in LoF or in this book. 
   
B1 ---  abc = bca Juxtaposition commutes & associates. 

  Tacit in LoF. 
B2 J1 ⊥a = a Trivial consequence of J1. 
B3 --- a′a = () Complement of J1. 
B4 C2 (ba)a = b′a B2-B4 are the essence of calculation (5.0.1).
C1 C5 aa = a Algebraic form of A1. Helps prove T13. 
C2 C3 ()a = () Algebraic form of T2. 
C3 C1 ((a)) =df  (a′) = a Invoked in many demonstrations. 

C4 C4 (a′b)a = a The absorption law of lattice theory follows 
 trivially. Also helps demonstrate C5 in LoF.

C5 J2 ((ar)(br)) = (a′b′)r Distributive law; defining Ba property. 
C6 C6 (a′b′)(a′b) = a Helps demonstrate C8. 
C7 C7 ((a′b)c) = (ac)(b′c) Helps prove T14; crucial for normal form. 
--- C8 (a′r′)(b′r′) = ((ab)r′) Syntactic dual of J2. Invoked in the LoF 

 demonstration of C9 and the proof of T15.  
C8 C9 ((a′r′)(b′r)) = (ar′)(br) Helps prove T17. 

 

LoF invokes the nine consequences C1-C9; this book requires one less, C1-C8. But Cn here and in 
LoF usually do not refer to the same consequence; see Table 3-1. Moreover, C8 in LoF is the dual 
of J2 (cf. §4.1) and by 4.1.4, the dual of an identity requires no demonstration. Moreover, C8 also 
finds no application in this book. Table 3-1 restates C1-C9 from LoF in the notation of this book, 



 
 

20 BOUNDARY ALGEBRA

along with a very brief indication of how they prove useful in LoF and here. The purpose of C7 in 
this book will become clearer in §4.4. C8 here is simpler than its LoF equivalent, because the sim-
pler form suffices to prove T17, the only use I (and LoF) have for C8. For CTV interpretations of 
B1-C8, see Table 4-3. 
 
pa: Canons. 
The pa features three canons in addition to the PA canons described in §2.3. As before, I deviate 
from the LoF wording of the pa canons in an attempt to reduce their Zennish ambiguity and 
enhance their perspicuity. 
 
Principle of relevance 

If a property is common to every indication, it need not be indicated. 

Remark. Could this be reworded as: “That which characterizes everything distinguishes nothing”? 

Principle of transmission 

Let α be a sub-formula of the formula β, and let a be a variable appearing in α. Let the depth, rela-
tive to β, of α [a] be dβ(α) [dβ(α)+1]. When the value of a changes, the value of α either changes 
or does not change. If it changes, the pervasive subspace of α is said to be transparent relative to a. 
Otherwise, the pervasive subspace is opaque. 

Remark. The wording of this Principle differs from that in LoF, if only by employing “sub-formula” 
and “depth.” This canon is also closely linked to T16. 

Rule of demonstration 

A demonstation rests in a finite number of steps. 

Remark. Why did LoF say “rests in” rather than “consists of”? On “demonstration” and “steps,” 
consult §5.0 and the Précis. Chapter 11 of LoF shows how formulae with infinite depth may violate 
T1-T4. I do not elaborate on this, nor do I explore formulae with infinitely many symbols but finite 
depth, as I wish to steer clear of all infinities and Cantorian paradoxes. 
 
pa: Substitution 

“…there is [no] need for any other kind of proof than one which depends on the substitution of 

equivalents.”            Leibniz.5 

An equational formal system is one whose axioms and consequences consist of pairs of formulae 
linked by equality, denoted by ‘=’. The inference rules for an equational system are the substitutivi-

ty of equivalents, R1 below, and the uniform replacement of subformulae by subformulae, R2 
below. LoF (p. 26) states that “[R1 and R2] are commonly accepted as implicit in the use of the sign 
‘=’.” Hence BA is equational, as is nearly all of mathematics, with conventional numerical algebra 
being paradigmatically so. The vast majority of extant formal logics, on the other hand, are ponen-

tial, so-called because their fundamental inference rule is modus ponens (cf. §5.3).6 R1 and R2 are 
                                                           
5. Letter to Placcius dated 16.11.1687, translated and quoted in Ishiguro (1990: 17). 

6. Equational logic has a following among contemporary computer scientists; see Gries and Schneider 
(1994) and Tourlakis (1998). The equational-ponential dichotomy builds on Curry’s (1963: §2.D.1) 
relational-assertional dichotomy. A relational system consists of formulae linked by some dyadic rela-
tion; if that relation is an equivalence relation, the system is equational in the sense of Curry. Curry con-
trasted relational to assertional, by which he meant a system characterized by formulae prefixed by the 
syntactic turnstile, the defining characteristic, in his view, of conventional logic. Other advocates of equa-
tional methods include Meredith and Prior (1968) and Tarski and Givant (1987). 
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3.1.7 and 3.18 below. In the interest of clarity, I restate these rules in a manner that deviates some-
what from LoF. As always, Greek letters are a metalogical device. 
 
3.1.7. R1, Substitution. Let α〈ε〉 denote that the sub-formula ε appears at least once in the formula 

α. Let φ be a formula such that φ=ε. Let α〈φ//ε〉 be the formula formed by substituting φ for 
any (possibly 0) instance of ε in α. Then φ=ε → α〈ε〉 = α〈φ//ε〉. 

Proof (adapted from Mendelson 1997: Prop. 1.4). The contribution of a subformula ε to the truth 
value of any formula α containing ε is fully determined by the truth value of ε. Hence the truth 
value of α is not affected by replacing ε by φ, whose truth value, by assumption, is identical to that 
of ε.               

Remark. α need not be a tautology but if it is, α〈φ//ε〉 is also a tautology. LoF (p. 26) does not 
prove R1, instead justifying it as an algebraic version of the PA Convention of Substitution, and as 
an “inference from” T1-T4. Because R1 is essentially Leibniz’s “identity of indiscernables,” R1 and 
the reflexivity of ‘=’ suffice to show that ‘=’ is an equivalence relation (Kneebone 1963: §4.1).  
Some authors refer to R1 as the “substitutivity of the biconditional or of equivalents.” R1 also an-
swers to the familiar “substitution of equals for equals” of numerical algebra.7 
 

3.1.8. R2, Replacement. Let α〈v〉 be a tautology. Let α〈ω/v〉 be the formula formed by replacing 
every instance of v in α〈v〉 by the formula ω (v and ω are not necessarily equivalent). Then 
α〈v〉=α〈ω/v〉. 

Proof (adapted from Mendelson 1997: Prop. 1.3). By definition, the value of a tautology is not 
affected by the value of any (or all) of its statement letters. Hence any statement letter v can be re-
placed by some formula ω (with a value under any interpretation) without affecting the value of α, 
as long as this replacement applies to every instance of v. Hence R2 follows from α〈v〉 being a tau-
tology.               

Remark. The result of applying R2 to an indentity is an instance (more pedantically, substitution in-

stance) of that identity, making possible the following concise rewording of R2: “a tautology yields 
tautologous instances.” With R2 in hand, all pa identities can be taken as schemata; that is, all let-
ters in such identities are taken as schematic variables. Most formal systems dispense with R2 by 
simply taking the axioms and theorems as schemata from the outset. Some authors refer to Replace-
ment as (variable) ”Substitution.”8 
 
R1 and R2 warrant close scrutiny in light of the careful treatment of Substitution by other authors. 
The reader should also ponder why R1 says “any” while R2 says “every”. LoF explicitly invokes 

                                                           
7. R1 is nearly the “Leibniz” inference rule of Gries and Schneider (1994) and Tourlakis (1998). R1 also 

follows from ‘=’ being a congruence relation (Stoll 1963: 260). For other proofs of R1, see Quine (1982: 
64), Mendelson (1997: Prop. 1.4), and Cori and Lascar (2000: Th. 1.24). After devising the ‘//’ notation, I 
encountered it in Simons (1987: 49). Quine (1982: 63f) refers to Substitution as “interchange,” for which 
he proposes three laws, which I condense to two: (1) R1 holds if ‘↔’ replaces ‘=’, and (2) R1 preserves 
(in)equivalence, (un)satisfiability, (non)validity, and (non)implication. On ‘↔’ and ‘=’, see §2, fn. 10. A 
version of R1 is crucial to the system of Cole (1968). 

8. LoF does not prove R2, instead asserting (p. 26): “R2 derives from the fact, proved with J1 and J2, that we 
can find formulae, [equivalent yet not identical,] which, considered arithmetically, are not wholly re-
vealed.” For other discussions of Replacement, see Prior (1962: 24-25), Quine (1982: 44), Gries and 
Schneider (1994: Substitution rule), Bostock (1997: §2.5.D), Halmos and Givant (1998: §§13, 36), Wolf 
(1998: 86-7), and Cori and Lascar (2000: Cor. 1.23). Replacement is also a commonplace of ponential 
logic, because it preserves satisfiability and implication (Carnap 1958: T7-1). 
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R1 and R2 only in its “pedantic” demonstration of C1 and the worked examples on pp. 44-47. In 
this book, almost all use of R1 and R2 goes unremarked. But regardless of whether R1 and R2 are 
invoked tacitly or explicitly, the pa would be useless without them. 
 

Some pa Theorems. 

All PA theorems carry over to the pa; thus the pa inherits soundness and the notion of tautological 
equivalence from the PA. An additional 11 theorems, T8 through T18, bear on the pa only. I defer 
discussion of T14-T18 to §4.4. T8 and T9 merely restate J1 and J2. T10-T13 generalize certain con-
sequences: 

3.1.9. (T10). C5 generalizes to ((air)…) = ( ia′ …)r. 

T10 is needed only to prove T15. T11 and T12 are straightforward generalizations of LoF’s C8 and 
C9 that have no application in this book and so are omitted. 

3.1.10 (T13). Let φ〈ε〉 be a formula containing one or more instances of the subformula ε, and let φ 
stand for φ〈ε〉 with all instances of ε erased. Then ε(φ〈ε〉)=ε(φ). 

Informal Proof.  Let the deepest instance of ε lie in depth k. Invoke B4 k-1x to create a copy 
of ε in each subspace of depth 1,…,k-1. One more instance of B4 then eliminates the in-
stance of ε at depth k. Invoke to C1 to erase any multiple instances of ε at each of depths 1, 
…,k-1. Then invoke B4 k-1 times to undo the process described in the second sentence of 
this paragraph. Doing so erases all instances of ε in φ〈ε〉.       

Remarks. 
1. T13 nicely generalizes B4 and is an example of a theorem schema. A formal proof of T13 

would require induction on formula depth. The exact form of 3.1.10 is due to Bricken (2002), 
who named it Pervasion. 

2. Viewing a formula as an ordered tree, any two instances of any subformula can be seen as con-
nected by a path. A path is monotone if all parentheses crossed along the path are of one type, 
left or right. Repeated application of B4 allows ε to be copied into, or erased from, any subspace 
of φ whose depth exceeds that of ε, as long as a monotone path connects ε and its copy. 

 

 

3.2.  Order Irrelevance, Tacit and Explicit. 

“…commutation…may be dispensed with by not recognizing any order of arrangement as signific-

ant. Associative transformations…will be dispensed with in the same way…”    Peirce (4.374, 1902). 
 

We may think of a and b in the pa formula ab as linked by a tacit connective called juxtaposition, 
even though no explicit symbol separates a from b. Because this connective has been merely tacit 
thus far, I have said nothing about it. In particular, I have not assumed it commutative or associa-
tive, or restricted its scope to the binary. Nor have I assumed that the order or grouping of variables 
within a pa formula affects its value. I now show how the properties of the PA imply that variable 
order and binary scope are indeed irrelevant for juxtaposition. Let α, β, and γ be arbitrary pa formu-
lae. Then: 

• αβ commutes. This is a trivial implication of Table 2-1a. I became aware of the need for a 
broader axiomatic treatment of ⊥ when attempting to justify why juxtaposition commutes. More 
generally, all objects within a given subspace can be reordered at will. Hence a formula can be 
rearranged so that any multiple instances of a subformula in a given subspace can be juxta-
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posed. By virtue of C1, these multiple instances reduce to a single one. Hence a BA formula 
behaves not only like a list, as in Chapter 2, but also like a set.9 

• αβγ associates. () and ⊥ are the possible values that α, β, and γ can each take on. (By T3 and 
T4, α, β, and γ can each stand for any formulae whatsoever.) Then the value of αβγ is the value 
of a PA formula that is some concatenation of () and ⊥. According to Table 2-1a or T2, this 
concatenation simplifies to () if at least one of α, β, and γ has value (); otherwise, it simplifies to 
⊥. Now T3 assures us that the simplification of any pa formula is unique. Hence the simplifica-
tion of αβγ cannot depend in any way on the order in which α, β, and γ are paired. Thanks to 
associativity, BA has no need for bracketing, and brackets are free for another use. 

From the preceding, I conclude that the variables and sub-formulae that make up any formula may 
be reordered at will. LoF fully acknowledges this useful and important fact, but does not sufficient-
ly highlight it. Juxtaposition indeed commutes and associates, but this fact should not be seen as a 
fundamental mathematical property. Rather, it merely offsets a metalinguistic typographic conven-
tion. The upshot, perhaps, is that I am merely restating in a bit of algebraic dress what I asserted 
about the BA at the beginning of Chapter 2. 

If a binary algebraic operation commutes and/or associates, it is conventional to either postulate that 
fact, or to derive it from other postulates. §A.1.1 derives the commutativity and associativity of jux-
taposition in two ways: 
• The postulates ab.c=ac.b, B2, and B3. Dilworth (1938) was the first to propose ab.c=ac.b; 
• The postulate ab.c=bc.a and C1. This approach is due to Byrne (1946: IIB). 
Because ab.c=bc.a is easily derived from ab.c=ac.b (and vice versa; see §A.1.1), they both have the 
same name, B1. 

Using parentheses to denote an algebraic operation would appear to have two drawbacks. First, par-
entheses are already widely employed in mathematics, e.g., to denote ordered pairs and open inter-
vals. Second, parentheses now cannot serve as brackets, i.e., as devices for resolving ambiguity in 
formulae or for overriding operator precedence. But the discussion in this chapter shows that the pa 
requires neither parentheses for grouping nor the notion of operator precedence.10 Hence the pa is 
free of all ambiguity arising from infix notation, an ambiguity from which the conventional notation 
for logic and Boolean algebra both suffer. Specifically, the notations (x,y), denoting the ordered pair 
consisting of x and y, and (x,y)={t|x<t<y}, denoting an open interval, are unambiguous because the 
comma plays no role in BA. More generally, expressions that mix the pa and conventional mathe-
matical or logical notation (and I do not wish to rule out such expressions) should not give rise to 
ambiguity. 

That ‘()’ appears to have a two-sided “exterior” is a drawback of my preferred notation. A geomet-
ric analogy may clarify this. Fold a circle upon itself along any diameter. The two resulting half cir-
cles will coincide, meaning that a circle is symmetric about any line going through its diameter. 
Now carry out this same exercise on ‘()’. Although ‘()’ is not a regular polygon, it definitely has a 
geometric centre. But the only lines through that centre that preserve folding symmetry are the two 
lines parallel to the Cartesian axes. 

                                                           
9. Peirce’s (4.372-584, 1902) logical graphs, discussed in section 6 below, clearly illustrate the irrelevance of 

order and grouping for the CTV. The first formal treatment of logic, Frege (1879), also employed a two 
dimensional notation. 

10. Polish notation dispenses with brackets by a prefix notation for the truth functors. Is the persistence of 
infix notation a manifestation of path dependence? 
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Moral: A boundary can be thought of as a circle, because a circle appears the same from all angles. 
I intend “circle” as a metaphor, to suggest that a formula mixing statement variables and boundaries 
commutes and associates. The sign ‘()’, not being symmetric from all perspectives, regrettably does 
not highlight this key property of boundaries. 
 

 

3.3.  The Lattice Road from Antisymmetry to BA. 

“When logically analyzed, order turns out to be… inconceivable and incomprehensible to us unless 

we had the idea… expressed by the term ‘negation’. Thus it is that negation, which is always also 

something intensely positive, not only aids us in giving order to life, and in finding order in the 

world, but logically determines the very essence of order.“             Royce (1917: 540) 
 
I now modify the definition of an equivalence relation (2.3.8) in a crucial way. 
 

3.3.1. Definition. Let A be a set with typical members a and b. Let an infix ‘=’ denote an equiv-
alence relation whose field is a superset of A and whose intended reading is ‘equality.’ Let aRb 
denote a reflexive and transitive binary relation whose field is A. If (aRb ∧ bRa) → a=b, the relation 
R has the anti-symmetric property and is a partial ordering. In this case, R is distinct from = and we 
write a≤b. R is said to partially order A, and A is a partially ordered set (poset). 
 
Equivalence relations and partial orderings are both reflexive and transitive, and recur in mathema-
tical logic and foundational mathematics. (The only relation in common use that is neither reflexive 
nor transitive is set membership itself.) Equivalence relations are also symmetric, but a partial 
ordering is anti-symmetric, meaning that symmetry holds only for those members of A that are also 
members of some equivalence class under equality, ‘=’. Anti-symmetry does not require that a≤b be 
defined for all ordered pairs (a,b). If one or both of a≤b or b≤a is the case, then a and b are compar-

able. If any two members of A are comparable, then A is linear or totally ordered. Partial order is of 
interest because of the following theorem: 
 

3.3.2. Theorem. B is partially ordered in two ways. 

Proof. Case 1. Let (a)b ⇔ a≤b and true ⇔ (). Then ⊥≤() ⇔ (⊥)() [A2] = ()() [A1] = (). 
            Case 2. Let (a(b)) ⇔ a≤b and true ⇔ (()). Then ()≤⊥ ⇔ (()(⊥)) [A2] = (()()) [A1] = (()).   
 
That A1 and A2 assure that B is a partially ordered set grounds much of the mathematical substance 
of BA/Ba. That B can be ordered in two ways grounds duality, a topic I revisit in §4.1. Posets have 
a rich mathematical structure, beginning with the next three definitions. 
 
3.3.3. Definition (Machover 1996: 4.2.23). Let ≤ partially order the set A, and let B⊆A. If ∀x[x∈B 
∧ x≤a] holds for some a∈A, then a is an upper bound of B. If b is an upper bound of B such that 
b≤a, where a is any upper bound of B, then b is the least upper bound (l.u.b.) of B. Replacing ‘≤’ in 
the preceding three sentences by ‘≥’ requires changing upper to lower and least to greatest (g.l.b.). 
 
The algebraic structure arising from partial order and least/greatest upper bound is that of lattice. 
Lattice syntax is near-trivial. Let Latin letters denote atomic formulae ranging over some poset L, 
and let α and β be arbitrary lattice formulae. Then 'αβ', the concatenation of α and β, and '[α]', the 
dual of α, are both lattice formulae. 
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3.3.4a. Definition (Donnellan 1968: 49). L is a lattice if ab denotes one of the pair (least upper 
bound, greatest lower bound) of a and b, and [ab] denotes the other member of the pair. 
 
A matched pair of ‘[‘ and ‘]’ simply toggles between l.u.b and g.l.b. Lattices also have the follow-
ing algebraic definition: 
 
3.3.4b. Definition. A lattice is a 〈L,⋅⋅,[⋅]〉 algebra of type 〈2,1〉11 such that ∀a,b∈L, the axioms L0, 
B1, and L1a,b in Table 3-2 hold. If ab is the meet of a and b, then [ab] is their join, and vice versa. 
 
While the concepts in 3.3.4 are conventional, the notation and universal algebra bits are not; the 
conventional universal algebra definition of a lattice is a 〈L,∩,∪〉 algebra of type 〈2,2〉.12 For a 
derivation of 3.3.4a from 3.3.4b (conventionally notated) and conversely, see Donnellan (1968: §8). 
 

Table 3-2. Lattice Axioms. 

 Type of lattice Signature Axiom Name 

L0 All 〈⋅⋅,[⋅]〉;  〈2,1〉 ab∈L and [ab]∈L. Closure 

B1 “ “ abc = bca. Order Irrelevance 

L1a “ “ a[ab] = a. Absorption law 

L1b “ “ [a[ab]] = a. “ 

L5 Modular 〈⋅⋅,[⋅]〉;  〈2,1〉 a[b[ac]] = [[ab][ac]] Modular law 

L6 Distributive “     a[bc]  = [[ab][ac]] Distributive law 

L7a Bounded 〈⋅⋅,[⋅],()〉;  〈2,1,0〉 ()a = () Bounds exist 
L7b “ “ [()]a = a “ 

L8 Complemented 〈⋅⋅,[⋅],(⋅),()〉; 〈2,1,1,0〉 (a)a=() Tautology 

L9 BA 〈⋅⋅,(⋅),()〉;  〈2,1,0〉 (a′b′(cd))=[ab[cd]]. (())=[()]  

B4 “ “ a(ab) = a(b) Exclusion 
 
L0 follows from concatenation and dualization being operations defined over L. Hence L0 will not 
be invoked explicitly in this book, and Table 3-2 includes it only for the record. 

From L1a-b we can derive the consequences L2 and L3a,b, analogs of C3 and C1: 
 
L2: [[ab]] = ab. Dem. [[ab]] [L1a] = [[ab][[ab]c]] [L1b] = [ab] [L1a] = [ab[abc]] [L1b] = ab.    

L3a: aa=a. Dem. aa [L1b] = a[a[aa]] [L1a] = a.         
L3b: [aa]=a. Dem: [aa] [L1b] = [a[a[aa]]] [L1b] = a.        
 
§A.1.1 derives the order irrelevance of concatenation from B1 and L3a. L3a,b have the corollary 
[a]=a: Dem. [a] [L3a] = [aa] [L3b] = a. This corollary has an important implication: 
 
L4. a=b ↔ [a] = [b]. 
 

                                                           
11. On the universal algebra notation employed here, see, e.g., Abbott (1969: §2-5) or Burris and Sankappa-

navar (1981). 

12. After having decided on the notation of 3.3.4b, I discovered that Dilworth (1938) denoted the meet of a 
and b by [a,b], and the join by (a,b). Dilworth did not see that (i) his infix commas are unnecessary; (ii) 
there is no need to restrict the scope of brackets to be binary, once meet and join are proved associative; 
and (iii) by (ii) and duality, one type of bracket suffices. 
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L2 and L4, which derive from L1a,b, distill the operational content of the duality pervading lattice 
theory. 
 
3.3.5. Definition. A distributive lattice satifies L6 in addition to L0, B1, and L1a,b. 
 
Any lattice satisfying L5 is a modular lattice. All distributive lattices are modular; the converse 
does not hold. Modular lattices will not concern us any further. 
 
3.3.6. Definition. A bounded lattice has two distinguished elements, () and [()], called bounds, gov-
erned by the axioms L7a,b. 
 
The conventional notation for lattice bounds is ⊥ (least element or bottom) and T (greatest element 
or top). () has two symmetrical intended interpretations. If concatenation is read as meet, ()⇔⊥, 
[()]⇔T, and [()a]⇔Ta. If concatenation is read as join, simply interchange ⊥ and T in the preced-
ing sentence. 
 

Concatenation

read as: () [()] L7a L7b 

Meet ⊥ T Ta=T ⊥a=a 

Join T ⊥ ⊥a=⊥ Ta=a 

 
L7a,b is equivalent to ∀a∈L, either ⊥≤a≤T or T≤a≤⊥. 

Now let enclosure by ‘(‘ and ‘)’ denote complementation, as in the BA, with (a)=a′ denoting the 
complement of a. ⊥,T∈L. We then define: 
 

3.3.7. Definition. A lattice is complemented iff: 
• L is closed under complementation; 
• The axiom L8 holds. 
 
L9 is the bridge from lattices to BA, the “Rosetta stone” linking the syntax of complemented lattices 
to that of BA.  

3.3.8 shows that given L6 and L8, L7 is redundant. 
 
3.3.8. Theorem. A complemented lattice is bounded. 

Dem. ()a [L8] = (a)aa [L3a] = (a)a [L8] = (). 

a(()) [L8] = a(a′a) [C3] = a((a)(a′)) [L7b; L9] = a((a)(a′)(())) [L8] = a((a)(a′)(b′b)) [L9] = 
a[aa′[()]] [L7b] = a[aa′] [L1a] = a.          

Remark. The converse does not hold; a bounded lattice is not necessarily complemented. Because 
this demonstration invokes L8, the result holds only for complemented lattices. This demonstration 
also requires a lattice demonstration of C3, shown in §A.3. 
 
3.3.9. Definition. A Boolean algebra is a complemented and distributive lattice (Donnellan 1968: 
§27). 
 
3.3.10. Theorem. The pa is a complemented distributive lattice and hence a Ba. 
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Proof. Let L=B, ()⇔T, and assume L9. (The interpretation (())⇔T, ab⇔[ab], and (a′b′)⇔ab is 
equally valid, because (a′b′) and ab constitute a dual pair, a notion explicated in §4.1.) I now verify 
that the pa satisfies L0, L1, L6, and L8. 

L0. pa juxtapostion and complementation always yield a pa formula (T1). A pa formula has a sim-
plification (T3), one that is necessarily a member of B. 

B1. pa concatenation commutes and associates (§A.1.1). 
L1. Substitute b′ for b in C4. Dually, see §A.1.2.  

If T⇔(), then: L6⇔C5, and L8⇔B3. 
If ⊥⇔(), then: L6⇔ dual of C5, and L8⇔ complement of B3.       

Remark. B3 (C5) assures that BA is complemented (distributive). L1 is C4, which LoF derives from 
J1 and J2. Hence the pa initials in LoF get to the heart of definition 3.3.9.13 For a more conven-
tional proof that the pa is a Ba, see §A.10. 
  
L6 [L8] is evidently analogous to C5 [B3] of Ba. Hence B3 and C5 nicely distill why there are 
lattices that are not Bas. As argued above, L6 and L8 are independent of L0−L1. But the following 
argument shows that C5 and B4 are not independent of B1, L1, L6, and L7b. §A.1.2 derives L1 
from B2-B4. Moreover, L1 follows trivially from C4, which LoF derives from J1 and J2. Hence L1 
is redundant, given B2, B3, and one of C5 or B4. 
 
A Ba postulate set fully consistent with 3.3.10 would consist of the general lattice postulates B1 
and L1, the distributive law L6, and the complementation law L8. Surprisingly, the only postulate 
sets of this nature I have found are Koppelberg (1989) and Mann (2003).  
 
3.3.11. Conjecture. The Ba postulates B1, L1, L6, and L8, are independent. 

Discussion. I do not have a proof that these postulates are independent, but their independence is 
plausible as follows. Each of the following facts is true of one postulate and of no other. B1 con-
tains no boundaries and changes no variable instances. L1 creates or erases a nested pair of bounda-
ries, and creates/erases a variable. L6 creates/erases one instance of a variable. L8 creates/erases all 
instances of a variable.  
 
In Ba, the relation denoted by ‘=’ is not only an equivalence relation but also a congruence relation, 
defined as: 
 
3.3.12. Definition. A Ba congruence relation is an equivalence relation R satisfying aRb → a′Rb′ ∧ 
∀c∈B[acRbc]. (Stoll 1963: 261). For a proof that ‘=’ is a congruence relation, see §A.5. 
 
A Boolean algebra is any algebra defined over a finite poset B, such that B is closed under: 
• A binary operation ‘⋅‘ that commutes and associates;14 
                                                           
13. LoF (Appendix 1) proves that Ba is a model of the pa, by showing that Sheffer’s (1913) postulates for 

Ba (Table 6-2) are pa consequences. Sheffer formulated Ba with a single binary functor, the Sheffer 

stroke, whose pa representation is (ab) (dually, a′b′; Table 4-2, bottom row). Sheffer’s first two postu-
lates are, in effect, C3 and J1. His third postulate is an easy pa consequence: Dem. ((a(bc))) [C3,2x] = 
((a((b′)(c′)))) [C5] = ((((b′a)(c′a)))) [C3] = ((b′a)(c′a)) . The pa representation of the Sheffer stroke 
makes it easy to see how it commutes but does not associate: (ab)=(ba) but ((ab)c)=(a(bc)) is not necess-
arily the case. By contrast, in §3.4 we will see that the sole binary operation of group theory associates 
but does not necessarily commute. Engineers know the Sheffer stroke as NOR, its dual as NAND. 

14. These properties can be demonstrated; see §A.1.1. 
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• A unary operation ‘′’, such that ∀c∈B, c′⋅c = infB or supB, 
and such that ‘=’ is a binary dyadic relation. Table 2-1 further implies that juxtaposition commutes 
and associates, and that B is closed under both juxtaposition and complementation. If a⋅b ⇔ ab, a′ 
⇔ (a), and T ⇔ (), the pa can be seen as a minimalist notation for Ba. Ba and BA are both 〈B, --, 
(-), ()〉 algebras of type 〈2,1,0〉. That B={⊥,()} is partially ordered is evident if a≤b ⇔ (a)b. From 
Table 2-1 we may conclude that (a)b=() for all possible values of a and b except a=() and b=⊥, as 
desired if ⊥≤() is to be the case. 15 

Since B has only two members, c′c designates the greatest element of B. Let a, b, and c range over 
B. Then ab=a and ab′=c′c both imply that B is partially ordered. Specifically, let ⊥≤(). Then b≤a, 
ab=a, and ab′=c′c are all equivalent. More generally, the following theorem shows that b′a, ab=a 
and (a′b′)=b all assert the same thing: 
 
3.3.13. Theorem (Consistency Principle). a≤b, a∪b=b, and a∩b=a are equivalent Ba statements, 
and these in turn have the pa equivalents a′b=(), ab=b and (a′b′)=a. 

Proof.  See §A.3. 
 
BA complementation can have an empty scope and the result is a lattice bound; that is the key fact 
that distinguishes BA from Ba. By virtue of A2, the other lattice bound is, in effect, the blank page. 
Bricken, in a personal communication, has argued that to grant the blank page a symbol, such as ⊥, 
renders BA indistinguishable from Ba. To fasten on ⊥ in this manner, however, overlooks the sig-
nal contribution of BA to our understanding of 2: the members of the base set need be no more than 
empty complementation and the blank page.16 The improper symbol ⊥ can be seen as just a conve-
nient way to refer to the blank page as a lattice bound. (§4.1 gives another justification for ⊥.) In all 
other respects, 3.3.10-13 and the adjacent discussion show that BA and 2 are isomorphic. This fact 
is independent of the ontological status of ⊥ or its denotatum. 

The near-isomorphism of BA and Ba does not demean BA in any way, because Ba is a quite rich 
formal system; see the references under “Boolean Algebra” in the Bibliographic Postscript, 
especially Givant & Halmos (2009), abbreviated below as “GH.” The balance of this chapter gives 
a quick taste of this richness, starting with a famous deep result about Ba, the Stone Representation 

Theorem (SRT). First some definitions: 
 

3.3.14. Definition. Let a,b∈B, where B is some base set. a is an atom iff b≤a → (b=⊥ ∨ b=a). A Ba 
is: 
• Atomic if for any b≠⊥, there exists an atom a such that a≤b; 
• Complete if every nonempty subset of B has a least upper bound. 
 

3.3.15. Theorem (SRT). A Ba is isomorphic to the algebra of all subsets of its set of atoms iff the 
Ba is complete and atomic. (GH §14, Cor. 1). 

Remark. The SRT holds unconditionally when B is finite and hence bounded, in which case the 
associated Ba is always complete and atomic (Stoll 1963: Th. 6.5.1). For a short and elegant proof 
for finite B, see Davey and Priestley (2002: §5.5). When B is infinite (a situation that never arises in 
this book), see Stoll’s Th. 6.5.4. Because a Ba with infinite B is not necessarily atomic, the notion 

                                                           

15. If a=⊥ or b=(), (a)b=() by C3 and A2. Substituting the only remaining valuation, a=() and b=⊥, into (a)b 
yields (())⊥=⊥⊥=⊥. 

16. Here LoF unwittingly walked in C.S. Peirce’s footsteps, namely his graphical logic; see §6.1. 
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of atom is replaced by that of maximal ideal (GH: §20; Stoll 1963: 263, 269), whose existence is 
assured by Zorn’s lemma.17 
 
The SRT enables the proof (not shown) of a valuable theorem. First some more definitions. Let a 
Ba whose B has cardinality ≥2 be nontrivial. A subalgebra of a Ba with base set B is a (proper) 
subset of B closed under meet, join, and complementation. We then have: 
 

3.3.16. Theorem. A Boolean identity (tautological equivalence) holds in every possible Ba iff it 
holds in 2. 

Remark: GH, Th. 9. All Ba⇒2 is easy to show, because for every nontrivial Ba, {⊥,T}⊆B. Hence 2 
is a subalgebra of every nontrivial Ba. Koppelberg’s (1989: Prop. 2.19 (a) and (d)) concise proof of 
2 ⇒All Ba, invokes the SRT and ultrafilters, a notion beyond the scope of this book. 
  
Since 2 is a model for BA, a consequence of 3.3.16 is that the advantages of BA as a calculation 
tool apply to any nontrivial Ba. Unfortunately, BA as it stands cannot notate nontrivial Bas other 
than 2, because of the following theorem: 
 
3.3.17. Theorem. The cardinality of B in BA is necessarily 2. 

Proof:  §A.3 establishes that (x=() ∨ x=⊥) = (). 
 
Modifying BA so that its models include any Ba with a finite base set would be a worthy endeav-
our. Models of such “large” Boolean algebras include certain types of mereology (Casati and Varzi 
1999), the formal theory of part and whole. 
 

 

3.4. Boundary Notations for Other Algebraic Structures. 

“Algebra includes many formal calculations drawing consequencs from axioms, so the notation 

should be chosen to make these calculations efficient. The device of juxtaposing two letters… is so 

efficient that it is used in many different senses…”           Birkhoff and MacLane (1998: 70). 
 
Boundary notations for other algebraic structures are possible. Let concatenation denote an unspe-
cified binary operation, but now let enclosure in parentheses simply denote grouping in the way that 
is customary in mainstream mathematics. This notation suffices for semigroups, for which the sin-
gle axiom is (ab)c = a(bc). Add the axiom aa=a to a semigroup and a band results. Add ab=ba to a 
band and a semilattice results. Since parentheses are no longer needed to indicate grouping, we are 
free to reinterpret enclosure so that if ab denotes the meet of a and b, then (ab) denoted the join of a 
and b. Or vice versa; both interpretations are equally valid. The result, as shown in §3.3, is a lattice. 

Algebras with a single binary operation are magmas (an older term for which is “groupoid”). BA 
syntax is adequate for all magmas whose binary operation associates, and having one unary opera-
tion and at least one distinguished element. BA is an example of each of the following magmas: 
• Commutative semigroup because BA juxtaposition is order-irrelevant; 
• Semilattice because C1 is a BA consequence; 
• Commutative monoid with identity element ⊥, by virtue of B2; 

                                                           
17. Zorn’s lemma, an equivalent of the axiom of Choice, is widely invoked in contemporary mathematics, 

especially algebra (Machover 1996: chpt. 5). For an exposition of the SRT with a more topological fla-
vour, see Cori and Lascar (2000: §2.6) or Givant and Halmos (2009). 
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• Logic algebra, a commutative monoid with a unary operation, complementation, such that, by 
B2 and B3, the inverse element () is the complement of the identity element (()). 

That Ba (and all lattices) are also magmas is seldom remarked. 

The most studied type of magma is the group, defined as follows: 
 
3.4.1. Definition. A group is a set G closed under a binary operation, called product and denoted by 
juxtaposition, and a unary operation, called inverse. The product of a and b is denoted ab, and the 
inverse of a is denoted (a). (This is just BA notation, of course!). Then the following axioms hold:  

G1: ab.c = a.bc. Product associates. This established, the period is no longer necessary; 
G2: ea = a.  e∈G is the identity element; 
G3: (a)a = i.  i∈G is the inverse element; 
G4. i=e.  The identity element and inverse element are identical. 

Remark. Both e and i are provably unique. Given some a∈G, conventional group theory defines the 
inverse element of a as the b∈G such that ba=e. 
 
Lettng i=() yields a boundary notation for groups isomorphic to the BA notation this book advo-
cates for Ba. An instance of G3 is (i)i = i. Since the e in G2 is unique, (i) = e, so that e = (()). G4 
then implies that (())=(), so that A2 does not hold in group theory. Moreover, both () and (()) may 
be erased at will. A1, on the other hand, does hold because ii [G4] = ei [G2]] = i. 

An abelian group is a group whose product commutes as well as associates. Hence G1 can be 
replaced by a single axiom implying commutativity and associativity. Incorporating G4 into G2 and 
G3, the axioms for abelian groups then are: 

GA1: ab.c = ac.b. In §A.14, I derive commutativity and associativity from G1-G3; 
GA2: ()a = a.  () is the identity element; 
GA3: a(a) = (). () is also the inverse element. 

See §A.14 for more re abelian groups.18 Note that GA1 is one form of B1, and GA3 is B3. An in-
stance of G3 is (e)e=i. Then by G2 and commutativity, we have (e)=i. Since we proved e=(i) above, 
e and i are mutual complements, a fact holding for all complemented lattices. 

The BA initials are GA1, G2, G3, and B4, but not G4. In BA, B3 establishes that i=(), and B2 lays 
down that e=⊥. Two arithmetical facts that characterize BA are (e) = i, just proved, and e≤i, equiv-
alent to ei = i and thus a trivial instance of G2. Letting i=() and e=(()), these arithmetical facts be-
come ((())) = () and ()(()) = (), both trivial consequences of A2. Logic algebras require e≠i, and this 
is the precise point where logic algebras and group theory part company. Hence all that distingui-
shes BA from abelian groups is that B4 holds only in BA, and (()) = () holds only for abelian 
groups. Alternatively, the axioms for an abelian group are B1-B3 plus the arithmetical identity () = 
(()). The unconventional use of i and e in 3.4.1 merely serves to highlight the closeness of BA and 
abelian groups described in this paragraph. 

The key fact distinguishing BA from abelian groups is B4, which has no group theory counterpart. 
B4 assures that BA is a: 
• Lattice, by making demonstrable the lattice properties L1 and C1; 

                                                           
18. A name in bold type is that of the Metamath ZFC theorem that corresponds to the abelian group axiom 

preceding it: associativity (grpass), commutativity (ablcom), G2 and G3 (grpidinv). On magma, semi-
group, monoid, group, and semilattice, see Burris and Sankappanavar (1981: §2.1). On other connections 
between Boolean and other algebras, see Rudeanu (1974: §§12.3-7) and Burris et al (1981: §II.1). 
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• Distributive lattice, by making C5 demonstrable. 

Given the crucial role B4 just encunciated, it is natural to ask what a(ab) evaluates to in other 
algebraic structures. The answer to this question proves surprisingly rich and will take up the bal-
ance of this section. It turns out that a fair number of algebraic structures betray themselves by what 
a(ab) simplifies to, given the axioms for the structure in question. For semigroups, we have simply 
that a(ab) = (aa)b. For a band, a(ab) [Ass.] = (aa)b [L3a] = ab. This result also holds for semilatti-
ces, with the added proviso that ab=ba. For lattices, a(ab) [L1a] = a. 

What a(ab) evaluates to in group theory will require a bit of work. We now demonstrate an ele-
mentary fact about group theory: 
 
3.4.2. Lemma: The inverse of ab is (b)(a). 

Proof.  Dem. ab(b)(a) [G3] = a()(a) [G2] = a(a) [G3] = ().        

This proves that (b)(a) is an inverse. It can be proved that the inverse of any element is unique.19 
Hence (ab) = (b)(a). 

Remark. Note that the demonstration does not invoke commutativity in any way. Hence this lemma 
holds for all groups, not just abelian ones.  
 
Hence in group theory, a(ab) [3.4.2] = a(b)(a). In abelian group theory, however, a(ab) [3.4.2] = 
a(b)(a) [TR, Ass.] = (a)a(b) [G3] = ()(b) [G2] = (b). Note that the same result holds for nonabelian 
groups if we start from (ab)a. a(ab) drives a wedge between abelian and non-abelian groups. 

We now touch on a few less known magmas that do not associate, so that parentheses are needed to 
indicate grouping. Parentheses are available for this purpose because these magmas lack a unary 
operation. a(ab)=b is an axiom for Steiner magmas. A rack satisfies the axiom (ab)c = (ac)bc. 
Substituting a for c yields the axiom instance (ab)a = (aa)ba. An idempotent rack is a quandle, in 
which case (ab)a = (aa)ba = (a)ba. The axioms for the implicational calculus (Wolfram 2002: 803) 
are (ab)a = a, (ab)b = (ba)a, and a(bc) = b(ac). An instance of this last axiom is a(ab) = a(ab). The 
axioms for an equivalence algebra include aa = a, (ab)a = a, and a(bc) = ab(ac). An instance of the 
last axiom is a(ab) = aa(ab) = a(ab). 

The following structures have more than one binary operation. 

Quasigroups. A quasigroup can be formulated in terms of three binary operations. Let (ab) denote 
one of those operations, and [ab] denote another. Then two of the quasigroup axioms are [a(ab)] = b 
= (a[ab]). A quasigroup can also be formulated like a group, with a binary product denoted by con-
catenation and a unary inverse denoted (a). A Bruck loop is a quasigroup with an added inverse 
such that (ab) = (a)(b). Then a(ab) = a(a)(b). 

Ring. Let (ab) denote the ring sum of a and b, and [ab] denote the ring product of a and b. Then 
[a(bc)] = ([ab][ac]) says that product distributes over sum. a(ab) is not defined in ring notation, but 
[a(ab)] is and it equals ([aa][ab]) by the distributive law. Moreover, it is the case that (a(ab)) = 
((aa)b), because ring addition is associative. 

Relation algebra (Givant 2006) is a proper extension of Ba, with letters ranging over all possible 
binary relations whose field is some given set (see 2.3.8). There are two additional operations, bina- 
ry composition20 denoted here by concatenation, and unary converse which will not detain us. En- 
                                                           
19. Theorem 1.4, http://en.wikipedia.org/wiki/Elementary_group_theory . 

20. Let A be some set, and let a,b⊆A×A. Then the composition of the binary relations a and b, denoted ab, is 
the set of ordered pairs (x,z) such that there exists a y∈A with (x,y)∈a and (y,z)∈b. If a and b are func-
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Table 3-3. a(ab) as Algebraic Discriminant. 

Algebraic 

Structure: 
a(ab) reduces to:  ()() = (()) = 

1 binary nonassociative operation.    
Steiner magma b A --- --- 
Rack (ab)a = (aa)ba A   
Quandle (ab)a = (a)ba T   
Equivalence 
Algebra

21
 

a(ab). (ab)a = a T   

Implicational 
Calculus 

a(ab). (ab)a = a; 
(ab)b = (ba)a 

A   

1 binary associative operation; 0 unary operation.    
Semigroup (aa)b A --- --- 
Equivalential 
Calculus

22
 

 b T   

Band  ab T   
Semilattice ab=ba T --- --- 
1 binary associative operation; 1 unary operation.    
Bruck loop  a(a)(b) T ()() --- 
Group  a(b)(a) T ()() () 
Abelian group (b) T ()() () 
Logic algebra  a(ab) T ()() () 
Lattice  a A --- --- 
pa   a(b)=(b)a A () (()) 
>1 binary operation    

Quasigroup
23

 [a(ab)] = (a[ab]) = b A --- --- 

Ring (a(ab)) = ((aa)b) 
[a(ab)] = ([aa][ab]) 

T 
T 

()() () 

Relation algebra (ab) (if a an equivalence) T   
Note. The reduction shown in col. (2) is (A) an axiom/postulate 
or a substitution instance thereof. Otherwise it is a theorem (T). 
I know of no printed source covering the diversity of known alge- 
braic structures. For a concise listing of a number of structures 
and their axiomatic properties, see: 
http://en.wikipedia.org/wiki/List_of_algebraic_structures .   
Also see Wolfram (2002: 803, 1171). 

 
closure in parentheses denotes Boolean complementation, as before. If a is an equivalence relation 
(as per 2.3.8) and b is any binary relation, then a(ab) = (ab) (Tarski and Givant 1987: 50, xxv). 

                                                                                                                                                                                                 
tions, ab is also a function. Because composition associates, the set of all possible binary relations on A 
forms a monoid, with composition interpreting product and the identity relation interpreting the identity 
element. 

21. Jezek and McKenzie (2001: 212, Prop. 1.1).  

22. Wolfram (2002: 803).  

23. http://en.wikipedia.org/wiki/Quasigroup . See also Steiner magmas (Wolfram 2002: 1171). 
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The upshot of this discussion is that a number of algebraic structures reveal themselves by what the 
simple expression a(ab) (or in the case of quasigroups and rings, a close variant) evaluates to. 
Hence a(ab) can thought of as sort of algebraic discriminant. The interpretation of the parentheses 
varies by structure. For a band, equivalence algebra, equivalential calculus, magma, semigroup, or 
semilattice, parentheses merely serve to indicate how the sole binary operation is to be grouped. For 
a quasigroup or ring, (ab) denotes a binary operation over a and b. Otherwise, (ab) denotes a unary 
operation applied to the result of combining a and b via the binary operation appropriate for that 
structure. Table 3-3 summarizes these results. 



Chapter 4. 

pa Semantics:  From BA to Boundary Logic. 
 

 “Yet logic is nothing more than the properties of the act of distinction!”   (Kauffman 2001: 90). 

LoF (pp. 113-17) shows how the CTV and the elementary Boolean algebra of sets are possible 
interpretations (models) of the pa. Before showing how the pa translates the CTV, I first sketch 
some facts about the key players in the CTV, the truth functors (functors for short). A functor has 
an arity n∈N. Because B has cardinality 2, there are 22n possible functors with arity n; in particular, 
there are 16 binary functors. Six of these map a and b into one of {a,~a,b,~b,T,F} and will not 
detain us. The remaining 10 binary functors are {∧,∨,→,←,↔} and their negations (see Table 4-2). 
There are 221=4 possible unary functors; of these, only ~a need be considered. There are 220=2 0-
ary functors, T and F by convention. All functors of arity>2 are redundant, because any formula 
employing such functors is tautologically equivalent to a formula whose functors all have arity≤2 
(Epstein 1995: §II.J.3). 

It would seem that there are 5+1+2=8 essential truth functors. In fact, there is ample redundancy 
among these, in that starting from 2 or 3 functors, the remaining 5 or 6 can be defined. If for any 
CTV formula, there exists an equivalent CTV formula in which only a subset of these 8 functors 
appears, the members of that subset are termed expressively adequate (abbreviated EA) or truth-

functionally complete (Bostock 1997: §§2.7, 2.9).1 

For the purpose at hand, the primitive basis of CTV (e.g., DeLong 1971: 107) consists of the primi-
tive values T and F, and any EA set of functors. Boundary logic results from a one-to-one corres-
pondence between the BA and an EA set of functors. Among the binary functors, ∨, ∧, and ↔, 
commute and associate, just as juxtaposition does in the pa. Denial, ~, is a unary functor whose 
scope is set by brackets, which is exactly the way (⋅) works in the pa. Many authors, including Me-
guire (2003), denote the denial of a by ¬a rather than ~a. Here I reserve ‘¬’ for intuitionist nega-
tion. We shall see in §4.3 that {∨,~} and {∧,~} are EA; the upshot is two of the three interpretations 
of the pa shown in Table 4-1, which summarizes this chapter. 

I now establish a correspondence between the PA and conventional logic, beginning with the ass-
umption ()⇔T. Table 2-1b immediately reveals that the semantics of (α) are identical to those of 
~α, namely ~T=F (A2) and ~F=T. Thus emerges the most salient fact about boundary logic: a truth 

value interprets a negation with an empty scope, just as an empty boundary denotes a BA primitive 
value. ()() = () (A1) and ⊥⊥ = ⊥ in Table 2-1a imply that juxtaposition is idempotent. The two re-
maining cells of Table 2-1a reveal that juxtaposition commutes, as discussed in §3.2. Hence by vir-
tue of the PA, αβ can interpret either α∨β or α∧β and the road to a CTV translation of Table 2-1 is 
now clear.2 

In the 1880s, Frege and Peirce laid down that the preferred primitive CTV connective should be the 
conditional, nowadays notated by infix ‘→’.3 The well-known equivalence a→b ⇔ ~a∨b suggests 
the interpretation a→b ⇔ a′b. Then note that a→F ⇔ a′⊥ = a′; in this fashion the pa happily ac-

                                                           
1. For more on connectives, axiomatics, etc., see the references under Calculus of Truth Values in the Biblio-

graphic Postscript. 

2. 3.3.4 and 3.3.6 also suggest that the CTV with primitive {∨,¬} is a model for the pa. 

3. Quine (1982: §3) rightly prefers ‘conditional’ to the ‘material implication’ of PM, because a→b does not 
translate “a implies b”, but arguably does translate “if a then b”. I prefer reading a→b as a synonym for 
a≤b, where a and b are members of some ordered set. 
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commodates the EA set {→,F}. Table 2-1b now translates as T→⊥ and its converse, ⊥→T. §4.2 
discusses other possible CTV interpretations of the pa. Henceforth, “Prior m.n” refers to axiom set 
m.n in Appendix I of Prior (1962).4 
 

Table 4-1. Some Interpretations of the pa. 

   
Interpretation Primal Dual 

Key Binary Functor Alternation Conditional Conjunction 
Implied EA Functor Pair {∨,~} {→,F} or {→,~} {∧,~} 
pa Equivalent {((⋅⋅)),(⋅)} {(⋅)⋅,(())} or {(⋅)⋅,(⋅)} {((⋅⋅)),(⋅)} 
Representation of:   
    Alternation ab (a′b′) 
    Conjunction (a′b′) ab 

    Conditional a′b (ab′) 
Antecedents 1910: PM, 6.11 1879: Frege, 1.1 

1885: Peirce, 3.11 
1956: Church P1, 1.4c  

1892: Johnson 
1897: Peirce EG 

Recent Examples Halmos & Givant
  (1998: §§8,13) 

Machover (1996: §7.6)
Bostock (1997: §5.2) 

Quine (1982: §1)

Note. m.n refers to a numbered system in Prior’s (1962) Appendix I. 
 

 

4.1.  Duality. 

Let S be a set partially ordered by the relation R, and let a,b∈R. Then there exists a relation R′ that 
also partially orders S, such that bR′a=T ↔ aRb=T; this is the duality principle for posets (Don-
nellan 1968: Th. 13; Davey & Priestley 2002: 1.19-20). Let S=B, [{T,F}] Rab ⇔ a≤b [→], and 
R′ab ⇔ a≥b [ ], and the duality of Ba [CTV] follows. Ba is typically formulated such that B= 
{0,1}, 1′≡0, and 0≠1. BA duality follows from (())≠() being a trivial consequence of A2, and from 
(())≠() ⇔ 0≠1. 

By 3.3.2, B is partially ordered. B must also be connected, since B has only two members, so that 
one of ⊥≤() or ()≤⊥ must be the case. ()=⊥ leads to triviality; hence the inequalities must hold 
strictly. Thus far, I have tacitly assumed ⊥<(). The nearest LoF gets to the content of this paragraph 
is the first complete paragraph on p. 113. 
 
4.1.1. Definition. The BA semantics that flow from assuming ⊥<() [()<⊥] make up the primal 

[dual] reading. Each reading is the semantic dual of the other. Duality refers to the fact that Ba, 

BA, and logic can all be carried out under either reading. To switch from one reading to the other, 
mutatis mutandis, is known as dualization. 
 
Duality is little more than an interesting consequence of B‘s being an ordered set. By an interprêta-
tion of BA I mean a one-to-one correspondence between B and another set, and there are two possi-

                                                           
4. For more on systems with {→,F} primitive, cf. Prior (1962: §I.III.1, 3.11-13). Systems based on {→,¬} 

are quite standard, e.g., Prior 1.1-5, Church’s (1956: §20) P2, Epstein’s (1995: 408) PC, and Mendelson’s 
(1997: 35) L. Systems with {∧,¬} primitive include that of Johnson (1892) discussed in §6.2 below, those 
of Rosser and of Sobocinski (Prior 6.3), and the modal logics of C. I. Lewis (Prior 11.1). Peirce’s existen-
tial graphs are the subject of §6.1. For more on historical CTV axiom systems, see §6.2-3 below, Prior 
(1962: Appendix I), and Epstein (1995: 407-9). 
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ble such correspondences between B and {T,F}. Thus far, I have assumed T⇔(). The dual reading 
begins with T⇔⊥. Conjunction now interprets juxtaposition, and the conditional interprets (ab′). 
Thus the dual of {∨,~} is {∧,~}. 

Under the dual reading, Table 2-1a is now the table for Boolean multiplication, and Boolean and 
numerical multiplication yield the same result when the base set is assumed to be {0,1}. Perhaps 
surprisingly, Table 2-1 and T1-T7 hold under both interpretations. Likewise, the rules defining and 
simplifying PA and pa formulae do not change. Hence the syntax of BA is invariant under dualiza-
tion; the BA is a self-dual formalism. PA duality is merely a semantic affair, namely switching the 
two possible one-to-one correspondences between B and some interpretive set such as {T,F}. 

Matters are a bit more involved for the pa, because dualization alters the semantics of juxtaposition. 
The semantics of a formal system are known as its truth definition or Boolean valuation (Smullyan 
1968: §I.2, Def. 1). Recall that an atomic valuation (3.1.3) assigns one of () or ⊥ to every variable. 
The pa then has the following trivial truth definition: 
 

4.1.2. Definition. A Boolean valuation for BA. Let φ,δ be metalogical notation for BA formulae, 
and let  the value of φ be |φ|, given some atomic valuation. All molecular formulae then evaluate to 
either () or ⊥ by recursive application of two elementary rules: |(φ)|=(|φ|), and |δφ|=max[|φ|,|δ|], 
where max[(),⊥]=() [=⊥] under the primal [dual] reading.5 
 
This truth definition follows trivially from Table 2-1. A tautology can now be defined as a formula 
whose value is invariant to the choice of atomic valuation. Moreover, φ=δ is a tautological equival-
ence if |φ|=|δ| holds for all atomic valuations. Some further definitions: 
 
4.1.3. Definition (adapted from Halmos and Givant 1998, §22): Let 1,..., na aαα = 〈 〉 be a formula 
containing the atomic formulae a1,...,an. α is the primal, 1( ,..., )na aα 〈 〉  the complement, 

1,..., na aα ′ ′〈 〉  the contradual, and Dα = 1( ,..., )na aα ′ ′〈 〉  the syntactic dual (dual for short). The dual of 
the dual is the primal; hence a primal and its dual are known as a dual pair. 
 
4.1.4 answers the question: if the equation α φ=  holds under some or all atomic valuations, what is 
true of Dα  and Dφ ? 
 
4.1.4.  Duality Theorem.  α φ=  ↔ D Dα φ= . 

Proof. See §A.8. 
 
A corollary of the Duality Theorem is that the dual of a tautology is also a tautology. Keeping in 
mind that α in 4.1.4 is a tautology if α=() or ⊥ for all possible valuations of 1,..., na a , 4.1.4 says 
more. If a formula or equation is tautologous under some interpretation, then its contradual and dual 
are also tautologies under that same interpretation.6 

Duality, about which LoF is silent, is another compelling reason for an explicit symbol denoting the 
unmarked state. There is no syntactical or proof-theoretic ground for preferring the primal reading 

                                                           
5. On truth definitions, see Bostock (1997: §§2.4, 3.4) and Hodges (2001: §3). 

6. Quine (1982: §12) states five “laws of duality.” The first follows from semantic duality; the second, 
proved in §A.8, defines syntactic duality. His third law is α=() ⇔ Dα =⊥; the fourth, ( )α φ→ ↔  
( )D Dφ α→ ; the fifth, 4.1.4. On duality, also see Bostock (1997: §2.10) and Givant & Halmost (2009: 
chpt. 4). 
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over the dual one, or vice versa. Spencer-Brown preferred the primal reading because a'b is a more 
economical representation of the conditional than (ab') (LoF, p. 113-14).7 However, there is a mod-
est semantic reason for preferring to read concatenation as conjunction to disjunction. I agree with 
Prior when he wrote: 
 

“…’and’ and ‘not’ are the only operators which are quite unambiguously truth func-
tional in ordinary speech; truth functional interpretations of other ordinary-speech 
connectives all wear at times an air of artificiality.”             Prior (1962: 254). 

 
In §6.1, we shall see that Peirce too came to prefer the dual reading. 
 

 

4.2.  Boundary Logic. 

“…everything in pp. 98-126 of Principia Mathematica can be rewritten without formal loss in the 

one symbol   … Allowing some 1500 symbols to the page, this represents a reduction of the 

mathematical noise-level by a factor of more than 40,000.”            LoF, p. 117. 
 
Table 4-2 translates the ten nontrivial CTV binary connectives into the pa, assuming the primal 
reading.  Each row of Table 4-2 contains a dual pair; hence the connectives can be grouped into two 
groups of five, I and II, with each group being the dual of the other. Connectives sharing the same 
numerical identifier (shown in the two middle columns) can be derived from each other via nega-
tion. Let a* stand for either a or a′; a* is a literal. The simple connectives are those that can be des-
cribed by a*b* or the duals thereof; these are ab, a′b, ab′, a′b′, and their syntactic duals. 

Note that assigning () to T [⊥≤()] is just as arbitrary as assigning it to F [()≤⊥]. But once a assign-
ment is made, the pa representation of all connectives is determined. Table 4-2 translates ab as a∨b, 
and its dual, (a'b'), as a∧b, both as per the first column of Table 4-1. Likewise, either a′b′ or (ab) 
translates the Sheffer stroke, a|b. These translations render obvious that | can be read as both “not 
and” and “if a then not b”; the latter reading suggests more strongly, perhaps, the peculiar ex-
pressive power of the Sheffer stroke. The duality of a′b′ and (ab) points to “not or” as the semantic 
dual of the Sheffer stroke.8 

The meaning of CTV duality should now be clear: for any statement α, there exists an equivalent 
statement αD derived by interchanging ∧ and ∨, → and , ↔ and , | and ↓, and T and F. More 
generally, under either interpretation, the pa representation of conjunction is the dual of the pa 
representation of alternation, and the same dual relation holds for the conditional and the negation 
thereof. 

Duality reveals that the conventional syntax for Ba and CTV are uneconomical. A given pa formu-
la enjoys a multiplicity of CTV interpretations, revealing the ample redundancy inherent in the 
CTV. For instance, take De Morgan’s well-known laws, ~(a∨b)↔ (~a∧~b) and ~(a∧b)↔(~a∨~b). 
The pa translation of these laws, (ab)=(ab) and a′b′=a′b′, immediately reveals that these laws are 
artifacts of conventional notations, and as such are trivial. 

                                                           

7. Spencer-Brown makes too much of this, especially if one downplays the conditional in favor of conjunc-
tion/alternation. Moreover, while (ab′) has more symbols than a′b, (ab′)=(()) is equivalent to b′a=(), which 
has no more symbols than a′b=(). 

8. The misconception that the pa is little more than a new notation for the Sheffer stroke (Grattan-Guiness 
2000: 557; Wolfram 2002: 1173) may stem from hasty readings of LoF’s Appendix 1. 
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Because the algebra of sets is a model for 2, it is also a model for the pa. Let U be the universal set, 
a,b∈U, and ∅ be the null set. Then the columns headed by “Sets” show how the algebra of sets is a 
model of the pa. 
 

Table 4-2. 

The 10 Nontrivial Binary Connectives (Functors). 
Primal Dual 

Name Logic Sets pa   pa Sets Logic Name 

Alternation a∨b a∪b ab 1 5 (a′b′) a∩b a∧b Conjunction 

Conditional a→b a⊆b a′b 2 4 (ab′) b~a a b Difference 

Symmetric Difference a b aΔb 
(a′b)(ab′) 3a 3a ((a′b)(ab′)) 

a⊆b⊆a a↔b Biconditional 
((a′b′)(ab)) 3b 3b (a′b′)(ab) 

Converse a←b a⊇b ab′ 4 2 (a′b) a~b a b Difference 

Sheffer stroke a|b a b∩  a′b′ 5 1 (ab) a b∪  a↓b NOR 

Note.  Each row contains a dual pair. Items with the same number are negation pairs. The six 
remaining binary connectives are uninteresting as they map {a,b} into one of a, b,~a,~b, T, and F. 

 

Table 4-3 translates the LoF consequences into CTV notation, using Table 4-2 as the key. For each 
LoF consequence, Table 4-3 also supplies a name, if the conventional literature provides one, and 
the number of the corresponding tautology in Kalish et al (1980: §II.11) (KMM), an unusually com-
prehensive list of tautologies. LoF says very little about how its J1-C9 relate to the extant literature 
on logic and Ba. C1-C3 and C5 should be very familiar. B3 is the Law of Excluded Middle (LEM); 
B4, Johnson’s (1892: 342) Law of Exclusion; C2 means that () is a lattice upper bound, cf. 3.3.6; 
C4, the biconditional corresponding to an axiom in conditional form proposed by Peirce (W5: 162-
90, 1885). C6 is the Law of Elaboration or Development, so called by Bostock (1997: 41). C7 and 
C8 are less well known. If a and b on either side of C8 were to trade places, the two sides of C8 
would then form a dual pair.9 

LoF invokes J1-C3 104x, C4-C9 15x, and C5-C9 a mere 6x. LoF invokes C2 more often than any 
other consequence, C3 excepted. C2 allows a subformula to be copied into and erased from any 
subspace deeper than the shallowest instance of itself (with the proviso that a subformula cannot be 
copied into a part of itself). While not a standard part of elementary logic, C2 is at once a trivial 
corollary of the Consistency Principle, 3.3.13, and a powerful tool for BA demonstrations (§§5.0, 
5.2). §A.7 says more about C2 (here called B4). 

Perhaps all I have done thus far is to employ the following elementary reasoning to eliminate all ex-
plicit truth functors from the syntax. Alternation and conjunction commute and associate; hence 
mere juxtaposition suffices to notate either. Brackets are then free to notate negation. It is well 
known that negation and one of conjunction or alternation are EA. Hence brackets are the only ex-
plicitly truth functional notation required. QED. Equivalently, recall that {→,⊥} is EA and that (a)b 

                                                           
9. The identities of this book correspond to the following PM (*2–*5) tautologies: B3, 2.08; B4, 2.621 & 

2.67; C1, 4.25; C3, 4.13; C5, 4.41; C6, 4.42. Listing of tautologies include Rosser (1953: Theorem 
VI.6.1), Carnap (1958: T8-2, T8-6), Wolf (1998: Appendix 3), and Cori & Lascar (2000: §1.2.3). In Ba, 
J1 is known as “complementarity”; C2, “union”; C1, “idempotence”; De Morgan’s laws, “dualization”. 
For more on the relation between B2-B4 / C1-C4, on the one hand, and conventional logic and Ba on the 
other, see §A.6. 
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⇔ a→b and (a)⊥ ⇔ ~a. Hence a single two place functor, (−)−, and the constant ⊥ also suffice to 
express all truth functors. To express juxtaposition, note that ab [C3] = ((a))b [B4] = ((a)b)b.10 
 

 Table 4-3.  The Standard Reading of the Identities. 

BA LoF Conventional Notation Name KMM 

B1 Tacit a∨b∨c ↔ b∨c∨a  24,25,53,54
B2 --- a∨⊥ ↔ ⊥ B has a lower bound 

B3 --- ~a∨a ↔ T  1,59
--- J1 ~(a→a) ↔ ⊥ Contradiction 

B4 C2 (b∨a)→a ↔ b→a Exclusion 73
C1 C5 a∨a ↔ a  Idempotence; Tautology 47
C2 C3 T∨a ↔ T B has an upper bound. 
C3 C1 ~(~a) ↔ a Involution 110
C4 C4 ((a→b)→a) ↔ a Peirce’s Law 23
--- --- (a∧b)∨a ↔ (a∨b)∧a ↔ a Absorption 123
C5 J2 (a∨r)∧(b∨r) ↔ (a∧b)∨r Distribution 62
C6 C6 (a∧b)∨(a∧~b) ↔ a Elaboration 68
C7 C7 [(a→b)∧~c]  ↔  ~[(a∨c) ∧(b→c)]  

C8 C9 [(a→r)∧(r→~b)]  
     ↔ ~[ (a∨r)∧(r→b)]   

 

With the pa and its CTV interpretation in hand, and given our definition of a Ba, we can speak to 
the algebraic structure of the CTV (cf. Stoll 1963: 267-76). Let S0 be a set of CTV atomic formulae, 
and let S be the set whose members are all possible formulae constructed from members of S0 by 
conjunction (or alternation) and denial. Let logical equivalence ‘=’ be the congruence relation (cf. 
3.3.12) Ba requires. A congruence relation partitions its field into equivalence classes; let S/= be the 
set of equivalence classes resulting from ‘=’. Define ⊥ as ~a∧a, ∀a∈S, and T as ~⊥. Then 〈S/=, ∧, 
~, ⊥〉 is a Ba, specifically the “free Boolean algebra generated by S0 under =,” more commonly 
known as a Tarski-Lindenbaum algebra. 
 

A Historical Digression on Notation. 
What I enclose in parentheses, Spencer-Brown places under  , the ‘mark’; so that (a)b and (ab) 
correspond to  a b  and ab  in LoF. (Martin Gardner (Scientific American 1980 (2): 14) deemed 
LoF’s notation “eccentric.”) Both BA and LoF notations have antecedents. In a paper written 1880 
but not published until 1933, Peirce (4.12-20) proposed to notate Ba with concatenation, interpreted 
as NAND, and brackets. This notation is that of this book, except that Peirce limited concatenation 
to a binary scope. Kauffman (2001), citing an excerpt (Peirce 1976: 106-15) from a manuscript 
titled “Qualitative Logic,” which Peirce wrote in 1886 but that was not published in full until 1993 
(as W5: 323-71), points out that Peirce fused the overbar (denoting Boolean complementation) to 
the Boolean ‘+’ (OR) to create the “sign of illation,” closely resembling the ‘    ’ of LoF and having 
the same semantics.11 Peirce saw that his sign of illation sufficed for Ba and syllogistic logic. 
Kauffman also notes that Nicod’s (1917) ‘  ⋅ ⋅ ⋅’ notation has the functionality of ‘ . . . ’, but does not 
mention that Nicod sometimes wrote ‘b a ’ instead of ‘ a b ’.  

                                                           

10. The pa is thus also a 〈B,(−)−,(())〉 algebra of type 〈2,0〉, a model of which is Church’s (1956) P1; see 
Table 4-1. 

11. Peirce’s manyfold contributions to mathematics, logic, and semiotics inform Kauffman’s discussion in 
other ways. 
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4.3.  The Enigmatic Degeneracy of BA. 

“Every logical notation hitherto proposed has an unnecessary number of signs.” 
         Peirce (4.12, 1880). 

 
The expressively adequate (EA) subsets of the functors in common use are {→, F/~} and {∧/∨, ~}. 
Table 4-1 shows how these four EA functor sets map into BA. This mapping reveals a curious 
detail: corresponding to each EA functor set is a pair of BA formulae, one involving one boundary, 
the other two. The question naturally arises as to whether this is true of the Sheffer stroke and its 
dual, and all nine EA functor sets with two members (Wernick 1942: 132), consisting of four dual 
pairs and the self-dual set, {→, }. Row 1 of Table 4-4 shows how the Sheffer stroke follows from 
the pair {(--),(())}. Rows 2 through 5 show how seven of the nine two-member EA functor sets can 
be derived by inserting 1 or 2 letters into (), and 0 or 2 letters into (()). The sixth row reveals that 
the dual pair of EA functors involving ↔ cannot be represented in this manner, suggesting that ↔ 
should be seen as a tacit conjunction of conditionals. 
 

Table 4-4. 

Building the Nine EA CTV Functor Pairs from () and (()). 

Pa 
EA CTV Functor Pairs 
primal dual 

(ab), (()) 2,0 a↓b   F a|b   T 

(a)b, (()) 2,0     a→b   F b a   T 

((a)b)b=ab=((ab)), (a) 2,1     a∨b ~a     a∧b  ~a 

((b)a), (a) 2,1 b a ~a     a→b ~a 

(a)b, ((b)a) 2,2 a→b, b a 

(a)b, ((a)b)((b)a) 2,4    a→b a b b a a↔b 

Source for EA Functor Pairs:  Wernick (1942: 132). 

 
The first five rows of Table 4-4 capture the essence of the correspondence between Ba and the 
CTV. The reader is may explore further and at leisure the symmetries present in the two leftmost 
columns of Table 4-4. 

The pa suggests that expressive adequacy requires two capabilities, namely a way of: 
• Concatenating subformulae. Let these ways be  a*b and (a*b); 
• Enclosing subformulae. We may create a′ in one of three ways: 

• Invoke it outright; 
• Given (ab), set a=b so that (aa) [C1] = a′; 
• Given a′b, set b=(()) so that a′(()) [B2] = a′. 

Note how (()) follows from (b′a): either erase a and b, or let a=b and invoke B2-B3. Note that the 
Sheffer stroke is EA by itself. As () and (()()) denote distinct primitive values, () alone suffices for 
all of truth functional logic. 

Tables 4-4 and 4-5 reveal that all possible EA functor pairs can be obtained by inserting letters in 
certain ways into () alone, or into () and (()). Hence there is a sense in which the two members of B 
encapsulate all EA functor pairs. The members of B can be seen as the operators (-)- and ((--)-), 
where ‘-’ indicates a possible location of a letter. BA does not syntactically demarcate operators 
from operands; only in context can the operators (-)- and ((--)-) be distinguished from the operands 
() and (()), the primitive values. 
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Table 4-5.  How a*b, (a*b), and a′ Yield the Sheffer Stroke 
 and the 9 Expressively Adequate Functor Pairs. 

 Interpretation: Needed to Obtain (a): 
primal dual Assume Interpretation (a) = 

Commute 

ab a∨b a∧b a′ ~a --- 
(ab) a↓b a|b --- --- (aa) 
Do not Commute primal dual  

a′b a→b b a a′ ~a --- 
“ “ “ (()) F T a′(()) 
“ “ “ (c′a) † c a a→c a′(a′a) 
“ “ “ (c′a)(c′b) a c a↔c a′(a′a)(a′a) 
† Self-dual row.         

 

 

4.4.  pa: Metatheory. 

Every pa formula has a normal form, a fact repeatedly invoked in proofs of pa metatheory. 
 
4.4.1. Definition. Let the pa formula α contain n variables so that 1( ,..., )nf a aα = . The normal 

form, NF, is a formula, tautologically equivalent to α, and having the form: 

(#) * *( ...) [ ]i j ijj i
a a⇔ ∨ ∧ . 

All variables in (#) appear as literals. 
 

*( ...)i ja  is the jth disjunct. The ranges of the indices i and j begin with 1 and are finite; otherwise, 
these ranges are deliberately unspecified, if only because the NF is not unique. Also, either i or j 
may in some cases not exceed 1. If the jth disjunct is (⊥), then the entire NF degenerates to (); if it 
is (()), the jth disjunct vanishes. The NF can be seen as the analog of a polynomial in ordinary 
algebra. It is easier to parse a NF if the variables in each disjunct appear in lexicographic order, 
moving from left to right. This reordering is allowed because the variables in any disjunct can be 
reordered at will, but is not a mathematical imperative. 

Given any Ba/CTV formula, there exists an equivalent formula resembling the rhs of (#), namely a 
series of subformulae linked by alternation. Each of these subformulae in turn consists of literals 
linked by conjunction. This is the disjunctive normal form (DNF), whose dual is the conjunctive 
normal form (CNF). LoF is silent about the well known Ba/CTV result that there exists a CNF/ 
DNF dual pair equivalent to any formula. In the pa, the distinction between the DNF and the CNF 
is merely semantic.12 

4.4.2−7 lay down the metatheory of the pa. The corresponding proofs are in §A.9. 
 

4.4.2 (T14).  Let α be a formula such *dα >2. Then α can be transformed, by taking steps, into an 
equivalent formula β such that *dβ =2. 

                                                           
12. For more on the CNF and DNF see, e.g., Quine (1982: §10), Bostock (1997: §2.6), Halmos & Givant 

(1998: §38), and Cori & Lascar (2000: §1.3.2). Bostock defines the DNF so that each disjunct includes 
all n variables, in which case i in (#) necessarily ranges over 1 to n. He does this so that the truth table 
corresponding to α can be easily recovered from the DNF. This stipulation is unnecessary here because 
truth tables play no essential role in the pa. 
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 Remarks. 
1. In LoF, T14 only serves to help prove T15 and T17. 

2. Crucial to the proof of T14 is the ability of C7 to transform any subformula of depth 3 
into an equivalent sub-formula of depth 2. Invoking C7 repeatedly, beginning at each point 
in α with depth= *dα −3, transforms α into an equivalent formula with maximum depth≤2. 
The Appendix proof views a pa formula as an ordered tree; the LoF proof does not. 

 3. Read from left to right, both C4 and C8 can also be seen as depth reduction tools. C4 [C8] 
reduces a subformula of depth 2 [3] to one of depth 0 [2]. 

 4.  Note that no formula in B2-C8 is more than two parentheses deep, the left side of C7 and 
C8 excepted.  

 

4.4.3 (T15).  Let the pa formula α〈v〉 contain more than two instances of the variable v. Then α〈v〉 
can be transformed, by taking steps, into an equivalent formula β〈v〉, such that β〈v〉 contains 
at most two instances of v. 

 Remark. In LoF, T15 only serves to prove T17. T15 is essentially a simple form of the fol-
lowing well-known Ba theorem (Hohn 1966: 229, Lemma 2), recast into pa notation as 
follows: 

Let f be a truth function whose arguments are 1,..., nx x . Then 1( ,..., ,..., )i nf x x x  = 

1( ( ,..., (),..., ) )n if x x x′ ′ 1( ( ,..., ,..., ) )n if x x x′⊥ ,  1≤i≤ n. 
 
T14 and T15 together guarantee that every pa formula has an NF equivalent, whose depth does not 
exceed 2 and that contains at most two instances of any given variable. 
 
4.4.4 (T16).  If two or more formulae are equivalent in every case of one variable, they are 

equivalent. 

 Remarks. 
1. A more fullsome restatement of this enigmatic theorem is “Let the variable v appear in 
one or both of the formulae α and β, and let iv  =|v|. Let iv vα 〈 = 〉  and iv vβ 〈 = 〉  be vα〈 〉  
and vβ 〈 〉  with v set to iv . If () ()v vα β〈 = 〉 = 〈 = 〉 , and α〈ν=⊥〉= β〈ν=⊥〉, then α=β.” The 
converse is also true. 

2. LoF maintains that T16 justifies the decision procedure described in §5.1.13 

3. Erasing every instance of a variable is equivalent to setting that variable equal to ⊥. 
Hence T16 has another implication, heretofore unmentioned: erasing every instance of any 
given variable in a tautology yields another tautology. 

4. Prior (1962: §I.III.4) shows that the CTV can be derived from a single metalogical axiom. 
Its pa translation, ( ()vα 〈 = 〉 )( vα 〈 =⊥〉 ) vα 〈 〉  = (), reveals that it is an instance of a clause 
(§5.3) and is equivalent to T16. 

 

                                                           
13. T16 is Cole’s (1968: 346) rule R2. LoF (p. xvii) states that T16 resembles a lemma in Quine’s (1938) 

proof that the CTV is complete. LoF is silent about Quine’s later invention of TVA, which is essentially 
identical to the LoF decision procedure for which T16 is the main justification. Prior’s (1962: 53, (3); 58-
60) reexposition of Quine’s completeness proof includes a lemma that is essentially T16. The LoF proof 
of T16 (restated in §A.9) is much easier than that of Quine or Prior. 
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4.4.5 (T17).  The pa is complete. 

 Remark. A logic is complete if for any tautology α, one of α or ~α can be proved from the 
axioms/initials, using the inference rules. The pa inference rules are in fact R1 and R2, 
although LoF does not make this explicit. Moreover, the completeness asserted by T17 is of 
the strong sort (LoF, p. 119), because adding an initial that cannot be proved from the exist-
ing initials would render the pa unsound. Finally, if a formula simplifies to a member of B, 
T17 also implies that there exists a corresponding tautology in the pa. 

While T17 is arguably the most important (meta)theorem of the BA, it is not an unexpected 
result because, as we shall see, the CTV and 2 are both models of the pa, and the complete-
ness of these models is well established. The LoF proof of T17 requires all LoF consequen-
ces except C1 and C4; hence T17 can be seen as the culmination of chapters 1-10 of LoF. 
The proof of T17 resembles Quine’s (1938) proof (which LoF cites) that the CTV is com-
plete, in that both proofs proceed by strong induction on the total number of variables in 
hypothetical pa formulae in normal form; this is the only explicit instance of an inductive 
proof in LoF. Crucial to this proof are two facts: 
• Every pa formula has, by virtue of T14 and T15, an equivalent in normal form; 
• A1 is a tautological equivalence because it is an instance of C1. The same is true of A2 

and C3.14 

If a logic is sound, then there does not exists a formula α such that α and ~α can both be proved in 
that logic. If both α and α′ were provable in the pa, then (α′α)=(), contradicting B3. Hence the 
soundness of the pa follows from its completeness. If there exists a formula α such that both α=() 
and ~α=(), then all formulae can be equated to ().15 In short, if a logic is both sound and complete, 
then for any statement α of that logic, α is a tautology ↔ α is provable. A simple direct proof of 
soundness goes as follows: 
 

4.4.6. Theorem. The pa is sound. 

Proof: The pa initials are tautologies. When R1 is applied to a tautology, the result is a tautology. 
The rule R2 is valid only when applied to tautologies, in which case it yields a tautology. R1 and R2 
are the sole rules of inference. Hence any demonstration results in a tautology.  

Remark. Any formal system for which a proof of this nature goes through is said to possess the 
hereditary property (DeLong 1971: 134). 
 

 

                                                           
14. §A.1 demonstrates every consequence required for the proof of T17 in §A.9. §A.9 also includes a pa ver-

sion of Kneebone’s (1963: 48) proof that the CTV is complete, perhaps the simplest proof extant. Post 
(1921) was the first to prove the CTV complete (for a summary, see Hunter 1971: §30). For the com-
pleteness proofs of Hilbert and Ackerman, and of Quine (1938), see Prior (1962: §§I.II.3, I.III.2). These 
proofs require over 20 tautologies apiece. Hunter (1971: §§31, 32) restates the proofs of Kalmar and 
Henkin. Kalmar’s proof is the basis for those of Stoll (1963: Th. 9.2.3), Epstein (1995: §§II.L.2-3, 
II.M.2), and Mendelson (1997: 1.14). These proofs require the Deduction Theorem and at least a dozen 
lemmas. The proof of T17 merely requires J1-C6 and C8. Henkin’s proof has the advantage of yielding 
the Compactness and Interpolation theorems as corollaries. Finally, there is Anderson and Belnap’s 
(1959) cryptic proof, restated less tersely in Hunter (1971: §37.4). Nowadays, the preferred approach to 
proving the CTV complete relies on refutation trees (e.g., Bostock 1997: §§4.6-7; Smullyan 1968: chpt. 
II). I invite the reader to decide which proof of completeness is the most economical. 

15. The proof is in §A.1.3. On soundness, see Hunter (1971: §§24, 25a,b, 28) and Hunter’s references to 
Church (1956). Also see “Inconsistency” in Table 5-3. 



 
 

44 BOUNDARY ALGEBRA

4.4.7 (T18).  The LoF initials J1 and J2 are independent. 

Remark. That is, neither initial can be proved from the other alone. The very concise LoF proof of 
T18 is wholly syntactic and predicated on there being only two initials. Given that J1 and J2 can be 
demonstrated from C6 alone (cf. §6.2 and §A.4), and that I prefer to make B1 explicit, so that there 
are in fact three initials, T18 loses some of its luster. On axiom independence, also see Hunter 
(1971: §36) and Bostock (1997: §5.2). 
 



Chapter 5. 

pa: Proof. 

 “As a material machine economises the exertion of force, so a symbolic calculus economises the 

exertion of intelligence. …the more perfect the calculus, the smaller the intelligence compared to 

the results.”                   Thus begins Johnson (1892). 
 
What is conventionally termed a proof, LoF calls a demonstration, meaning a sequence of steps 
showing that two pa formulae, e.g., φ and γ, are equivalent. The consequence φ=γ results. Each step 
invokes an axiom, initial, or previously demonstrated consequence. R1 or R2 are seldom explicitly 
invoked in demonstrations. A demonstration is carried out entirely within an object language, the 
pa or other formal system. The correctness of a demonstration can be verified algorithmically, at 
least in principle. In LoF, proof applies only to (meta)theorems. A proof is necessarily metalinguis-
tic, may draw on any device from mathematics or logic, and cannot be verified by algorithm.1 

A demonstration of φ=γ consists of a sequence of formulae, beginning with φ. Each formula in the 
sequence results from a step, inferred from one or more preceding formulae in a manner to be dis-
cussed shortly. The demonstration terminates when a step results in the formula γ. Hilbert demon-

stration is the admittedly pedantic name I propose for an exercise of this nature. A Hilbert demon-
stration is a variant of common-garden mathematical proof. By virtue of the completeness of the pa 
(T17), there exists a Hilbert demonstration for any tautology. But T17 gives us no clue on how to 
find that demonstration; the proof of T17 suggests restating φ=γ in normal form. Hence if both φ 
and γ are hypothesized from the outset, it is usually easier to verify φ=γ by calculation. 

Hilbert demonstrations were once the only verification technique. During the past 50-odd years, 
however, the reigning fashion among logicians (in contrast to mathematicians doing logic) was first 
natural deduction and sequent calculi, both derived from Gentzen’s work in the 1930s, then refuta-
tion trees (Bostock 1997: §§4.1-4, 6.2, 7.4). 

A calculation,2 prefaced by Cal, is a type of demonstration that works hard the fact that α=β ⇔ 
α↔β. From this equivalence, it follows that α=β is logically equivalent to the pair of identities α′β 
= x = β′α, where x is a primitive value. A calculation methodically simplifies α′β and β′α to the 
same primitive value, as per the following algorithm: 
 

5.0.1. Algorithm. 

1. To simplify α′β is to alter α′β in a series of steps, justifying each step using one or more identi-
ties, by progressively eliminating variable instances and boundaries. The objective is eliminate 
all variables from α′β, so that the result is a primitive value. This is the LR (left to right) part of 
the calculation. If a primitive value cannot be obtained, STOP: α=β is not an identity; 

Remark. B2-B4 are especially powerful here, and C1-C6 can have considerable value. C7 can 
be useful as a last resort. 

2. Simplify β′α. This is the RL (right to left) part of the calculation. If a primitive value cannot be 
obtained, STOP: α=β is not an identity; 

3. If the results of (1) and (2) are identical, then α=β by T7. 
                                                           
1. Others who distinguish between proof and demonstration are Quine (1951: 319-22), Machover (1996: 

120), and Mendelson (1997: 36, fn. †). 

2. “Calculation”, a word not appearing in LoF, shortens Dijkstra and Scholten’s (1990: 21) calculation proof, 
meaning a series of steps that transform a given Boolean expression into True. 
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4. Equivalently, α=β holds if the biconditional (α′β′)(αβ) can be simplified to (). 
End of Algorithm 

 

 

5.1. A Decision Procedure. 

“An operand in the primary algebra is merely a conjectured presence or absence of an operator.” 
         (LoF, p. 88) 

A different proof procedure, very much in the spirit of the PA, follows from T16: If formulae are 

equivalent in every case of one variable, they are equivalent, and conversely. Let f〈a〉 and g〈a〉 be 
formulae containing the variable a. Let φ〈()/a〉 denote the uniform replacement of a by (), and so 
on. If f〈()/a〉=g〈()/a〉 and f〈⊥/a〉=g〈⊥/a〉, T16 concludes that f=g, regardless of the values of any 
other variables appearing in f and g. Hence f=g is a tautological equivalence. 

Consider the following algorithm for determining the satisfiability of f. Evaluate f〈()/a〉 and f〈⊥/a〉; 
let these be two branches. Then note the following facts: 
• Setting an unprimed [primed] variable to ⊥ [()] makes the variable vanish; 
• Setting an unprimed [primed] variable to () [⊥] results in (); 
• If both branches result in the same formula, they terminate; 
• If a branch simplifies to () or ⊥, it terminates. 

At any stage, a branch may be simplified by invoking a consequence; in this regard, B2, B3, and C2 
are especially useful. A branch containing a recognisable tautology terminates; set it to whichever 
of () or ⊥ is applicable. Repeat this procedure, each time selecting the remaining variable with the 
most instances so as to save labor. I find it useful to notate in the left margin of a row the variable 
being instantiated in that row. The structure of this algorithm is that of a tree; the algorithm termin-
ates when all branches of the tree have terminated. 

If all branches of the tree terminate with the same formula, the original formula is a tautology. If the 
branches terminate in a mixture of () and ⊥, the formula is satisfiable, with the pattern of () and ⊥ 
indicating the satisfying atomic valuations. This algorithm sufficiently resembles Quine’s (1982: 
§5) truth value analysis (TVA) that I have appropriated the name.3 

Fig. 2 gives, by way of example, a TVA proof of Leibniz’s (1969: 244) Praeclarum Theorema, 
[(p→r)∧(q→s)]→[(p∧q)→(r∧s)].  I give three demonstrations of the Theorema in §6.1. 
 

Fig. 2. 
Verifying Leibniz’s Praeclarum Theorema via Truth Value Analysis. 

                 (((p′r)(q′s)))((p′q′))(r′s′) 
p   (((r)(q′s)))((q′))(r′s′)         (((()r)(q′s)))((()q′))(r′s′) 
q          ((r′s′))(())(r′s′)  (((r)(()s)))((()))(r′s′)       (((()r)(q′s)))()(r′s′) [C2; B2] 

         ((r′s′))(r′s′) [B2]  (((r)(()s)))()(r′s′) [A2]   () [C2] 
       () [B3]   () [C2]        
 

                                                           
3. TVA first saw the light of day in the 1950 first edition of Quine (1982). I owe my discovery of TVA to 

Bostock’s (1997: §2.11) elegant treatment thereof, to my knowledge unique among contemporary texts. 
Prior (1962: 17) gives a good example of a TVA proof in tree form. N.B: the “truth value analysis” in 
Kalish et al (1980: §§II.8-9) is an unrelated concept. 
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Verifying both α′β and β′α by TVA amounts to a TVA verification of the equation α=β. Iterate the 
TVA until the set of formulae terminating the branches of α is the same as the set terminating the 
corresponding branches of β, in which case the equation if verified. In all other cases, the equation 
does not hold. 

Given a formula with n distinct variables, the construction of the corresponding truth table requires 
evaluating 2n PA formulae. This is always a tedious affair, but not an impractical one when n does 
not exceed three or four. Moreover, T3 assures us that a truth table and a pa demonstration must 
yield the same result. But thanks to TVA, any such resort to brute force is unnecessary. One round 
of the above algorithm, applied to the variable with the most instances, often suffices.4 
 

 

5.2.  More on the Initials B1-B4. 

All CTV tautologies can be verified by TVA. Furthermore, the axioms of the CTV are a small sub-
set of the set of all tautologies. From these undisputed facts, Quine (1951: *100; 1982: §13) argues, 
citing Herbrand, that all CTV tautologies are equally deserving of the honorific title of axiom 
(concurring voices include Smullyan 1968: 81, Wolf 1998: 79, and Cori & Lascar 2000: §4.1.1). 
This commendably egalitarian view, however, fails to distinguish the context of verification, i.e., 
determing the satisfiability of formulae, for which decision procedures are indeed adequate, from 
the context of discovery, one requiring proof from axioms or rules, trial, error, and inspiration.5  

With this in mind, we shall now explore other bases for BA. Because the pa is a Ba, the many pos-
tulate sets proposed for Ba (Rudeanu 1963: chpt. 5) are also possible pa bases. Bricken (1986) 
demonstrated B3 and C5 from B4, C2, and C3 (and, following LoF’s example, asserted order irrele-
vance without granting it an axiom); hence B1, B4, C2, and C3 can also serve as initials. B4, C2 
and C3 are very easily verified by a decision procedure, and B4 is more concise than C5. More im-
portant is that the examples in §5.4 will show how B4 and C2 alone suffice to justify most calcula-
tion steps. 

Bricken (2002) proposes a more economical basis consisting of the complement of C2, (a())=⊥, and 
an identity equivalent to B4 and T13 (see §3.1), and tacit order irrelevance. From this basis Bricken 
calculated C3. Bricken’s work, and the many detailed demonstrations in §§5.3-4, shows that adding 
B4 to B1-B3 is a Ba basis. In §A.1, I derive J1 and J2 from B1-B4, and B2 and B3 from J1 and J2. 
T18 in §A.9 proves B1-B4 independent. 

Table 5-1 shows how the B2-B4 can be seen as insertion/cancellation rules whose tacit goal is to 
make all variables vanish: 
• B3 Insert. Any formula may be written on both sides of an empty boundary. 
• B3 Cancel. If the entire content of a boundary also occurs in the pervasive space, both instances 

of that content may be erased, leaving an empty boundary. 
• B2 Insert/Cancel. (()) may be inserted/erased anywhere. 

                                                           
4. Ascertaining via truth tables the satisfiability of a Boolean formula having n distinct variables requires 

evaluating 2n interpretations. Hence the truth table decision procedure for CTV satisfiability is said to 
require exponential time. Whether there exists a decision procedure for satisfiability that is merely a poly-
nomial function of n (i.e., is said to be executable in polynomial time) is a major unsolved problem in 
computational mathematics; see Hodges (2001: 23-24) and references cited therein. While I submit that 
TVA is quicker and easier than truth tables, especially when n is not large, I cannot claim that executing 
TVA on a computer would require less than exponential time for any n. 

5. For a defense of Hilbert proof in contexts where a decision procedure is available, see Epstein (1995: 
§II.K.1). 
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• B4 Insert. Anything outside a boundary may be copied into a boundary. 
• B4 Cancel. If any part of the content of a boundary also occurs in the pervasive space, that part 

within the boundary may be erased. When a given subformula appears on both sides of a bound-
ary, the deeper instance is always redundant. 

 
Table 5-1.  The pa in a Nutshell. 

Initial Content 

of () 
Action Notation Antecedents 

B1 na The content of a subspace 
may be reordered at will. 

abc = acb 

abc = bca 

Dilworth (1938) 
Byrne (1946) 

Let there be a boundary, and let a appear outside it.   

B3 a 
Erase inner and outer a, 
leaving (). 

(a)a = () Natural deduction 

B2 () Write, erase (()) at will. (())a = a Huntington (1904) 
B4 ab Only the shallowest 

instance of a subformula is 
nonredundant. 

a(β〈a〉)=a(β〈⊥//a〉) (De)Iteration in Peirce’s 
Existential Graphs; cf. 2i,e 
in Table 6-1. 

 
Likewise, B3 and B2 can be seen as paired insertion and elimination (Fitch’s term was intelim) 
rules for () and ⊥, respectively. B3 establishes that BA is a complemented lattice. B3 can also be 
seen as the sole axiom of natural deduction, and as akin to the rule for closing a branch in a tableau 
(cf. Bostock 1997: chpts. 4,6). B4 assures that BA is a distributive lattice, and can be seen as a 
natural deduction intelim rule for ¬ and ∨/∧. 

It should now be clear why pa demonstrations here and in LoF work B2-B4 very hard. It is also a 
raw fact that consequences beyond these are not often required. Demonstrating C8 requires C6; cal-
culating it requires C7 as well. The proofs of T14-T18 invoke C8 twice and C7 once. The pa dem-
onstrations in §3.3 and §5.4 invoke C1 twice and C4 once. 

C5 is one of Huntington’s (1904) Ba postulates (cf. §6.2). To my knowledge, all demonstrations of 
C5 from postulate sets that do not include it are nontrivial. Is this why Spencer-Brown chose J2 as 
an initial? In any event, by deeming J2 an initial, all LoF consequences, C1 and C8 excepted, have 
easy demonstrations. The demonstration of C5 (equivalent to J2) from B1-B4 (cf. §A.1.2) is a bit 
involved, but this is amply offset by an easy derivation of C1 and by the calculating power, revealed 
in §5.4, that B3, C1, and B4 afford. 
 

5.2.1. The pa Recapitulated. The primitive basis of the primary algebra (pa) consists of: 
• The primary arithmetic, PA; 
• Variables (statement letters), with or without subscripts ranging over the natural numbers, 

inserted anywhere in a PA formula. ‘′’ and ‘…’ are improper symbols; 
• The initials (3.1.5) abc=bca, ⊥a=a, (a)a=(), and a(ab) = a(b); 
• The usual inference rules for equational logics, the substitution of equivalents (R1), and the 

uniform replacement of variables (R2). 
 
Juxtaposition is a tacit connective that commutes and associates. Hence the contents of a boundary 
and its pervasive space may be rearranged at will. The pa is well-suited to a decision procedure re-
sembling Quine’s truth value analysis. That decision procedure verifies the initials; other tautolo-
gies may be demonstrated, a la Hilbert, or verified by calculation. The pa is sound and complete, 
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and has two intended interpretations: 2 and the CTV. Boundary logic follows from the interpreta-
tion () ⇔ T [F], then αβ ⇔ α∨β [α∧β]. In either case, (α) ⇔ ~α.6 
 
 
5.3. The Usual Inference Rules of Logic. 

“…if one could find characters or signs appropriate for expressing our thoughts as neatly and as 

exactly as arithmetic expresses numbers or geometric analysis expresses lines, one could accom-

plish in all subjects in so far as they are amenable to reasoning all that can be done in Arithmetic 

and Geometry. For all investigations depending on reasoning would be performed by the transposi-

tion of characters and by a sort of calculus, which would render very easy the invention of beautiful 

results. Hence we would not need to worry our heads as much as we do at present, yet we would be 

sure that we could execute anything feasible. Moreover, we could convince everyone of what we 

had found or concluded, since it would be easy to verify the calculation… And were someone to 

doubt what I was proposing, I would say to him ‘Sir, let us calculate’ and thus… soon settle the 

question.”       Leibniz (1903: 155-56); emphasis in original.7 
 
The BA inference rules R1 and R2 suffice for equational logics. Table 5-2 shows a number of other 
truth functional inference rules that appear in conventional logic, including the modus ponens that 
defines ponential logics. It turns that that these rules are all special cases of a very general inference 
rule Wolf (1998: §§3.5, 4.2) calls propositional consequence (PC). 
 

Table 5-2. 

Some Common Instances of Propositional Consequence.  
Name φ1 φ2 φ3 χ Source 

Contrapositive α′ β  α′β 88 
Conjunction α β  (α′β′) 88 
modus ponens α α′β  β 79 
modus tollens α′β β′  α′ 88 
Biconditional α′β β′α  ((α′β)(β′α)) 85 
Syllogism8 α*β β′γ*  α*γ* --- 
Proof by cases αβ α′γ β′γ γ 84 
Source: Corresponding page number in Wolf (1998). 

 
First some definitions: 
 
5.3.1. Definition. An argument consists of one or more formulae called premises, and a formula 
called a conclusion. A clause (Cori & Lascar 2000: §§1.3.2, 4.4.1) links the conjoined premises to 

                                                           
6. Kauffman (2001) and Bricken (2002) exposit BA and boundary logic in a manner arguably more philo-

sophically attuned to LoF. §A.15 sketches Rosser’s (1969: chpt. 2) derivation of Ba from a handful of 
point set topology notions. Other possible approaches, not pursued here, to a deeper understanding of BA 
include mereology and mereotopology (Simon 1987; Casati and Varzi 1999), the cognitive approach to 
mathematics (Lakoff and Núñez 2001), and semiotics (Merrell 1995). 

7. From an essay in French titled “Préface à la Science Génerale.” The translation is mine, because Wiener’s 
translation (Leibniz 1951: 15) is inaccurate. 

8. Cal. (α*β)(β′γ*)α*γ* [B4,2x] = (β)(β′)α*γ* [B4; OI] = (β′α*γ*)β′α*γ* [B3] = ().   Validity requires 
that the letter not appearing in the conclusion (β in this case) appear primed in one premise, unprimed in 
the other. 
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the conclusion via the conditional. A valid argument is one whose conclusion follows from its 
premises. 
 
PC asserts that an argument is valid iff the corresponding clause is a tautology. More formally: 
 
5.3.2. Definition of PC. Let φ1…φn be premises, and χ be the conclusion. Then PC is: 
 
(1) φ1,…,φn  χ ⇔  [φ1∧…∧φn]→χ ⇔ (((φ1)…(φn)))χ [C3] = (φ1)…(φn)χ = (). 
 
Remark. The BA clause associated with an argument simply encloses each premise, then juxtaposes 
the conclusion and the enclosed premises. I have tacitly assumed that a clause contains a single con-
clusion but this is inessential; a clause can contain multiple conclusions, all juxtaposed. 
 
The satisfiability of a clause may be ascertained as follows: 
• Translate every premise and every conclusion into the pa; 
• Enclose each premise, then concatenate the premises and conclusions; 
• Invoke C1 to erase all duplicate instances of a subformula within a given subspace; 
• Invoke C3 to erase redundant parentheses; 
• Invoke B4 to erase redundant subformula instances at different depths; 
• Invoke J1 to erase any subformulae of the form (α′α). 
If the above results in a primitive value, the clause or its negation is always valid. If the result is a 
formula, the clause is valid under those atomic valuations satisfying that formula. 
 

Table 5-3.  Some Common Logical Rules and Their Boundary Derivations. 
Name Formal Version pa Derivation Source† 

Bostock’s (1997: 385) Structural Rules 

Basic Sequents‡ Γ,ϕ  ϕ,Δ Γ′ϕ′ϕΔ [B3] = (). p. 285 

INTerchange, L [Γ,ϕ,ψ,Δ Θ] → [Γ,ψ,ϕ,Δ Θ] (Γ′ϕ′ψ′Δ′Θ)Γ′ψ′ϕ′Δ′Θ [TR; B3] = 
(). 

§7.1 

        “             , R [Γ Δ,ϕ,ψ,Θ]→[Γ Δ,ψ,ϕ,Θ] (Γ′ΔϕψΘ)Γ′ΔψϕΘ [TR; B3] =() “ 

CONtraction, L [Γ,ϕ,ϕ  Δ] → [Γ,ϕ  Δ] (Γ′ϕ′ϕ′Δ)Γ′ϕ′Δ [C1; B3] = (). “ 

        “             , R [Γ  ϕ,ϕΔ] → [Γ  ϕ,Δ] (Γ′ϕ′Δ)Γ′ϕ′ϕ′Δ [C1; B3] = (). “ 

CUT [Γ  ϕ,Δ] ∧ [Φ,ϕ  Θ] 
 → [Γ,Φ  Δ,Θ] 

(((Γ′ϕΔ)(Φ′ϕ′Θ)))Γ′Φ′ΔΘ [C3; 
B4,4x] = (ϕ)(ϕ′)Γ′Φ′ΔΘ [B3] =() 

§2.5.C 

Machover’s (1996) Inference Rules 

Indirect proof, 
reduction 

Γ,~α  ⊥ ↔ Γ  α Γ′((α))⊥ [C3] = Γ′α . §7.8.9, 
15 

Deduction 
Theorem 

Γ,α  β ↔ Γ  α→β Γ′α′β = Γ′α′β. §7.7.2 

Inconsistency¶ [Γ  ⊥]  [Γ  β] (Γ′⊥)Γ′β [B2] = (Γ′)Γ′β [B3] = ()β 
[C2] = (). 

§7.8.6 

† Section of Bostock (1997) or Machover (1996) where the rule in question is introduced and 
discussed. 
‡ Replacing Bostock’s (§2.5) ASSumptions, and THINning from the left and right. 
Note: L=left; R=right. A lower [upper] case Greek letter denotes a single formula [set of formulae]. 
A primed upper case letter signifies that each constituent formula is primed. 
¶ Cf. §A.1.3 and text related to §4, fn. 15. 
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Table 5-3 presents the usual inference rules of contemporary logic, taken from Machover (1996) 
and Bostock (1997), along with their boundary justifications. The boundary variant of the syntactic 
and semantic turnstiles is: prime all objects to the left of the turnstile, then concatenate everything 
on both sides of the turnstile. This done, the inference rules in Table 5-3 are all trivial pa conse-
quences. 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

Basic Sequents and Inconsistency are all B3 in another guise; ditto for INT and B1, CON and C1, 
and Indirect Proof and C3. The Cut Rule is the only rule whose demonstration invokes B4. Its 
meaning is simpler than may appear: if both ϕ and ϕ′ appear in the premises, ϕ is irrelevant to the 
conclusion.9 

The molecular subformulae making up the BA representation of a clause can be permuted at will. 
Hence all partitions of these molecular subformulae into premises and conclusions have the same 
BA translation and hence are equivalent. In particular, (φn) and  in (1) can be transposed; the 
result is the boundary logic equivalent of the Deduction Theorem. Moreover, the validity of a clause 
does not depend on whether any particular molecular subformula is included among the premises or 
the conclusion, as long as any formula moved from one side of the turnstile to the other is first 
enclosed. This is presumably why boundary logic dispenses with all turnstiles. 
 

 

5.4. Some Worked Examples from Logic Texts. 

“…the calculus published in this text renders [standard university logic problems] so easy that we 

need not trouble ourselves further with them...”              LoF, p. viii. 
 
I now give a number of worked examples showing that CTV proofs in undergraduate textbooks can 
be greatly simplified if the problem is first translated into BA notation, as per Table 4-2, and the 
proof carried out as a pa demonstration or calculation, as described in §5.0. The following metathe-
orem justifies this procedure. 
 
5.4.1. Theorem. The BA and the CTV have the same expressive power. In symbols, BA  CTV and 
CTV  BA. 

Proof. See §A.10. 

 
Many of the demonstrations in the rest of this section are in columnar form, with the annotations 
written to the right of each step. Text about to be deleted in the next step is underlined. As before, a 
new instance of a subformula or of nested parentheses is shown in bold. B2 usually can do what A2 
does; A1 is very seldom required. 

If a step invokes one of C5-C8, the annotation may be more complicated, building on the fact that 
BA formulae can be taken as schemata, in which case they are stated using upper case letters. E.g., 
C6 is assumed to take the form (A′B′)(A′B)=A. R2 allows the uniform replacement of any upper 
case statement letter by a subformula. Substitutions are notated as per the following example. If the 
subformulae α and β are substituted for A and B in C6, the annotation is ‘C6, α/A, β/B’, with the 
actual values of α and β written using lower case letters. 
 

                                                           
9. This is the essence of the resolution method (Cori & Lascar 2000: §4.5) built into many theorem proving 

programs, and of LoF’s (p. 123) unproved Interpretive Theorem 1, which nowhere mentions the Cut Rule. 
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Example 1. I now carry out six exercises whose proofs in standard texts are rather involved. The 
first two are from Nolt et al (1998: 4.46, 109). I chose them because the corresponding demonstra-
tions in Nolt et al are the longest purely sentential proofs in that text, respectively 18 and 21 lines 
long. 
 
Dem. (p→q) ↔ ~(p∧~q) ⇔ (p)q = (((p)((q)))) [C3, 2x] = (p)q.       
 
I have taken the liberty of translating ‘↔’ as ‘=’. To anyone experienced in the pa, that p→q and 
~(p∧~q) are tautologically equivalent is evident at a glance. 

The next exercise is to verify the clause: 
 

  ~s↔(~p∨~v), v∧p  s From the conjunction of everything to the left of ‘ ’, infer the 
alternation of everything to the right of ‘ ’. 

 ⇔ (((((sp′v′)((p′v′)s′)))((v′p′))))s  
                      (sp′v′)((p′v′)s′)v′p′s C3, 3x 
                      (sp′v′)sp′v′((p′v′)s′) TR, 4x 

   () B3.          
 
The next two exercises, from Kalish et al (1980: 417, 66f), are tautology verifications. 
 
    (a→b) → [(a∧b) ↔ a)]                [(~a→r)∧(b→r)] ↔ [(a→b)→r] 

⇔ (a'b)((((a'b'))a)(a'(a'b')))    ⇔ ((((ar)(b'r)))((a'b)r))(((ar)(b'r))(a'b)r) 
           (a'b)((a'ab')(a'(a'b')))   C3; TR       ((ar)(b'r)((a'b)r))((a'(b'))(a'b)r) C3; B4,2x 
                     ((a'(a'b')))(a'b)   J1; TR           ((ar)(b'r)((a'b)r))((a'b)(a'b)r) C3 
                        ((a'(b')))(a'b) B4                              ((ar)(b'r)((a'b)r))((a'b)r) C1 
                            ((a'b))(a'b)  C3          ((ar)(b'r))((a'b)r) B4 
                                           () B3.                                                  r((a'b))(a'b)r C5 
               () C3; B3   
 
Kalish et al require 27 and 32 lines, respectively to verify that these formulas are tautologies. The 
latter demonstration fills an entire page and is preceded by five pages of discussion. 

I have not reproduced here the four demonstrations in Nolt et al and Kalish et al, because they 
require a total of 102 lines, and invoke natural deduction techniques that are beyond the scope of 
this book, typographically as well as logically. The corresponding pa calculations require a mere 26 
steps. 

The next exercise (MacKay 1989: exercise 9m.4) requires determining the satisfiability of 
((p↔~q)↔~p)↔~q. I translate α↔~β as ((α′β′)(αβ)). To avoid working with a single long formu-
la, I break up the rightmost biconditional into two conditionals. 
 

((p↔~q)↔~p) → ~q    ~q → ((p↔~q)↔~p) 

        ⇔ (((p′q′)(pq)p)(((p′q′)(pq))p′))q′      ⇔ q((p′q′)(pq)p)(((p′q′)(pq))p′) 
            (((p′)(q)p)(((p′q′)p′q′(pq))p′))q′    B4,4x        q((p′q′)(pq)pq)(((p′q′q)(p))p′)     B4,3x 

    (((p′)p)( p′))q′    J1; B4        q(((p))p′)     J1,2x 
         ((p)( p′))q′     B4           q     J1.    

           q′     J1.       
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As one conditional simplifies to q′ and the other to q, their conjunction evaluates to ⊥ by C3 and 
B3. While this calculation is a bit involved (14 steps), mainly because ‘↔’ lacks a concise pa rep-
resentation, it requires only J1 and B4. By contrast, MacKay’s (pp. 368-69) proof is 43 lines long 
and invokes 11 natural deduction rules. 

The most spectacular example of this nature I have saved for last. Leblanc and Wisdom’s (1976: 
395) proof of [p∨(q→r)]↔[(p∨q)→(p∨r)] is 42 lines long and invokes eight natural deduction 
rules. If the single instance of ‘↔’ is taken as ‘=’, the pa demonstration is well-night trivial:  Dem. 
pq′r [TR] = q′pr [B4] = (pq)pr.  
 

Example 2. Quine (1982: 69) introduces the DNF as a method for determining satisfiability, and 
builds his exposition of the DNF around a six page discussion of: 
 
(1) ~(((p→(~s∧q))→~((s∧q)→p))∧~(~(r∧p)∧~(p→s))), 
 
which he deemed “forbidding”. Because (1) includes five instances of conjunction and none of 
alternation, I translate it using the dual reading, so that x∧y ⇔ xy, not (x′y′). 
 
⇔ (((p(s′q))(((sq)p′)))((rp)(ps′)))  

(((p(s′q))(sq)p′)χ)    C3; let χ=((rp)(ps′)) 
              (((p′p(s′q))(sq)p′)χ)    B4; TR 

            (((sq)p′)χ)    B3 
          (((sq)p′)((rp)(ps′)))    Expand χ 
              (((sq)p′)p(r′(s′)))       C5 
                  (((sq)p′)p(sr′))       C3; TR 

   ((p′p(sq))p(sr′))    B4; TR  
      ((()(sq))p(sr′))    B3 
           (p(sr′))    C2; B2.         

 
Conclusion: (1) is satisfied when p→s→r is. Note how this technique easily reveals the irrelevance 
of q, and even of all of (1) to the left of the third ‘∧’. 
 

Example 3. The following two examples are from recent texts. Hurley (2000: 415, exercise 19) asks 
students to verify the clause: 
 
   a→(nn′)→s∨t, t→(f∧~f) ∴ a→s. 
      ⇔ (a′(nn′)st)(t′(ff′))a′s   
              (a′st)(t′)a′s J1,2x 
       (a′st)a′st C3; TR 
        () B3.  
 
Hurley’s natural deduction proof (p. 653) requires 19 steps and invokes 13 rules. 

Lepore’s (2003: 131) exercise 8.5.2 asks whether ((p∧q∧k)∨~r) and (r→(~q→ (p∧~(v∨~j)))) are 
equivalent. Following Lepore, I set up two conditionals then calculate each: 
 
((p∧q∧k)∨~r) → (r→(~q→(p∧~(v∨~j))))  (r→(~q→(p∧~(v∨~j)))) → ((p∧q∧k)∨~r) 

       ⇔ ((p′q′k′)r′)r′q(p′vj′)          ⇔ (r′q(p′vj′))(p′q′k′)r′  
    ((p′q′k′))r′q(p′vj′) B4        (q(p′vj′))(p′q′k′)r′ B4 
         p′k′r′q′q(p′vj′) C3; TR, 2x             (q(vj′))(q′k′)p′r C5. 



 
 

54 BOUNDARY ALGEBRA

       () B3; C2.       (qv′)(qj)(q′k′)p′r C7. 
 
The conditional on the right cannot be simplified any further. Hence the two halves of the bicondi-
tional do not simplify to the same formula, and the two statements are not equivalent. Note the use 
of C7 on the right to obtain a NF that is more nakedly revealing of the inability to proceed further. 
Lepore’s worked answer using refutation trees is 25 lines long, invokes 6 rules, and fills all of his p. 
389. 
 
Example 4. The following detailed example of how the pa simplifies clausal reasoning reworks 
Stoll’s (1963: 184) Example 4.4.3, reproduced in Table 5-4. A lone ‘p’ in columns 3 or 7 of that 
Table identifies a row containing a premise. A ‘t’ in these columns signifies that an unspecified 
tautology has been invoked. The numbers in columns 4 and 8 are the row numbers of the premises 
upon which the formula in a given row depends. The overall conclusion is in row 13. Readers 
unversed in natural deduction need only take away from Table 5-4 the relative opacity of its 
content. 
 

Table 5-4.  Stoll’s (1963) Example 4.4.3. 

1 2 3 4  5 6 7 8 

1 ~C∧~U  p 1      8 (W∨P)→I  P 8 

2 ~U 1,t 1    9 I→(C∨S)  p 9 

3 S→U  P 3  10 (W∨P)→(C∨S) 8,9,t 8,9 

4 ~S 2,3,t 1,3  11 ~(W∨P) 7,10,t 1,3,8,9 

5 ~C 1,t 1  12 ~W∧~P 11,t 1,3,8,9 

6 ~C∧~S 4,5,t 1,3  13 ~W 12,t 1,3,8,9 

7 ~(C∨S) 6,t 1,3      
 
Stoll’s example can be recast as the following clause: 

 
Premises: (CU)  ⇔ ~C∧~U   Conclusion:  (W) ⇔ ~W 

(S)U  ⇔ S→U 
(WP)I  ⇔ (W∨P)→I 

(I)CS  ⇔ I→(C∨S) 
 
A pa calculation verifying this clause goes as follows: 

((CU))((S)U)((WP)I)((I)CS)W′ Enclose premises, concatenate premises & conclusion. 

     CU((S)U)((WP)I)((I)CS)W′ C3 

           CU((S))((WP)I)((I)S)W′ B4,2x 

     CUS((WP)I)((I)S)W′ C3 

            CUS((WP)I)((I))W′ B4 

              CUS((WP)I)IW′ C3 

               CUS((WP))IW′ B4 

                    CUSWPIW′ C3 

                    PIW′WCUS TR 

          () B3; C2.         
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Deciding where to introduce any given premise into Stoll’s proof requires nontrivial reflection. The 
pa calculation, on the other hand, introduces all premises at the outset, then mechanically prunes re-
dundant instances of variables (boundaries) by invoking B4 (C3). When a primed and unprimed in-
stance of the same variable appears in the pervasive space, B3 and C2 terminate the calculation. I 
submit that the above calculation is vastly simpler than Stoll’s proof. The pa also reveals that any 
valid argument from Stoll’s premises requires that at least one variable appearing in the premises 
also appear primed in the conclusion. 
End of Examples 

 
These examples reveal that pa calculations are much easier than conventional proofs. The simplici-
ty of pa calculation stems from: 
• A notation that fully embodies the expressive adequacy of {∨/∧,~}; 
• Working very hard a mere five rules, TR, B2-B4, and C3. 
The 10 demonstrations in Examples 1-4 employ all other resources of the pa a mere four times: C5 
twice, and C1 and C7 once apiece. That the pa accomplishes so much with so little reveals that in 
practice, the pa is more than just a new notation for the CTV and 2.10 
 

 

5.5. Syllogisms as Clauses. 

“If, as I hope, I can conceive all propositions as terms, and hypotheticals as categoricals... this 

promises a wonderful ease in my symbolism and analysis of concepts, and will be a discovery of the 

greatest importance.”                          Leibniz (1966: 66).11 

The syllogism of traditional logic is the oldest and most intensively studied clausal form. Let  α and 
β be metavariables standing for terms. Linguistically and intensionally, a term is a common noun or 
a noun phrase. Mathematically and extensionally, a term is a set, in which case ‘all α are β’ may be 
seen as shorthand for ‘all members of set α are also members of set β’, i.e., α⊆β. A categorical 

form has the structure “[All/Some] α are [Not] β.” A syllogism is a clause consisting of two prem-
ises and one conclusion, each in categorical form. There are three terms, with one term appearing in 
both premises. For a modern overview of the syllogism, see Kneebone (1963: 8-22). 

Table 5-5 shows how to interpret the pa as a logic of terms and categorical forms, if let ters are 
reinterpreted as term names. Letting, as before, a ‘*’ after a variable denote a literal, the pa notation 
(α′β*)* captures all possible categorical forms. Then monadic logic works as follows. Let Aa=() if 
it is indeed the case that a is a member of set α; likewise for Bb and the set β. Quine (1982: §§18-
20) designed his Boolean term schemata (BTS in Table 5-5) so as to embody the Boolean structure 
common to the syllogism, the logic of terms, and the monadic predicate calculus. The resulting 
notation is (unwittingly) very similar to that of the pa.12 
 
                                                           
10. I invite the reader to compare the demonstrations in LoF and here with those in Nidditch (1962), a book 

comparable to LoF in size and time of writing, also intended for undergraduate instruction, but far more 
conventional in approach. Deferring to intuitionist logic, Nidditch posits 11 algebraic axioms and the rule 
modus ponens, then proves 4 lemmas and 58 theorems (a category that lumps together what are here 
called (meta)theorems and consequences). 

11. Original in Leibniz (1903: 377, §75). 

12. Leibniz algebraized the categorical forms in a manner closely related to the one set out in the text. In 
paragraphs 83-87 of a paper written in 1686 but published only in 1903, Leibniz (1966: 67-68) wrote 
αβ*=α and αβ*≠α where I write α′β* and (α′β*). Also see Leibniz (1966: xlvii, Scheme III). 
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Table 5-5. 
Alternative Notations for the Four Categorical Forms. 

* Categorical Form pa BTS Monadic Logic Set Algebra 

(1) (2) (3) (4) (5) (6) 

A All α are β α′β -αβ′ ∀x[Ax→Bx] α⊆β 

E No α are β α′β′ -αβ ∀x¬[Ax∧Bx] α∩β=∅

I Some α are β (α′β′) αβ ∃x[Ax∧Bx] α∩β≠∅

O Some α are not β (α′β) αβ′ ∃x¬[Ax→Bx] α∩β′≠∅

*  These abbreviation are from medieval logic. 
 
The clause (α′β)(β′γ)α′γ corresponds to the syllogism medieval tradition named ‘Barbara’.13 This 
clause is an instance of the more general clause (α*β)(β′γ*)α*γ* (cf. Table 5-2), which admits of 
24 possible permutations, and tradition indeed asserts the validity of 24 syllogistic forms. 
Unfortunately, not all of those forms correspond to one of the 24 permutations of (α*β)(β′γ*)α*γ*. 
Determining the number and form of the possible variants of (α*β)(β′γ*)α*γ* admitted by tradition 
is a nontrivial combinatoric exercise. There are three meaningful permutations of (α′β)(β′γ)α′γ, one 
for each possible position of α′γ. There are also six possible permutations of (α′β)(β′γ′)α′γ′. Given 
any of the latter, if both terms in a premise are primed, the terms may commute. Thus 
(α′β)(β′γ′)α′γ′ gives rise to three permutations, for a total of 15 valid syllogisms thus far. 

If we assume that at least one of α, β, or γ is nonempty, i.e., that at least one of α≠⊥, β≠⊥, or γ≠⊥ 
holds, then variants of the clause (α′β)(β′γ*)(α′γ*)* can be valid, where each ‘*’ stands for the 
presence or absence of a ‘′’. (β′γ′)(α′β)(α′γ) is valid if α≠⊥ or γ≠⊥. Moreover, permuting β′γ′ does 
not affect validity, resulting in four valid syllogisms. (α′β)(β′γ′)(α′γ) is valid if α≠⊥; β′γ′ can again 
be permuted, resulting in two valid syllogisms. (α′β)(β′γ)(α′γ′) is valid if at least one of α≠⊥, β≠⊥, 
or γ≠⊥ is the case, resulting in three valid syllogisms. The approach of this paragraph yields nine 
more valid syllogisms, for a total of 24. These 24 include five pairs whose members differ only in 
that where one has “all” in the conclusion, the other has “some.” 

Hence Appendix 2 of LoF is mistaken when it asserts that Barbara (by which Spencer-Brown meant 
(α*β)(β′γ*)α*γ* ) nests all 24 valid syllogisms. Barbara nests only the 15 syllogisms not requiring 
that one or more terms be assumed nonempty. (α′β)(β′γ*)(α′γ*) is not an instance of Barbara, but 
can be valid given suitable nonemptiness assumptions. Deriving the necessary and sufficient 
conditions for a syllogism to be valid, I leave to future research. 

The above approach is essentially that of Lukasiewicz (as per Prior 10.11), who formalized the 
syllogism by adding term variables to the CTV, extending the scope of R2 to such variables. He 
then introduced four axioms which, when translated into the pa notation of this section, are: 
• α′α=(). B3 holds for term variables; 
• (α′α′) [C1; C3] = α = (). In effect, all terms are assumed nonempty; 
• Two axioms equivalent to asserting that (α′β)(β′γ*)α′γ*=() holds for term variables. 
On this and other attempts to algebraize the syllogism, see Prior 10.11-6. None of these alternatives 
are as simple as (α′β)(β′γ*)(α′γ*)*, or reveal that elementary Ba suffices for syllogistic logic if all 

                                                           

13. Barbara follows from the CUT rule (Table 5-3) when both Δ and Φ are empty. 
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terms are assumed nonempty. At any rate, the pa nicely trivializes what had been a rather involved 
subject for over 2000 years.14 
 

 

5.6.  Segue to First Order Logic, or How to Quantify sans Quantifiers. 

“Civilization advances by extending the number of important operations which we can perform 

without thinking about them. Operations of thought are like cavalry charges in a battle—they are 

strictly limited in number, they require fresh horses, and must only be made at decisive moments.”
              Whitehead (1948: 61). 
 
Let there be a domain composed of one or more individuals. Associated with each individual is an 
alphanumeric symbol string called its name. A variable now stands for any individual in the do-
main. Equivalently, a variable is said to range over the domain. Variables are implicitly quantified, 
with the scope of quantification determined by the depth of the shallowest instance of a variable. 
This approach to quantification, by the way, renders moot the whole matter of vacuous quantifica-
tion. Just what is to be included in the domain can vary from application to application. The result-
ing mutability of quantified logic is part of what renders it philosophically nontrivial. For more on 
first order logic, see the discussion of the “calculus of quantified values” (CQV) in A Précis of 

Mathematical Logic. 

Let ϕ〈ε/α〉 mean that an instance of the name ε replaces every instance of the variable α in ϕ, and 
likewise for ϕ〈α/ε〉. If ξ=ϕ〈ε/α〉 or ϕ〈α/ε〉, then ϕ and ξ form a substitution pair. The fundamental 
principles of quantification theory are: 
• I1. The cancellation property inherent in B3 holds for substitution pairs. 
• QN. A stand-alone variable may be written outside any boundary and erased at will. 

These principles result in the axioms for quantification shown in Table 5-6. 
 

Table 5-6. Quantification Axioms. 

Label Axiom 

I1 (ξ)ϕ = (ϕ)ξ = () 
QN (ϕ) = α(ϕ)† 
† ϕ must have an even number of 
  variables at depth 0; cf. I. 

 
QN in conventional notation is Qα[¬ϕ〈α〉] ↔ ¬Q*α[ϕ〈α〉].15 

The cancellation property implied by A2 also applies to variables and substitution pairs, but does 
not normally come into play. In particular, A2 generalized for quantification is not needed in the 
following trivial derivations of the four fundamental rules of quantification theory: 

                                                           
14. Other formalizations of the syllogism include Church (1956: Ex. 46.22), using monadic first order logic, 

and Halmos and Givant (1998: §52), using a proper extension of Ba they call “monadic algebra.”  

15. Following Quine (1951) and Zeman (1967), the approach to quantification theory advocated here does 
not allow for open formulae. 
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UG: (ϕ〈α〉(ϕ〈α/ε〉)α) = (ξ(ϕ)) [QN. This is EG] = ⊥ [I1]. 
EI: α(ϕ〈α〉(ϕ〈ε/α〉)) = (ϕ(ξ)) [QN. This is UI] = ⊥ [I1]. 
 
The shallowest instance of α in EI and UG is stand-alone. In these cases the term introduced via 
substitution must be new to the demonstration. Combining EG and EI yields α(ϕ(ξ))(ξ(ϕ)). Inter-
preting the biconditional as equivalence implies ξ=ϕ, with the quantification of α understood to be 
existential. Combining UI and UG yields (ϕ(ξ))(ξ(ϕ)α), which cannot be interpreted as a bicondi-
tional. Hence invoking UI results in a conditional rather than an equation, and UI is the only 
irreversible step in boundary logic.16 

There are, as yet, no proofs, using boundary notation, of the well-known metatheory of FOL 
(undecidable except in special cases such as when the atomic formulae are all monadic, completa-
ble, Löwenheim-Skolem property). 

Quine’s Main Method: An Extended Worked Example. 
I now describe the “main method” of Quine (1982: §30) for verifying quantified formulae and 
clausal forms.17 To replace all instances of a variable with a particular name letter is to instantiate 
the variable. When instantiating a variable, begin by erasing any stand-alone instances. A variable 
can always be instantiated mechanically, by a name letter that is new to the proof at hand. If the 
shallowest instance of a variable has even depth, no other form of instantiation is allowed; this is 
the substance of EI. If the shallowest instance of a variable has odd depth, it can be instantiated with 
a name letter previously introduced by EI or UI. The goal of UI is to choose name letters in such a 
way as to make all atomic formulae disappear using BA rules.  

The following worked example demonstrates how boundary notation facilitates the main method. 
The problem, taken from Quine (1982: 192), requires showing that the following formulae are mu-
tually inconsistent: 
 
     ∃u∀yFuy,      ∀x∃v∀y¬(Fvy∧Fyx),        ∀x∀y∃w[Fxy→(¬Fxw∧Fwy)∨(Fyw∧Fwx)]. 
 
Translate each formula into the dual interpretation, then concatenate the translations: 
 
    u(y(Fuy))(x(v(FvyFyx)))(Fxy((((Fxw)Fwy)(FywFwx)))). 
 
Note how I indicate that x and y are universally quantified, and that u and v are existentially 
quantified. Now carry out any obvious truth functional simplifications: 
 

= u(y(Fuy))(x(v(FvyFyx)))(Fxy((Fxw)Fwy)(FywFwx)) [C3] 
 
Instantiate the existentially quantified variables, recalling the convention that letters early in the 
alphabet serve as names. Here I introduce another convention: the first time a name replaces a 
variable, write the name in boldface: 
 

= (y(Fay))(x((FbyFyx)))(Fxy((Fxc)Fcy)(FycFcx)) EI u/a, v/b, w/c 
                                                           

16. The standard axioms for quantification (Bostock 1997: 387) are UI and (α(ξ〉α〈(ϕ〈α〉)) ((ξ〉α〈(ϕ〈α〉)))) = 
(()), and UG taken as a rule. Note that the approach to quantification taken here works hard the substitu-
tion of variables for names and vice versa. There exist quantification axioms dispensing with substitu-
tions (and the rule of generalization); see Tarski and Givant (1987: 8). 

17. A good secondary source for the main method is Ullian (2004: 279-80), who says it is similar to the 
“semantic tableau” method, better known as the method of refutation trees.  
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(1) = (y(Fay))(FbyFyx)(Fxy((Fxc)Fcy)(FycFcx)) C3 
 
Now replace the universally quantified variables x and y with names just introduced by EI, chosen 
with the goal of eliminating all atomic formulae from (1). (That this step cannot be wholly 
mechanical follows from the undecidability of FOL.) Hence I use ‘⇒’ instead of ‘=’ to link the 
formula created by UI to its predecessor. I first instantiate x mechanically: 

 
⇒ (y(Fay))(FbyFya)(Fay((Fac)Fcy)(FycFca)) UI x/a 

 
A universally quantified variable can be instantiated more than once, and the results concatenated. 
Moreover, the scope of an instantiation can be confined to what lies between a matched pair of par-
entheses. These facts, and the parallelism between FbyFya and FycFca, suggest instantiating y 
twice, once as b: 
 

⇒ Fab(FbyFya)(Fab((Fac)Fcb)(FbcFca))  UI y/b, 
 
and once as c: 
 

⇒ FabFac(FbcFca)(Fab((Fac)Fcb)(FbcFca)) UI y/c. 
 
Crucial to the final three steps is that depth 0 contains instances of both Fab and Fac: 
 

= FabFac(FbcFca)(((Fac)Fcb))     B4,2x 
= FabFac(FbcFca)(Fac)Fcb       C3 
= (Fac)FacFab(FbcFca)Fcb          TR 
= ()     B3; C2.  

 
As the dual interpretation of () is false, the formulae are inconsistent.      
 
While identity is absent from this exercise, dealing with it is trivial. Any instance of the atomic 
formula σ=τ can be eliminated by replacing one or more instances of σ by τ, or vice versa. 

Bostock’s (1997: 387) axioms of quantification, and his rule of generalization GEN, are but trivial 
consequences of I1: 
 
A4: ∀α[φ]→φ〈τ/α〉           Dem.  (φα(φ〈τ/α〉)) = (φ(ψ)) = ⊥ [I1]. 
A5: ∀α[φ〉α〈→ξ]→(φ〉α〈→∀α[ξ]).       Dem.  ((αφ(ξ))((αφ(ξ)))) = ⊥ [I1]. 
GEN: If φ〈β〉 then ∀α[φ〈α/β〉].          Dem.  (φβ(φ〈α/β〉)α) = (φ(ψ)α) = (φ(ψ)) [QN] = ⊥⊥ [I1]. 
 
I now derive Tarski’s quantification axioms (Tarski and Givant, 1987: 8; ∀,→ primitive), which 
dispense with the rule of generalization and the notion of substitution: 
 
∀x∀yφ→∀y∀xφ.  Dem.  (x((y(φ))))(y((xφ))) [QN,4x] = ((((φ))))(((φ))) [I1] = (). 

∀x[φ→ψ]→(∀xφ→∀xψ). Dem.  (x(φ(ψ)))((x(φ))(xψ)) [QN,3x] = ((φ(ψ)))(((φ))(ψ)) [C2,2x] = 
   φ(ψ)(φ(ψ)) [I1] = (). 

UI:   ∀xφ→φ.   Dem.  (x(φ))(φ) [QN] = ((φ))(φ) [I1] = (). 

UG:  φ→∀xφ (x new).  Dem.  φ(xφ) [QN] = φ(φ) [I1] = (). 
Historical Antecedents and Contemporary Parallels. 
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The approach to quantification theory set out here originated with Peirce’s  (4.372-509) beta exist-
ential graphs. While Peirce employed predicate letters and dispensed with variables by means of a 
graphical device, he effectively understood that the parity of a variable’s shallowest instance deter-
mined the type of quantification. Zeman (1964) was the first to appreciate that the beta graphs were 
isomorphic to first order logic with identity. Also see Zeman (1967) and Shin (2002). The “main 
method” has affinities to refutation trees (e.g., Bostock 1997: chpt. 4; Ullian 2004: 279), and to 
Lepore’s (2003) emphasis on the adequacy of UI, EI, and QN. 



Chapter 6. 

Historical Antecedents and More Axiomatics. 
 

6.1. Peirce‘s Alpha Existential Graphs. 

“The spatial relations of written symbols on a two dimensional writing surface can be employed in 

far more diverse ways than the mere following and preceding in one-dimensional time, and this 

facilitates the apprehension of that to which we wish to direct our attention. In fact, simple sequen-

tial ordering in no way corresponds to the diversity of of logical relations through which thoughts 

are interconnected.”            Frege (1882: 87) 

”[A thorough understanding of mathematical reasoning] is the purpose for which my logical 

algebras were designed but which, in my opinion, they do not sufficiently fulfill. The system of 

existential graphs is far more perfect in that respect...”          Peirce (4.429, 1903) 
 
This chapter builds on Kauffman’s (2001) finding that the pa has a distinguished ancestry owing 
nothing to LoF, namely the graphical logic to which C.S. Peirce devoted much of the last 20 years 
of his life. Peirce’s logical graphs are planar representations of logic formulae, consisting of ovals, 
called seps, that may be nested, and atomic formulae written anywhere. (Peirce usually referred to 
seps as cuts, a term I avoid because of possible confusion with the Cut Rule of conventional logic, 
discussed in §5.3.) The graphical logic has but one very simple syntactic rule: seps cannot intersect. 
Seps and BA boundaries are functionally identical and have a common logical interpretation: 
denial.1 

Peirce devised two systems of graphical logic, the entitative and existential graphs. In the former, 
the blank page denotes falsity, so that alternation interprets juxtaposition. LoF (p. 5) unwittingly 
concurs with this entitative interpretation of the blank page. Hence the entitative graphs and the 
primal reading of the pa share the same semantics. In the existential graphs (EG), the blank page 
denotes truth and juxtaposition denotes conjunction. Hence the EG are dual to the entitative graphs. 
Peirce developed the EG at far greater length, even subtitling them “My Chef d’Oeuvre” (4.347-
529, 1903); hence I say no more about the entitative graphs. The scope and power of Peirce’s 
graphical logic did not become clear until Roberts (1973).2 Nevertheless, that logic is a major pre-
cursor to boundary logic.3 

                                                           
1. An advantage of the alpha graphs is that they dispense with formula definitions such as 2.1.4: any (finite) 

nesting or juxtaposition of nonintersecting seps is well-formed. 

2. Roberts (1973) evolved out of his 1963 PhD thesis. Zeman’s (1964) thesis, never published, likewise saw 
that alpha is isomorphic to CTV, and went beyond Roberts by proving that the beta graphs are isomorphic 
to first order logic with identity. However, Roberts was the first to give this fact wide currency. Shin 
(2002) includes a thorough exposition of alpha and beta, and discusses (§§2.4, 2.5) Peirce’s view of logic 
as a form of semiotic. This section has not benefited from Hilpinen’s (2004) survey of Peirce’s logic. 

3. By pointing out parallels between BA and Peirce’s graphical logic, I do not wish to suggest plagiarism. 
LoF is an undergraduate text, not a scholarly tract. Moreover, LoF predates the publication of Peirce 
(1976), containing the excerpt from Peirce’s 1886 paper on the “sign of illation” (cf. §4.2 above) that is 
crucial to the historical claims I make here. LoF cites Volume IV of Peirce’s Collected Papers (Peirce 
1933), which includes 115pp on the logical graphs, but no aspect of LoF hints at the graphical logic in any 
way. In any event, Spencer-Brown could easily have overlooked this part of Peirce’s oeuvre, as it was dis-
missed or ignored until Roberts (1973). Roberts also made extensive use of Peirce’s unpublished papers, 
not accessible to scholars before 1956 and not catalogued until 1967. LoF was also written in a time (the 
1960s) and place (the UK) where the sparse secondary literature, cited in Roberts, on Peirce’s graphical 
logic was easy to overlook and hard to access. 
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Table 6-1. 
Peirce’s Existential Graphs and Boundary Logic 

Name in 

 Roberts (1973) Remarks BA

  
CV0 

(4.394, 1903) 
What is not forbidden is permitted. 
This contradicts the PA Convention of Intention. 

 

CV1 
A blank surface asserts truth. Sometimes referred to as SA, the 
“sole axiom” of the alpha graphs. 

T1 
Dual reading

CV2 A graph asserts some truth about the domain.  T2
CV3 ab ⇔ a∧b. Dual reading

CV4  a b ⇔ (a(b)). “ 

CV5 a  ⇔ (a);  ⇔ () ⇔ false. “ 

R1i.  Insert Odd Any subgraph may be written in an odd depth. 6.1.1 

R1e. Erase Even Any evenly enclosed subgraph may be erased. “ 

R2i.  Iteration a(b)→a(ab); a→aa. T13, C1 

R2e. Deiteration a(ab)→a(b); aa→a. “ 

R3i.  Insert 
double cut 

a→((a)). (()) may enclose anything or nothing. C3, A2 

R3e. Delete 
double cut 

 ((a))→a. Erase any instance of (()). “ 

 
The EG are of three kinds, the first of which, alpha (hereinafter alpha graphs), is isomorphic to the 
pa. The alpha graphs are governed by six conventions (definitions, more or less), and four rules of 

transformation, akin to natural deduction rules. These conventions and rules are shown in Table 6-
1, where CVn denotes the nth convention, and Rn the nth rule of transformation. The third column 
of this Table proposes BA counterparts to the alpha rules and conventions.4 

SA stands for “sheet of assertion,” the blank surface on which graphs are to be written. The blank 
page tacitly asserts truth. For Roberts (1973: 32, 119), this assertion, which he names SA, is the sole 
axiom of the alpha graphs. SA follows from A2, which asserts that the blank page denotes a primi-
tive value; cf 2.2. CV1 and CV2 can be seen as defining “graph” and “domain”. I state CV3-CV5 
using alpha as the object language and the pa as the metalanguage. CV3 defines conjunction; CV4, 
the conditional; CV5, denial. For a comparison of Peirce’s graphs with other notations for logic, see 
Roberts (1973: 136). 

The BA is an uninterpreted formal system. Meanwhile, CV1-CV5 reveal that the alpha graphs and 
the dual reading of the pa share the same semantics. Hence the alpha graphs, unlike BA, are not 
self-dual; this is the main way in which they differ from BA. Peirce failed to see that a trivial altera-
tion of the alpha graphs would make them self-dual. Self-duality as a property of certain formal 
systems was unknown in Peirce’s day.  

The rules of transformation 1i-3e operationalize “step” in the context of alpha; in the terminology 
of Roberts, a step preserves tautologies. Roberts (1973: §3.2) shows that 1i-3e are CTV consequen-
ces. 2i,e can be seen as analogs of T13 and C1; 3i,e are C3 and A2 in new guises. 2i,e and 3i,e are 
bidirectional. If 1i is invoked only in contexts where it is equivalent to (a())=⊥ (the complement of 

                                                           
4. LoF includes a few diagrams in the spirit of Peirce’s graphs; see chapter 12, the notes thereto, and p. 115. 
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C2), 1i too becomes bidirectional. Any step invoking a bidirectional rule is analogous to a BA equa-
tional step. In EG demonstrations below, I indicate this bidirectionality via a double-headed arrow. 
However, a step invoking 1e cannot be retraced; 1e is thus unredeemedly non-bidirectional and 
alien to boundary logic. Fortunately, we do not require this rule. If the inserted /erased (sub)formula 
evaluates to ⊥, 1i,e  follow trivially from A2. More generally, we have: 
 

6.1.1. Theorem. 1i,e preserve tautologies. 

Proof. See §A.11. 
 
Since 3i,e is equivalent to B2, and 2i,e is analogous to B4, the converse of 6.1.1—that the pa is der-
ivable from alpha—merely requires an alpha demonstration of the dual of B3, to wit: 
 

 3 1 2Blank
a

Page

i i i←⎯→ ←⎯→ ←⎯⎯→a a .          

 
Hence 1i-3e form a basis for the pa. There is a sense in which B3 does the work of 1i,e. I submit, 
however, that B3 is more intuitive than 1i,e, and eliminates any need to keep track of depth parity. 

I now present, by way of example, Sowa’s (2002) demonstration of Leibniz’s Praeclarum Theo-

rema, verified by TVA in §5.1. Variables inserted by 1i or duplicated by 2i first appear in bold; 
variable instances about to be eliminated by 2e are underlined. 
 

   

               

3 1 2 1 2
p r q s

p r q s p r q sBlank

page pq rp r

i i i i i←⎯→ ←⎯→ ←⎯⎯→ ⎯⎯→ ←⎯⎯→
p r q s

q sp r q

 

      

  

    

2 3
p r q s p r q s

pq r s pq rs

e e←⎯⎯→ ←⎯⎯→ .          

 
The first use of 1i is bidirectional as discussed above 6.1.1, but the second is not, as this step has no 
pa analog. 

I now verify the Theorema via a pa calculation. In keeping with the semantics of the alpha graphs, 
the pa translation invokes the dual reading. 
 
Cal.  [(p→r)∧(q→s)]→[(p∧q)→(r∧s)] ⇔ ((pr′)(qs′)((pq(rs)))) [C3] = ((pr′)(qs′)pq(rs)) [B4,2x] = 

((r′)(s′)pq(rs)) [C3,2x] = (rspq(rs)) [TR] = (pq(rs)rs) [B3] = (pq()) [C2]= ⊥ .    
 
Reading this calculation backwards suggests the following alpha demonstration: 
 

    

3 1 2 3 2 3
pq p r q sBlank r s r s
rs

page pq rs pq rs pq rs

i i i i i i←⎯→ ←⎯→ ←⎯⎯→ ←⎯→ ←⎯⎯→ ←⎯→
pq

p q
rs

rs

.   
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This demonstration invokes 1i once at the outset to insert, in no particular order, one instance of 
each variable appearing in the Theorema. 1i employed in this manner is analogous to C2 and hence 
is bidirectional. Since 2i,e and 3i,e are analogous to B4 and C3, respectively, and {B1,C2,C3,B4} is 
a pa basis (Table 6-2), 1e is redundant. Since the remaining alpha rules are all bidirectional, alpha 
can be recast as an equational system. Sowa’s demonstration, on the other hand, invokes 1i twice, 
each time requiring careful thought about what to insert. Sowa states that the demonstration of the 
PM counterpart of the Theorema, *3.47, involves 43 steps and five axioms. Having demonstrated 
the Theorema in four ways: by TVA, alpha (twice), and pa calculation, I invite the reader to decide 
which method is the most perspicuous and easiest to learn. 
 

 

6.2. Some Ba Postulate Sets. 

“Any finite… selection of statements (preferably true ones, perhaps) is as much a set of postulates 

as any other. …‘postulate’ is significant only relative to an act of inquiry; we apply the word to a 

set of statements… to which we have seen fit to direct our attention.” Quine (1982: 35) 
 
Table 6-2 includes a variety of postulate sets (bases) which are one or more of: important bench-
marks, relevant to an evaluation of LoF, little known, or have otherwise piqued my curiosity. The 
first eight rows of Table 6-2 consist of CTV bases to be discussed in §6.3. The remainder of the 
Table consists of Ba and pa bases, none of which are mentioned in Prior (1962) or Epstein (1995: 
407-9); logicians, evidently, are not in the habit of consulting the Boolean algebra literature. The 
references in Huntington (1933) and Bernstein (1934) suggest that Boolean algebraist do not ne-
cessarily sin the other way. If a basis includes a pair of axioms asserting that a connective com-
mutes and associates, I have replaced the pair with B1. I have added B1 to all pa bases, even 
though no author did so. The “length” of a basis is the number of BA symbols required to express it. 
For other details of how I operationalize the “length” of a basis, see the Note to Table 6-2. With two 
exceptions (McCune and Schröder), the Ba and pa bases seem intuitive. 
 

Leibniz. In two brief memoranda, written in 1690, published in 1903, and translated into English as 
chapters 9 and 10 of Leibniz (1966), Leibniz set out a ‘logical calculus’ with primitive conjunction 
and denial, respectively denoted by juxtaposition and ‘non-a’. I shall cite passages in these memo-
randa as (9.m) and (10.n), where m and n are paragraph numbers. I also have taken the liberty of re-
ordering Leibniz’s axioms (actually “undemonstrated propositions,” as Euclian geometry was the 
sole axiomatic system before the 19th century) and restating them in pa notation. 

Leibniz’s system has the power of 2 because: 
• His axioms are tantamount to a CTV basis called L in §6.3; 
• His ‘=’ is (unwittingly) a dyadic congruence relation. 
The latter is easy to show. (9.3) is a=a; hence ‘=’ is tacitly reflexive. (10.5) reads ‘a=b means that 
one can be substituted for the other…[a and b] are equivalent’, which I take as tantamount to R1. 
The symmetry and transitivity of ‘=’ can be derived from R1 and reflexivity, so that ‘=’ is an equiv-
alence relation (2.3.8). By virtue of (9.8) and (9.11), ‘=’ is also a congruence relation (3.3.12). 

I derive Lukasiewicz’s CTV axioms as follows. Leibniz’s (9.6) is C1, and (10.9) is B3 and C2. Two 
of Lukasiewicz’s axioms are immediate: Cal. (aa)a [C1] = (a)a [B3] = (); (a)ab [B3] ()b [C2] = (). 

  I thus include B3, C2, and C1 in Leibniz’s “basis.” Lukasiewicz’s remaining axiom is what I call 
Syll1, (a′b)(b′c)a′c. At this point the reader would do well to refer to §5.5, as Leibniz intended let-
ters in his formalism to stand for terms. Syll1 can be read as asserting the validity of the syllogism 
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in Barbara. While Syll1 per se cannot be found in Parkinson (1966: chpts. 9,10), Leibniz (1966: 33, 
42) freely assumed Barbara, its equivalent in categorical form. He (p. 105) purports to derive Bar-
bara from his version of the medieval logicians’ dictum de omni et nullo taken as an axiom. Hence I 
take Leibniz as granting Syll1. The upshot is a generous reading of Leibniz that makes him the in-
ventor of Ba, interpreted as a logic of terms. Leibniz failed to see that alternation as well as con-
junction could interpret concatenation. Thus he missed duality and De Morgan’s laws.5 
 

Grassmann. In 1872, Robert Grassmann (brother of the better known Hermann) published a curious 
book titled Die Formenlehre (“The Theory of Forms”), setting out a theory of magnitudes. He 
defined a magnitude as ”anything that is or can be the subject of thought, insofar as it has one value, 
not more” (Grassman 1966: Be-6).6 The primitive values of the Theory of Magnitudes are stems, 
denoted by an e (which may or may not have numerical subscripts) and defined as follows: 

 “…a magnitude that is initially posited, and which therefore does not result from [a 
combination] of other magnitudes… The initial stems of the universe are the God-
given properties of particles, the ether, and the spirit, of whose synthesis the entire 
universe consists.”       Grassmann (1966: Be-6) 

He then applied that theory to four subjects: numbers, ‘combinations,’ ‘externals,’ and ‘concepts’ 
(i.e., logic); only this last will concern us here. 

Grassmann wrote before Peano, Hilbert, Huntington, and others formulated the current 
understanding of an axiomatic theory. Hence ‘axiom’ and ‘postulate’ do not appear in his work. The 
axioms I propose below for the Theory of Concepts are BA translations of propositions Grassmann 
states without proof. The part of the Theory of Magnitudes Grassmann deemed applicable to his 
Concepts consists of two primitive binary operations, denoted by ‘+’ and ‘⋅’, governed by the fol-
lowing laws (Be-7: 2). I have taken the liberty of modernizing Grassmann’s terminology: 
a) Magnitudes are closed under ‘+’ and ‘⋅’; 
b) These operations commute and associate; 
c) The identity elements for ‘+’ and ‘⋅’ are 0 and 1, respectively; 
d) Each operation distributes over the other. 
The closure property (a) I take as tacit throughout this book; B1 captures the essence of (b). a⊥=a 
nicely summarizes the dual pair (c); ditto for C5 and (d). 

                                                           
5. After writing this section, I discovered Lenzen (2004: 3,4,§4) and Hailperin (2004: 324-37). Lenzen, re-

viewing papers he published in German in the 1980s, concludes that his system L1, extracted from Leib-
niz’s work, is isomorphic to sentential logic and Boolean algebra. It is not evident whether Lenzen based 
his conclusion in part on the original texts underlying chpts. 9,10 of Leibniz (1966). Hailperin does base 
his discussion on these texts, but reaches no conclusion about the strength of the implied system. The true 
value of Leibniz’s work was not appreciated before the 1980s because Couturat (the editor of Leibniz 
1903) and Parkinson (the editor and translator of Leibniz 1966), failed to appreciate the strength of Leib-
niz’s system. Moreover, when Leibniz (1966) was published, the two 20th century logicians with the 
strongest interest in the history of the subject were either dead (Lukasiewicz) or soon to be (Prior). Ac-
cording to Lenzen, Rescher (1954) was the first to see that the power of Leibniz’s formal systems had 
been seriously underestimated. 

6. I am very grateful to Lloyd Kannenberg, the translator of Hermann Grassmann’s Ausdenungslehre, for 
having taken up my invitation that he translate the Formenlehre, and for making his unpublished transla-
tion available to me. Page numbers refer to this unpublished translation. I discovered the Formenlehre 
thanks only to Grattan-Guiness’s (2000: 157-60) discussion thereof. Grassmann (G-9) mentions Leibniz 
but no work on logic more recent than Hegel’s. In particular, Grassmann appears to have had no know-
ledge of Boole’s work. 
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Grassman (Be-7: 3) then introduced two laws peculiar to the Theory of Concepts. They warrant 
quotation in full: 

“1. The sum and… product of two equal stems gives the same stem again, and 
  2. The product of two different stems is zero.” 

The Theory of Concepts is a model of BA. Let the ‘stems’ be () and ⊥, and let a+b ⇔ ab and a⋅b ⇔ 
((a)(b)). Then the first law is equivalent to the PA equations ()()=(), ⊥⊥=⊥, ((())(()))=(), and 
((⊥)(⊥))=⊥; Table 6-2 retains the first two. I propose to translate the second law as ()⊥=(), true by 
virtue of A2. Thus it would seem that Grassmann unknowingly anticipated the PA in 1872. He de-
fined complementation in context (Be-14: 29) via a pair of equations that are notational variants of 
the dual pair B3 and J1. Table 6-2 retains B3. With the postulation of J1, the Theory of Concepts 
becomes isomorphic to BA. 
 

Schröder (1966). Lejewski (1960: 23) set out a Ba basis, S1-S9, which he distilled from 3 axioms 
and 6 definitions spread over 140pp of vol. 1 of the Vorlesungen (originally published in 1890 and 
discussed in Brady 2000). S1-S9 is a peculiar basis, because it is cast in ponential form, and a prolix 
one because Lejewski’s notation includes equivalents of the ∪, ∩, ⊂, overbar, U, and ∅ of set the-
ory, and of the truth functors ∧, →, and ↔. 

Translating S1-S9 into the pa reveals that S1 is B3; S2, Syll1; S3, B2; S4, a′()=(); S6 is (ab)c= 
((a′c)(b′c)), a variant of C5; S7 is a′(bc)(a′b′)(a′c′)=(); B3 implies S8; S9 follows trivially from B2 
and B3. I drop S5 because it is the contradual of S6, replace S1, S3, S8, and S9 with B2 and B3. 
The result is the 6 equation Schröder-Lejewski basis in Table 6-2. Comparing Schröder’s basis with 
that of Sheffer (1913) reveals that the two bases have (ab)c= ((a′c)(b′c)) in common. But Sheffer’s 
basis requires only two other postulates, his versions of C3 and B2. Hence Schröder’s basis is am-
ply redundant; also see §6, fn. 10. 
 

Johnson (1892).  In a three-part article in Mind (then the leading philosophical journal published in 
English), the British logician W E Johnson set out a system whose syntax⎯ juxtaposed letters with 
and without overbars⎯translates trivially into BA: if α is a formulae, ( )α ⇔α . Johnson interpret-
ed juxtaposition as conjunction and the overbar as complementation. His axioms were C3, C1, axi-
oms equivalent to B1, and the contradual of C6, (ab)(ab′)=a′, which he called the Law of Dichoto-
my. I will refer to it as C6. §A.4 includes a demonstration of J1, C3, B4, and C1 from C6 and B1, 
thus proving that Johnson’s axioms form a pa basis, and that C3 and C1 are redundant axioms. 
Johnson’s verbose exposition falls short of subsequent taut expositions of Ba and CTV. He did 
claim Peirce as an important influence. Prior (1962) repeatedly cites Johnson (1892) but nowhere 
mentions his system. To my knowledge, the only discussion of Johnson’s system is Meredith and 
Prior (1968). 
 

Implication algebra (Abbott 1969). Consider the following trivial syntax: If a,b,c are formulae, then 
ab, (ab)c, and a(bc) are formulae. Given the semantics ab ⇔ a→b and (ab)c ⇔ (a→b)→c, this 
syntax suffices for CTV statements whose sole connective is →. The axioms PIA1, (ab)b=(ba)a, 
and PIA2, a(bc)=b(ac), result in positive implication algebra (PIA), in which all intuitionistically 
valid tautological equivalences whose sole connective is the conditional are demonstrable. Paren-
theses are required because the conditional does not associate. Introduce the symbol ⊥ with intend-
ed reading false. a⊥ then defines intuitionist negation, ¬a (Prior 12.3); no axioms are required. The 
path to classical logic begins by adding (ab)a=a [C4] to PIA, yielding implication algebra (IA; Ab-
bott 1969: §7-4; Wolfram 2002: 803). IA stands to the implicational calculus as BA stands to the 
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Table 6-2. 

Selected CTV/Ba Axioms, pa Initials, Reexpressed in pa Notation. 

Year Author  

Axioms/Initials. 

Syll1: (a′b)(b′c)a′c. 

Syll2: (ab′)(bc)ac. Diff. Length 

1885 Peirce7 CTV B3, C2, ((a′b)a)a, Syll1, (a′b′c)b′a′c 3 55 

1917 Nicod CTV B3, Syll2 4 20 

1924 
Lukasiewicz-
Bernays 

CTV a′ab, (aa)a, Syll2, (ab)ba 3 36 

1929 Lukasiewicz CTV a′ab, (aa)a, Syll1 4 32 

1942 Rosser8 CTV a′ab, (aa)a, Syll2 4 28 

1948 
Lukasiewicz-
Wajsberg 

CTV C2, ((a′b)r)(r′a)s′a 5 25 

9  CTV PC1, PC2, B3 3 36 

      

1690 Leibniz na B3, C1, C2, Syll1 2 32 

1872 Robert Grassmann na B1, B3, C5, ()()=(), ⊥⊥=⊥, ()⊥=() 1 45 

1890 Schröder-Lejewski Ba 
B2, B3, Syll1, a′()=(), a′(bc)(a′b′)(a′c′), 
(ab)c=((a′c)(b′c)) 

2 79 

1892 Johnson na B1, C1, C3, contradual of C6 2 32 

1904 Huntington Ba B2, J1, C5, ab=ba 2 35 

1913 Sheffer10 Ba B2, C3, (ab)c=((a′c)(b′c)) 3 36 

1933 Huntington Ba ab.c = a.bc, ab=ba, C6 3 30 

1933 Robbins-McCune Ba ab.c = a.bc, ab=ba, dual of C6 6 26 

1968 Meredith11 Ba (a′b)cb=bca, C4 4 20 

1969 Abbott Ba C2, C4, (ab)c=(ba)c, ab=ba 2 31 

1969 LoF pa J1, B1, C5 1 33 

1986 Bricken pa B1, B4, C2,C3 1 28 

1989 Koppelberg12 Ba B1, B3, a(a′b′)=a, C5 2 42 

2000 Veroff et al Ba ((ab)(a(bc)))=a, ab=ba 4 20 

2002 McCune et al Ba (((bc)a)(b(a′(ad)))) = a (DN1) 6 21 

                                                           
7. This is Prior’s 3.11, his reading of the system in Peirce (W5: 162-90, 1885). 

8. Eves 1990: 256, L′; Prior 6.3. ab⇔a∧b because Rosser’s primitive connective is conjunction. 

9. This basis has never been articulated to my knowledge. It is closely related to PC1-3, discussed in §5.4 
and §A.9, fn. 3. Church (1956) and Mendelson (1964) invoked axioms trivially equivalent to B3, namely 
((a′⊥)⊥)a and (a′b)(ab)b, respectively.  

10. Expressed using the Sheffer stroke, C3 is ((aa)(aa))=a, B2 is a(b′b)=a (and has the effect of J1), and C5 
is (ab)c = ((a′c)(b′c)). LoF asserts (p. 107) that (ab)c = ((c′a)(b′a)) and the dual of a′(b′b) = a form a Ba 
basis, but gives neither proof nor citation. In effect, Spencer-Brown alleged that replacing a(b′b)=a with 
its dual enables a proof of C3. Bernstein (1934: 880) proved that (ab)c=((a′c)(b′c)) and an axiom equiv-
alent to the Robbins axiom form a Ba basis. 

11. Meredith and Prior (1968: 221), cited in McCune et al (2002). Meredith (1969: 269) also proposed 
a(b(ac)=((cb)b)a, (a′(ba))=a, (1) and (2) of his “third abridgement of Sheffer.”  

12. This is the only postulate set that embodies the definition (3.3.10) of Ba as a complemented distributive 
lattice; it is also the set in Mann (2003). 3.3.11 conjectures that these postulates are independent. The 
postulates B1-B5 in Halmos and Givant (1998: 42) are very similar. Note that their a(b′b)=a combines 
B2 and B3. 
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2002 Bricken pa B1, B4, C2 1 21 

2007 Meguire pa B1-B4 1 27 

Note.  Length = Number of BA symbols required to state the axioms in BA notation. 
A primed variable counts as three symbols, ‘()’ as 1. I treat a CTV axiom as an equation ending in 
‘=()’, increasing its length by 2. I also: 
(i) Eliminate axioms requiring that the cardinality of the base set be at least 2; 
(ii) B1 trivially implies TR, via the Erasure Principle; in turn, TR and B1 trivially imply Associa- 
tivity (§A.1.1). Hence B1 replaces Ba axioms for commutativity and associativity, and is added to 
every pa basis. No basis in this Table, as originally published, included B1; 
(iii) Shorten axioms of the form (φ)=() to φ=⊥, (φ)=⊥ to φ=(), and (φ)=(γ) to φ=γ; 
(iv) If two axioms form a dual pair, I eliminate the longer of the two; 
(v) Translate the Sheffer stroke by (ab) and not by a′b′. 
Diff.:  A subjective assessment of the ingenuity (1 least, 6 most) required to derive 
 J1-C6, L1, TR, and associativity from the given basis. 
 

CTV. a⊥ now defines classical negation. Adding the axiom ⊥a=bb [C2] to IA yields the CTV 
(Prior 3.12) and renders C3, (a⊥)⊥=a, and B3, aa=bb, demonstrable. Hence IA∪C2 is equivalent to 
Ba, interpretable as classical logic. 
 

Huntington (1904). LoF rightly cited this paper, the wellspring of self-aware Boolean axiomatics. 
My summary of Huntington’s axioms follows Stoll (1974: §4.1) and Eves (1990: 216, 257). Hun-
tington defined Boolean algebra as a set B with at least two members and closed under two binary 
and one unary operations. The binary operations are dual to each other, so that his remaining eight 
axioms are grouped into four dual pairs. The binary operations commute (B1), have distinct identity 
elements (B2), distribute over each other (B3), and have inverses defined in terms of the unary 
operation and the identity elements (B4). Given B1-B4, associativity is a theorem (Eves 1990: 217-
19). Since the pa has both a primal and dual reading, a pa initial contains the same information as a 
dual pair of Huntington axioms. 

Interpreting Huntington’s two binary operations as ab and (a′b′), BA satisfies Huntington’s basis as 
follows:13 

B1. TR. Dually, ((a)(b))=((b)(a)), also by true by TR; 
B2. B2. Dually, ((a)(())) [B2] = ((a)) [C3] = a; 
B3. C5.  Dually, ((bc)a′) [C3,2x] = (((b′)(c′))a′) [C5] =  (((a′b′)(a′c′))) [C3] = (a′b′)(a′c′); 
B4. B3 and J1. 

Huntington (1933) derived his 1904 Ba basis from B1, C1, and C6, a nontrivial exercise. Hunting-
ton (1933a) showed that B1, C6  C1. Kauffman (1990), using the pa, considerably simplified 
Huntington’s proofs; see §A.4 for details. That B1 and each of {J1,J2}, {B3,B4}, and C6 form a pa 
basis requires demonstrating J1,J2  C6 (LoF), C6  B3,B4 (§A.4), and B3,B4  J1,J2 (§A.1). 

McCune (1997), using computer assisted methods, verified Robbins’s 1933 conjecture that C6 
could be replaced by its dual. Dahn’s (1998) concise reworking of his proof, using boundary nota-
tion, is in §A.17. 
 

                                                           

13. Also see Wolfram (2002: 773). Bernstein (1916) combined B2 and B4 into a(b′b)=a (J1, in effect) and its 
dual. Montague and Jan Tarski (1954) later showed that each of ab=ba and (a′b′)=(b′a′) renders the other 
redundant. 
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McCune et al (2002), employing computer-assisted search and proof, confirmed that the single 
axiom DN1, stated in terms of join and complement, is a Ba basis. The pa translation of DN1 is 
shown in Table 6-2. McCune et al also found another one axiom basis (Sh1) for Ba stated using just 
the Sheffer stroke; its pa translation is (((bc)a)(b((ba)b)))=a.14 Sh1 has the same length as DNI but 
features three instead of four variables. Their Theorem 3 says that no single axiom for Ba, having 
the Sheffer stroke as sole connective, can be shorter than Sh1. 

Other bases that are as short as DN1 and Sh1 are those of Robbins-McCune, Meredith, and Brick-
en’s (2002) basis with C2 replacing his (()a)=⊥. The basis of Veroff et al (McCune et al 2002: 2), 
whose pa translation is ((ab)(a(bc)))=a

15and (ab)=(ba) is even shorter (by one symbol) than 
McCune’s. But the four parentheses in the latter axiom are needed only because Veroff’s sole oper-
ation is the Sheffer stroke, and so can be eliminated by (iii) in the Note to Table 6-2. The resulting 
basis is the shortest Ba/pa basis in Table 6-2. 

Wolfram (2002) drew up a list of 582 Ba consequences, with no consequence featuring more than 
two variables or six instances of the Sheffer stroke. He then counted how many steps were required 
for the Waldmeister theorem proving computer program to prove each consequences on this list. He 
did this for each of the eight bases described on his p. 808. The graphical summary of his results on 
p. 1175 reveals that bases differed importantly in the number of proof steps required. Sheffer’s 1913 
and Veroff’s basis were more or less tied for the smallest average number of proof steps per conse-
quence. The Robbins-McCune basis did poorly; its dual, Huntington’s (1933a) basis, {C6,B1}, did 
not compete. This computer ”horse race” suggests a more objective way of ranking the bases in 
Table 6-2 by difficulty. 

The single axiom bases DN1 and Sh1 fared worst of all. Worse yet, the demonstrations of very 
elementary properties from such bases can be extremely elaborate. For example, to demonstrate 
ab=ba [ab.c=a.bc] from DN1, McCune et al (2002: Th. 1) require 87 [119] steps. Wolfram’s (2002: 
810-11) derivation of Sheffer’s (1913) Ba axioms from Sh1 requires 343 steps, 81 lemmas, and 
equations with as many as 128 operators. McCune et al (2002: Th. 2) require 158 steps to achieve 
the same result. Even demonstrating that the Sheffer stroke commutes requires 42 lemmas (Wol-
fram) or 93 steps (McCune)!   
 

 

6.3. Other Historical Systems Related to the pa. 

A pa basis can serve as a CTV basis and vice versa. CTV axioms take the form ‘α→β’ or can be 
re-expressed as such. pa initials are of the form ‘α=β’, and are easier to work with, especially for 
those whose mathematical habits are those of elementary algebra. The distinction is not essential, 
however, because any axiom of the form α→β is equivalent to the equational form (α)β=(). B1 is 
absent from the CTV bases in Table 6-2, because no CTV basis contains a pair of postulates assert-
ing that one of ∧ or ∨ both commutes and associates. Instead, these bases were designed so that this 
can be demonstrated. 

Nicod (1917: 34) proposed a two axiom basis for the CTV, formulated using only the Sheffer 
stroke, read as NAND. The longer of these axioms is more easily understood when re-expressed 
using the conditional as well as the stroke (PM, p. xviii). Invoking the dual reading, so that a|b ⇔ 

                                                           
14. DN1: Dem. (((bc)a)(b(a′(ad)))) [B4] = (((bc)a)(b(a′(a′ad)))) [J1] = (((bc)a)(b(a′))) [C3] = (((bc)a)(ba)) 

[C5] = (((bc))(b))a [C3] = (bcb′)a [OI,2x] = (b′bc)a [J1] = a. 
      Sh1: Let a|b⇔(ab). Dem. (((bc)a)(b((ba)b))) [B4,2x] = (((bc)a)(b((a)))) [C3] = (((bc)a)(ba)) [C5] = 

(((bc))b′)a [C3; OI,2x] = (b′ba)a [J1] = a.          

15. Erasing c from this axiom yields the Robbins axiom. 
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(ab) and a→b ⇔ (a(b)), and treating any outermost parentheses as redundant, Nicod’s axioms are 
a′a and (ab′)(bc)ac, the shortest (20) CTV basis in Table 6-2. The substitutions a′/a and b′/b reveal 
that the latter axiom is an instance of Syll1. Because it is shorter by four symbols, I give it a distinct 
name, Syll2. Nicod then condensed his two axioms into one (PM, p. xix). From this single axiom 
and a variant of modus ponens, he derived the axioms of PM, thereby proving that his single axiom 
was a CTV basis. Lukasiewicz later simplified Nicod’s single axiom into a well-known single 
axiom (Prior 6.4; Quine 1982: 87), not shown in Table 6-2, whose pa translation has length 23. 

In 1929, Lukasiewicz (Prior 1.4a; Quine 1982: 85) proposed a basis I call L, having a straight-
forward pa interpretation. (aa)a is one half of C1. a′ab is B3 and is the other half of C1 when b/a. 
Syll1 asserts the transitivity of the conditional and the validity of Barbara. Syll1 with a=() yields 
another hoary chestnut, modus ponens. Nicod’s two axiom basis, just discussed, is, in effect, L with 
(aa)a omitted. (Note also the similarity of Nicod’s basis to Rosser’s.) Evidently, a slight modifica-
tion of Syll1 renders (aa)a redundant; I have not seen this fact mentioned in print. 

Lukasiewicz and Bernays, working independently, earlier proposed a basis including Syll2 and 
(ab)ba in place of Syll1, yielding a revised version (Prior 6.11) of the truth-functional axioms of 
PM.16 The literature is silent about the similarity between Rosser and Lukasiewicz-Bernays, as well 
as about how PM’s (ab)ba is redundant in L and Rosser. In 1948, Lukasiewicz proved that 
((a′b)r)(r′a)s′a is the shortest possible single axiom from which all formulae involving ‘→’ alone 
can be demonstrated (Prior 2.15d). Wajsberg (Prior 3.3) showed in 1937 that taking F as primitive, 
and adding F→a (in effect C2), ~a =df a→F, and T =df ~F to any axiom system adequate for ‘→’ 
alone, results in a CTV axiom system. 

The radically “arithmetical” foundation BA proposes for Ba and the truth functors has a curious 
precedent. Van Horn (1917), writing in ignorance of Sheffer (1913), purported to derive PM ‘s 
CTV axioms from a single axiom giving the semantics of the Sheffer stroke (here notated by ↑), re-
stated as follows: [|a|=|b|]→[|a↑b|≠|a|], and [|a|≠|b|]→ [|a↑b|=T]. This axiom follows trivially from 
A1, A2, keeping in mind that [a↑b ⇔ (a)(b)] ↔[()⇔T] and [a↑b ⇔ (ab)]↔[(())⇔T]. The axiom 
also follows from 4.1.2 above. Nicod (1917: 40) praised Van Horn’s paper, but claimed that its der-
ivations of the PM axioms were flawed, because Van Horn freely invoked what is here called T16, 
without being aware that he was invoking a metatheorem needing proof. Even though Van Horn’s 
and Nicod’s papers were published side by side, the only citation of Van Horn I have encountered is 
Grattan-Guiness (2000: 434). While no one, to my knowledge, has revisited Van Horn’s paper, the 
pa reveals that its intuition was sound.17 

Byrne’s (1946) Ba notation, based on juxtaposition as sole connective and the unary prime, trans-
lates into the pa as follows: (1) remove parentheses not immediately followed by a prime; (2) if a 
                                                           
16. For a (nontrivial) demonstration of C5 from these axioms, see Halmos & Givant (1998: 37-8). 

17. The way LoF grounds Ba in a bit of Boolean arithmetic has precedents. Shannon’s (1938) basis for 2 is 
(a) his arithmetical postulates (1)-(3), isomorphic to Table 2-1a; (b) his assumption (4) that B has two 
members; and (c) a loose definition of complementation. Table 2-1b is isomorphic to his “theorems” (7a) 
and (7b). Prior (1962: 4-13), following Polish practice, grounds his exposition of sentential logic in the 
Boolean arithmetic of 0 and 1. Cole (1968) derives Ba from analogues of Table 2-1, R1, and T16. Malm-
stadt et al (1973: 281, §3-4.1) sketch a derivation of 2 from Boolean addition (dually, multiplication) and 
complementation, taken as axiomatic. Rudeanu (1974: Example 1.1) asserts but does not show that his 
axioms for Ba (namely OI, absorption, Boolean versions of J1, C3, C5, and the duals of all the preced-
ing, as per his Definition 1.1) can, in the case of 2, “be easily established by direct verification” from the 
operation tables for Boolean addition, multiplication, and negation. (Shannon 1938 makes a similar 
assertion about his (1a)-(8).) Most of Rudeanu’s axioms are redundant, in that J1, C5, and OI alone form 
a pa basis, and the pa is a Ba by 3.3.10. 



 BOUNDARY ALGEBRA 71 

pair of parentheses is primed, remove the prime; (3) replace all subformulae of the form αα′ by (). 
Hence Byrne’s notation differs from the pa only in the manner in which parentheses are employed. 
Curiously, six of the eight consequences Byrne proved are C1-C6 in LoF. Byrne proves that his al-
gebra is Boolean by deriving Huntington’s (1933a) basis, C6 and order irrelevance. Virtues of 
Byrne’s system include his leaving juxtaposition uninterpreted, and his dispensing with Boolean 0 
and 1. Byrne’s paper is well-known, but to my knowledge his notation has yet to be imitated. Like-
wise, the boundary mathematics literature, such as it is, does not cite Byrne (1946).18 

The system AB of Anderson and Belnap (1959) features one unary operation, denial, denoted by an 
overbar, and one connective, disjunction, denoted by ∨. Erasing all instances of ∨, and enclosing in 
parentheses that which lies under an overbar, results in the equivalent pa formula. AB is 
semantically identical to the primal reading of the pa.19 The sole axiom of AB is b(a)ac = (), true 
by B3 and C2. The rules of inference of AB are (1) from bac, infer b((a))c, true by C3, and (2) from 
(a)c and (b)c, infer (ab)c. Cal. (a′c)(b′c)(ab)c [B4,2x] = (a′)(b′)(ab)c [C3,2x] = ab(ab)c [B3] = ().  

The creators of AB went on to found relevance logic, a fact consistent with AB’s disavowal of 
modus ponens and silence re substitution. Hunter (1971: §37.6) sets out an effective proof proced-
ure for AB based on refutation trees, but the resulting proofs are a good deal more complicated than 
ones based on B3 and B4. For example, Hunter requires 16 lines to verify that (p→q→r)→ 
(p→q)→(p→r). The corresponding pa calculation is trivial: Cal. (p′q′r)(p′q)p′r [B4,3x] = (q′)(q)p′r 
[B3; C2] = ().  

Translated into BA, Schütte’s (1977: 17) basis for the CTV is J1 and the A2 instance (⊥) = (). His 
rules I∧, I∨, and I→ are all instances of B3. I cannot determine whether an equivalent to B4 resides 
somewhere in Schütte’s system. 

                                                           

18. Byrne sets out four Ba axioms: B has at least 2 members, OI, ∀xyz[xy=x → y′x=z′z], and ∀xy∃z[y′x=z′z 
→ xy=x]. The latter two axioms, often misquoted, are essentially the Consistency Principle, 3.3.13. Stoll 
(1963: §6.3) derives Huntington’s (1904) axioms from Byrne’s. I do not grant Byrne’s axioms the pride 
of place granted them in Meguire (2003), because I now appreciate that existential quantifiers in algebra-
ic axioms are a faute de beauté, as such axioms are incompatible with the universal algebra concept of 
variety. 

19. To Hunter (1971: §37) I owe my discovery of the system AB. In a striking feat of bravado, Anderson and 
Belnap (1959) lay out AB, prove it sound, complete, and decidable, and prove its axioms independent, all 
in less than 300 words. AB thus enjoys the dubious distinction of probably being the tersest version of 
sentential logic ever devised. Hunter (§§37.1-5) expands the proofs of these metatheorems to all of three 
whole pages. The proof of T17 in §A.9 makes possible an equally terse statement of the pa. 



Chapter 7. 

Why the Indifference? 

 
“[The pa] is a very beautiful version of the propositional calculus, and I cannot understand why it 

has not become a standard method in logic text-books… Spencer-Brown’s theory has gained great 

popularity among various people, but logicians have taken little interest in it.” 
    Grattan-Guiness (1982: §5.1). 

 
The approach to Ba and the sentential connectives described in this book remains unadopted, 
despite LoF having been published more than 40 years ago, and notwithstanding the merits I and 
others have claimed for it. I begin exploring the reasons behind this fate by setting out what this 
curious book reveals about its origins. Spencer-Brown worked out many of the ideas in LoF while 
teaching an introductory course in logic (pp. xii; the page references below without citation are to 
LoF); LoF may have begun as lecture notes for this course. He derived his version of BA (namely, 
one using ‘    ’ instead of ‘()’, and with no analogue to ‘⊥’) by working backwards from 2 and CTV 
(p. 112). He (p. xii) attributed some key insights to his having designed electronic circuits during 
the 1960s, but did not cite Shannon’s (1938) celebrated result that the algebra of switching circuits 
is a model for the CTV (and thus also for the pa). 

LoF does not sufficiently disclose the extent to which it built on conventional Boolean algebra. It 
rightly cited some classics, such as Huntington (1904, 1933) and Sheffer (1913), as well as Boole 
and Peirce, but did not cite any text on Boolean algebra extant at the time of writing (e.g., the 1958 
ed. of Hohn 1966; Whitesitt 1961; Arnold 1962; Goodstein 1963). LoF did not cite any of the fol-
lowing logic texts, all standard at the time of writing: Hilbert and Ackermann (1950), the 1950 ed. 
of Quine (1982), Rosenbloom (1950), Quine (1951), Rosser (1953), Church (1956), Suppes (1957), 
Carnap (1958), Nidditch (1962), and Kneebone (1963). The only text on modern formal logic cited 
in LoF is Prior (1962), invoked only once to make a minor point about syllogisms. Worst of all, 
LoF is silent about quantification and hence oblivious to the central role of first order logic. 

Spencer-Brown argues (chpt. 11) that certain infinite pa formulae with a finite recursive representa-
tion have an “imaginary” truth value, arising in a manner analogous to the way complex numbers 
arise from the roots of certain polynomial equations with real coefficients, also having a recursive 
interpretation.1 He alleges that such truth values have momentous implications for mathematics, 
philosophy, and engineering. For example, he argued that they extinguished the paradoxical char-
acter of self-reference2: 

“All we have to show is that the self-referential paradoxes, discarded with the 
Theory of Types, are no worse than similar self-referential paradoxes, which are 
considered quite acceptable, in the ordinary theory of equations. The most famous 
such paradox is… ‘This statement is false.’”   (p. ix) 

and: 

                                                           
1. If a Boolean equation has a pa representation that is not recursive, LoF (p. 57) says that is “of the first de-

gree.” Recursive equations are of “degree higher than one.” If neither () nor (()) solve an equation of high-
er degree, then LoF (pp. viii-x, 58) argues that it has an “imaginary” solution. Relating imaginary Boolean 
values to extant work on recursive arithmetic and functions (e.g., Mendelson 1997: chpts. 3,5; Kneebone 
1963: chpt. 10) and to Bochvar’s (1981) paradox logic are possible directions for future research. 

2. On self-reference, logically and philosophically contemplated, see Bartlett (1992). 
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“[Recursive Boolean] equations have hitherto been excluded from the subject matter 
of ordinary logic by the Russell-Whitehead theory of types”  (p. xviii)3 

 
The Theory of Types is meaningful only if the ground logic is of order greater than zero, and such 
is never the case in LoF. In fact, LoF is innocent of polyadic predicates, as well as of all but a few 
trivial bits of naïve set theory (e.g., the Boolean algebra of classes makes a very brief and casual ap-
pearance in Appendix II). Spencer-Brown asserts that his imaginary truth values render the well-
known limitative theorems of Gödel and Church (Stoll 1963: §§9.9, 9.10; Mendelson 1997: Ths. 
3.37-3.54) “…less destructive than was hitherto supposed” (p. xvii), but gives no details. These lim-
itative theorems all presuppose first order logic, which lies completely beyond the capabilities of pa 
and Ba. §A.16 discusses why the most important limitative theorem is far simpler to prove, and 
hence harder to evade, than was commonly understood when LoF was written. Meanwhile, LoF is 
silent about nonclassical and infinitary logics and the theory of recursive functions, conventional 
topics which render chpt. 11 less radical than would seem at first blush. 

While LoF does not claim that BA suffices to ground all of mathematics, others stride boldly where 
angels fear to tread: “…the propositional calculus…develops naturally from [A1 and A2]. Thus the 
act of severance leads inexorably to logic and through PM to the whole of mathematics.” (Croskin 
1978: 187) This statement would be true if BA implemented the quantification and second order 
logic PM requires, and if PM had succeeded in its aims. (A classic critique of PM is Quine 1995: 3-
36, first published in 1941.) 

LoF also indulges in philosophical speculation (pp. v, vi, xix-xxii, 85, 89-96, 101-106) and invokes 
dubious etymologies (pp. 93, 101, 105, 106, 109, 126). Spencer-Brown claims (p. ii) to have studied 
under Wittgenstein4 (whom he cites four times) and R D Laing, but is silent on how he learned 
mathematics and logic. Elsewhere, he claims to have worked with Lord Cherwell in the 1950s and 
the mathematician J C P Miller in the 1960s. 

Most damaging to Spencer-Brown’s reputation is how the subsequent evolution of mathematics has 
falsified a number of LoF’s predictions about the future course of mathematics. Writing in 1967, 
Spencer-Brown claimed that: 
 

“...if we confine our reasoning to an interpretation of Boolean equations of the first 
degree only, we should expect to find theorems which will always defy decision, and 
the fact that we do seem to find such theorems in common arithmetic may serve, 
here, as a practical confirmation of this obvious prediction. To confirm it 
theoretically, we need only to prove (1) that such theorems cannot be decided by 
reasoning of the first degree, and (2) that they can be decided by reasoning of a 
higher degree. (2) would of course be proved by providing such a proof of one of the 
theorems. 

                                                           
3. Before touching on Russell’s paradox and the like, Spencer-Brown should have read Prior (1962: §III.3.3), 

a book he cites. LoF also cites the 1958 edition of Fraenkel, Bar-Hillel, and Levy (1973: chpt. III) in sup-
port of its contention that there have been prior attempts to “… rehabilitate, on a logical rather than on a 
mathematical basis, something of what was discarded with the Theory of Types…” (LoF, p. xix, fn. 8). 
Fraenkel et al never claim that type theory was ever the standard resolution to Russell’s paradox. On type 
theory and how it addresse the set-theoretic paradoxes, also see Hatcher (1982: chpt. 4). 

4. Wittgenstein haunts LoF as well as much mid-20th century British philosophy. I leave to others the pleas-
ure of tracing the specific influence of Wittgenstein’s oeuvre, the Tractatus in particular, on LoF. A simil-
ar pleasure undoubtedly awaits the Peirce or Whitehead expert willing to give LoF a close reading. 
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“I may say that I believe that at least one such theorem will shortly be decided by the 
methods outlined in [LoF]. In other words, I believe that I have reduced their 
decision to a technical problem which is well within the capacity of an ordinary 
mathematician who is prepared, and who has the patronage or other means, to 
undertake the labour.” (pp. 99-100; emphasis in original) 

 
More specifically: 
 

“…I found evidence, in unpublished work undertaken in 1962-65, suggesting that 
the four-colour map theorem [sic] and Goldbach’s conjecture are undecidable with a 
proof structure confined to Boolean equations of the first degree, but decidable if we 
are prepared to avail ourselves of equations of higher degree.” (p. xix)5 

 
Regarding Fermat’s Last Theorem (FLT), Spencer-Brown wrote: 
 

“…it is my guess that Fermat (who was apparently too excellent a mathematician to 
make a false claim to a proof) used [imaginary truth values] in the proof of his great 
theorem, hence the ‘truly remarkable’ nature of his proof, as well as its length.” (p. 
99). 

 
Spencer-Brown was asserting that certain mathematical conjectures, all very well known at the time 
he wrote, were unprovable using standard mathematics grounded on classical bivalent logic, but 
could be proved using mathematics grounded in the 3-valued logic (i.e., one incorporating an ima-
ginary truth value) he introduced in chpt. 11 of LoF. In the nearly 40 years that have elapsed since 
LoF first appeared, nothing of this sort has eventuated. Instead, seven years after LoF’s first publi-
cation, Haken and Appel announced their proof of the Four Color Map Theorem, one based on con-
ventional discrete mathematics requiring a large amount of machine computation (for a definitive 
treatment see Haken and Appel 1989). Wiles (1995) finally proved FLT using mathematics that, 
however intricate and difficult, are probably ultimately grounded in first order logic and the ZFC 
axioms. All this may help explain why Spencer-Brown’s work has been ignored, and why it need 
not be swallowed whole.6 

                                                           
5. Spencer-Brown repeated his claim of a proof of the Four Colour Map theorem in a letter to the editor of 

Nature, dated 17.12.76. 

6. A good introductory course in formal logic for nonspecialists is Hodges (1977), which employs refutation 
trees and linguistic examples. 



Chapter 8. 

Conclusion. 
 

“Logical laws are the most central and crucial statements of our conceptual scheme, and for this 

reason the most protected from revision by the forces of conservatism; but… they are the laws an 

apt revision of which might offer the most sweeping simplification of our whole system of know-

ledge.”            Quine (1982: 3). 
 
Let there be a blank surface upon which marks may be written. The mark can be the ‘ ’ of LoF 
(proposed by Peirce in 1886), a simple closed curve (proposed by Peirce from 1896 onwards), or 
Croskin’s (1978) ‘()’, adopted here. The symbol () is the sole primitive constant and is both 
operator and operand. Whatever the mark is taken to be, it is essential that it have a distinguishable 
"interior" and "exterior," as the mark serves as the boundary between the interior and exterior. The 
mark and the blank page are the boundary primitive values. Interpreting the blank page as one of 
‘true’ or ‘false’ gives rise to boundary logic. 

The only means we have, at this stage, to distinguish anything is to write another mark on the state 
we wish to distinguish. To mark the exterior, we write ()(); to mark the interior, (()). The Law of 
Calling says that ()() is indistinguishable from simple (). The Law of Crossing says that (()) cannot 
be distinguished from the blank page. Hence the exterior and interior of a mark are distinguished 
simply by how each interacts with another mark: the exterior of a mark is idempotent; the interior, 
nilpotent. Let Calling and Crossing be the sole axioms. LoF shows, albeit in a rather cryptic fash-
ion, that the primary arithmetic (PA) emerges from these notions plus an equivalence relation 
among formulae, logical equivalence. Thus the PA can be seen as Boolean arithmetic notated so as 
to lay bare its tree structure. For another recapitulation of the PA, see 2.3.4. 

Inserting letters anywhere in a PA formula yields a pa (primary algebra) formula. Combine the PA 
and pa to obtain boundary algebra (BA). Letting the blank page interpret Boolean 0, and () interpret 
Boolean 1 (or vice versa), yields 2. The set B={(),(())} corresponds to the base set of 2, and a letter 
(a.k.a. variable) can assume any value of B. Interpreting BA for classical logic results in boundary 
logic, which is equational rather than ponential. An equational logic privileges tautological equival-
ence, not tautology, and invokes the substitution of equals for equals instead of modus ponens. 

An initial is a tautological equivalence verified by a decision procedure, used to derive other equiv-
alences. Any Boolean algebra basis, or set of CTV axioms, translates into a set of pa initials. The 
preferred initials of this book, abc=bca, a′a=(), (())a=a, and (ba)a=b′a, and the well-known conse-
quences aa=a, a()=(), (a′)=a, and (a′b′)r=((ar)(br)) facilitate a proof method I call calculation, 
which is similar to, but easier than, that of Peirce’s alpha existential graphs. pa calculations are 
much easier than the proofs taught in standard texts, including natural deduction proofs. The pa 
facilitates clausal reasoning, and trivializes the derivations of the inference rules of conventional 
logic. The pa and the CTV share a common metatheory. 

The pa is, at minimum, a simple yet powerful notation for the truth functors and Boolean algebra, 
revealing the unity and simplicity underlying the seeming diversity of truth functors. Moreover, 
because the CTV and 2 are models of the pa, BA highlights the seldom mentioned axiomatic role of 
Boolean arithmetic for these systems. Boundary methods should prove fruitful for any formal 
system having a lattice structure, e.g., nonclassical logics, mereology, and relation algebra (Givant 
2006).1 The boundary analogue to refutation trees, and the connection between the BA and 
                                                           
1. This book has touched on how fruitful the boundary point of view can be for lattices (§3.3), groupoids 

(§3.4), and quantification (§5.6). Meguire (2004) shows that boundary syntax suffices to express normal 



 
 

76 BOUNDARY ALGEBRA

topology, should also be explored. BA suggests that mathematical logic, set theory, theoretical com-
puter science, and probability2 all share a common source: the mental act of making a distinction, 
for which the marker is the boundary sign (). I invite others to explore whether BA may be seen as a 
nominalist grounding for 2 and sentential logic, i.e., one free of the notion of set. 

Ninety-five years after Boole’s first book and 30 years after PM, Berkeley (1942) noted that formal 
logic and Boolean algebra had been little applied.3 Outside of computer science, electrical engin-
eering, and formal philosophy, this appears to be the case down to the present day (Hehner 2004). 
Incorporating BA into Hehner’s (2004, 2007) Unified Algebra, an integrated notation for Ba and 
numerical mathematics, warrants exploration. Seen as a demotic version of the hieratic languages 2 
and the CTV, BA could facilitate the wider application of logic and Boolean methods. BA could 
even be taught in secondary schools, as a gentle introduction to logic and formal languages, and as 
the foundation of information technology. 

In an essay on the teaching of basic practical mathematics, the computer scientist Eric Hehner wrote 
as follows: 
 

“Logic has been well studied and is now well understood, but is not well used. Pro-
grammers learn that logic is a foundation of programming, but they don’t often use it 
to program.Mathematicians study logic, but don’t often use it in their proofs. Logic 
is a tool, like a knife. People have looked at it from every angle; they’ve described 
how it works at great length; now it’s time to pick it up and use it. To use logic well, 
one must learn it early, and practice it a lot. …there is a simple basic algebra that can 
be taught early and used widely.”  Hehner (2004) 

 
We have seen that this “simple basic algebra” hinges on a mere two departures from the trivial 
arithmetic of 0 and 1: 1+1=1 and -1=0. I heartily concur with Hehner’s wish, and invite readers to 
employ the contents of this book to help make it come true. 
 

                                                                                                                                                                                                 
modal logic, ZFC set theory, category theory, and ringoids. On nonclassical propositional logics, e.g., 
intuitionistic, modal, relevant, and substructural, see Restall (2000) and Epstein (1995). 

2. Discrete probability can be given a Boolean foundation by taking mathematical expectation as primitive, 
then defining probability as the expectation of a Boolean random variable. See Lad (1996: §2.2). 

3. Some of the reasons Berkeley gave for why this might be the case do not apply to BA. Berkeley was em-
ployed by an insurance firm. He neither cited Shannon (1938) nor mentioned the possibility of electronic 
computation, which was being invented while he wrote his paper. 
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Bibliographic Postscript. 
BA lies at the intersection of four disciplines: mathematics, philosophy, computer science, and 
electrical engineering. I included a reference below either because I found it useful when writing 
this book, or because it was extant and relevant at the time LoF was written. The references are 
grouped by broad topic and listed in order of increasing perceived difficulty. 

There are two perspectives on Boolean algebra: 
• Mathematics: Stoll* (1963: §6), Halmos and Givant* (1998: §§19-39), Abbott (1969: 

§§6,7), Cori & Lascar* (2000: §2), Koppelberg (1989), Givant & Halmos (2009), Burris et 
al (1981: §§II.1, IV.1-4). Algebras larger than 2 are typically assumed, and developed in 
either a set theoretic or algebraic manner. Starred references discuss Tarski-Lindenbaum 

algebra, the close connection between Ba and CTV. 
• Engineering/Computer Science: Whitesitt (1961: §§1-3), Hohn (1966: §1, §§5.1-5), Rude-

anu (1974: esp. §1; many references). 

Lattice theory. Arnold (1962: §§3,4), Donnellan (1968), Curry (1963: §4; very relevant for logic), 
Davey and Priestley (2002), Burris et al (1981: §§I, II.1). 

Calculus of Truth Values. Mathematics: Arnold (1962: §1), Hohn (1966: §§3.1-12), Goodstein 
(1963: §4), Kneebone (1963: §§2,6), Halmos and Givant (1998: §§8-18), Epstein (1995: §§II.J-M), 
Stoll (1974: §§2.1-5,3.5), Nidditch (1962), Machover (1996: §7), Mendelson (1997: §1), Hunter 
(1971: §§15-36), Smullyan (1968: Part I), Cori & Lascar (2000: §1), Curry (1963: §§5,6), Schütte 
(1977: §I). Philosophy: Girle (2002: Part One), Quine (1982: Part I), Suppes (1957: §§1,2), Bostock 
(1997: §2), Prior (1962: 1-71, 301-6, 318-19), Hodges (2001: §§1-7), Carnap (1958: §§2-8, 12a, 
22), Zeman (1973: 1-76), Segerberg (1982). 

Calculus of Quantified Variables. Mathematics: Stoll* (1974: §2.6-9, §3.6), Machover* (1996: §8), 
Quine* (1951: §2), Hunter (1971: §§38-59), Pollock (1990: §2.1), Smullyan (1968: Part II), Men-
delson* (1997: §2), Schütte (1977: §II), Cori & Lascar (2000: §§3,4). Starred references include 
axiomatic set theory. Philosophy: Girle (2002: §§12-14), Quine (1982: Parts II, III), Bostock (1997: 
§§3,5), Hodges (2001: §§8-18), Carnap (1958: §§1, 9-14, 21-25). Bostock, Hodges, and Machover 
are best for current terminology. 

For gentle introductions to logic as part of elementary mathematics, see Wolf (1998: Unit 1); to 
metamathematics and axiomatic thinking, see Stoll (1974: §3); to the philosophy of mathematics, 
see Lucas (1999). 

On the history of logic and related mathematics, see Curry (1963), Grattan-Guiness (2000), Gabbay 
and Wood (2004), and Kneebone (1963). On Peirce’s role in the early history of Ba, see Brady 
(2000: 1-142). The first systematic treatment of Ba is vol. 1 of Schröder (1966), written in 1890. Ba 
came of age as serious mathematics in the 1930s, primarily thanks to Marshall Stone and Tarski.  

There is a fair secondary literature on LoF; see the bibliography at http://www.lawsofform.org/bib/ 
index.html, in which the names Bricken, Kauffman, and Varela stand out, as do a number of articles 
in the International Journal of General Systems. Another URL bearing on LoF is http://www. 
enolagaia.com/GSB.html . Both sites reveal that LoF’s love of paradox and enigma has attracted a 
nonmathematical following. 



Appendix: The Null Individual and Its Controverted Ontology. 

 
This Appendix reviews a controversy in the foundations of mereology, a body of first order theories 
about the part-whole relation described in Simons (1987: chpts. 1,2) and Casati and Varzi (1999: 
chpt. 3). Mereology begins with a domain of individuals, and a primitive dyadic predicate Pxy, read 
as ‘x is part of y.’ P is assumed transitive and can be proved a partial order. Let the fusion b of any 
number of inviduals a be such that aPb comes out true for all a. An axiom asserts that the fusion of 
the members of any nonull set [of those individuals satisfying any monadic predicate] exists. 

Nearly all mereological systems deny the existence of a null individual, one that is part of every 
individual; the main exception is a system advocated by R. M. Martin. For present purposes, the 
null individual can be deemed the mereological analogue of the null set. In this Appendix, I argue 
that the denotation I propose for ⊥ is controversial in a manner analogous to the controversies 
aroused by Martin’s null individual. 

To my knowledge, the null individual, under the name null entitity, made its first public appearance 
in the following passage from Martin (1943: 3): “In order to develop an unrestricted Boolean 
algebra… it is desirable to admit the existence of a null entity… We shall retain then the interpreta-
tion of this system as a calculus of individuals and also admit the null entity.” Carnap (1956: 36), 
citing Martin (1943), postulated the existence of a null thing as one of seven possible things named 
by a nonunique description. He wrote: “…a natural solution offers itself if we construct the system 
in such a way that the spatiotemporal part-whole relation is one of its concepts. …it is possible, 
although not customary in the ordinary language, to count among the things also the null thing, 
which corresponds to the null class of space-time points. …it is characterized as that thing which is 
part of every thing.” 

Geach (1972: 200), writing in 1949 in response to the 1947 first edition of Carnap (1956), wrote: 
“There is a well-known convention in mathematics whereby ‘the least’ or ‘the only’ number 
fulfilling a condition is deemed to be zero if there is in fact no number thus uniquely described. This 
has technical advantages… Carnap proposes an allegedly similar convention for language about 
physical objects [, the null thing]. Further, [Carnap] describes the null thing as corresponding ‘to the 
null class of spacetime points’⎯or, in plain English, as existing nowhen and nowhere!” 

The following long quotation is taken from the opening paragraphs of Martin’s vigorous defense of 
the null individual, first published in 1965 and reprinted as Martin (1979). I trust that writing ⊥ 
where Martin wrote ‘null individual’ does not do violence to his meaning. 
 
“Is there such a thing as ⊥? Well, as an actual or concrete entitity, certainly not. There is no such 
actual entity, there never has been, and there never will be. If this were the whole story, one could 
end therewith. As a convenient technical fiction and useful notational device, however, introducing 
⊥ into [first order logic] is not without interest. ⊥ can be given important roles to perform and it can 
be made to perform them well, so well in fact as to lend strong support to regarding its theory as a 
suitable appendage to logic. 

“One speaks of the ⊥ in the sense of there being one and only one ⊥. Could there be two or more? 
Possibly, but there is no need for such, and anyhow it is desirable to keep traffic with the ghostly at 
a minimum. 

“Attitudes differ as to the feasibility of introducting ⊥... Lejewski… explicitly admits a ‘nonreferen-
tial name… meant to be a name that does not designate anything.’ Such a name is to be read ‘object 
which does not exists.’ 
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“That the notion of ⊥ is no better or worse than that of the null set seems likely. Refusal to postulate 
one should perhaps go hand in hand with refusal to postulate the other. The null set… is a useful 
mathematical notion that has been with us with impunity for some time. Set theory… would be im-
poverished without it and technical inconveniences would result. These are perhaps not insurmount-
able, but little would be gained if one were to reject it. And mathematics abounds with other 
convenient technical fictions that by parity of reasoning would have to be forsworn, many of these 
depending definitionally on the null class. The more reasonable course then seems to be to admit 
not only the null set but also such additional ‘fictions’ as are feasible if strong technical reasons can 
be given on their behalf.” (Martin 1979: 82-83) 
 
Martin went on to cite Carnap (1956) with approval. 

Bunt (1985: 56-7), nowhere mentioning Martin or Carnap, wrote of the empty ensemble as follows: 
“emptiness… is defined as the property of having no other parts than itself…From the transitivity of 
the part-whole relation it follows that all parts of an empty ensemble are empty. …it can be proved 
that there exists an empty ensemble, and that an empty ensemble is part of every ensemble 
[individual].” [emphasis in original] 

Simons (1987: 13), citing Geach, summarily dismisses the null individual as follows: “Most mereo-
logical theories have no truck with the fiction of a null individual which is part of all individuals… 
The chief culprit in propounding this absurdity is R M Martin.” 

Finally, Lewis (1991: 11) writes: “If we accepted the null individual, no doubt we would identify 
the null set with it, and so conclude that the null set is part of every class. But it is well nigh unintel-
ligible how anything could behave as the null individual is said to behave. It is a very queer thing 
indeed, and we have no good reason to believe in it. Such streamlining as it offers in formulating 
mereology [e.g., closure under intersection] can well be done without. Therefore, reject the null in-
dividual; look elsewhere for the null set.” 

Casati and Varzi (1999: 45) also distance themselves from Martin, whom they relegate to a foot-
note, but in a more cautious way: “…few authors have gone so far as to postulate the existence of a 
‘null individual’ that is part of everything. Without such… (which one could hardly countenance 
except for algebraic reasons), the existence of an [intersection] is not always guaranteed. Like-
wise… complements may not be defined, e.g., relative to the universe.” 

In a mathematically sophisticated paper on the foundations of topology and geometry, Roeper 
(1997), citing no authority, unapologetically takes mereology as a model of Ba. In any event, 
doubting the ontological innocence of ⊥ can be forgiven, in light of how contentious the ontological 
implications of the null individual have been. 

 

 

 

 

 

 

 

 



Appendix:  Demonstrations, Proofs, etc. 

Throughout this Appendix, ‘ ’ signals the end of a demonstration/calculation/proof. 

 
A.1. The Core Demonstrations and Calculations. 

“The kind of axiom splitting that got us to this point is the least attractive and the least rewarding 

part of any subject. We present it… mainly because… its omission would have given a distorted 

picture of what much of the subject is like.”      Halmos and Givant (1998: 40). 
 
The BA basis is abc = bca, B1; (())a=a, B2; (a)a=(), B3; and (ba)a = (b)a, B4, which LoF calls C2.  
 
 
A.1.1. Juxtaposition  Commutes, Associates. 

There are two ways of showing that concatenation commutes and associates. The first is valid for 
any lattice, the second for any bounded lattice. 

Any lattice. 
Following Byrne (1946), I now show that concatenation commutes and associates. This proof does 
not require complementation and so works for any lattice. 
 

C1. aa=a. Cal. LR: (aa)a [B4] = (a)a [B3] = ().  RL: (a)aa [B4] = (aa)aa [B3] = ().    
 
The remaining demonstrations in this section invoke, for the nonce, the decimal point as a "tempo-
rary" notation denoting grouping. Once associativity is demonstrated, grouping ceases to matter and 
this notation can be discarded. In the following demonstation, B1 justifies each step in unless 
otherwise indicated. Underlining indicates pairs of letters to be treated as a unit. 

Concatenation: 
• Commutes (TR).  Dem. ab [C1] = ab.ab = b.ab.a = ab.a.b [apply B1 to ab.a] = ba.a.b = aa.b.b 

= bb.aa [C1,2x] = ba.            
• Ab = ab.ab =  b.aba = b.b.aa = b.ab  
• ab.a.b = b.aa.b = aa.b.b = b.b.aa = b.b.a = b.ab = a.b.b  
• Associates (Ass.). Dem. If B1 is assumed to associate from the left, we have ab.c = bc.a [TR] = 

a.bc. If B1 associates from the right, we have a.bc = b.ca = c.ab [TR] = ab.c      

Henceforth, subformulas can be reordered at will, either silently of by invoking TR. Note that ab.c 
= bc.a = ca.b. Also, ab.c [TR] = ba.c = ac.b = cb.a. Hence all possible permutations of the string 
abc can be generated using B1 and TR. 
 
Bounded lattice. 

The second demonstration of TR and Associativity is trivial, but requires B2 and B3 and so is valid 
only for a bounded lattice. B1 is now ab.c=ac.b (Dilworth 1938: 263, Postulate 1). Concatenation: 

Commutes: Dem. An instance of B1 is (a′a)b.c = (a′a)c.b. Then two applications of B3 and B2 yield 
bc=cb.             

Associates: Dem. ab.c [TR] = ba.c [B1] = bc.a [TR] = a.bc.        

Both forms of B1 follow from TR and Associativity: 

Dem. ab.c [Ass.] = a.bc [TR] = a.cb [Ass.] = ac.b. Also, ab.c [Ass] = a.bc [TR] = bc.a.    
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Note that ab.c = ac.b [TR] = b.ac [TR] = b.ca [TR] = ca.b = cb.a [TR] = bc.a. Again, repeated 
application of TR and B1 generates all six possible permutations of the string abc. Also, each form 
of B1 can be derived from the other form. 
 
A.1.2. More Consequences.  

Demonstrate or calculate C2-C8 as follows. 
 
C2. Dem.  ()a [B3; R1] = (a)aa [B4] = (aa)aa [B3] = ().        

Remark. An immediate consequence of C2 and B3 is that (a)a=()a is valid. Bricken (2002) invokes 
B4 to justify (a)a=()a without discussion. 
 
C3. ((a))=a. Cal. LR: (((a)))a [B4,2x] = ((a′a)a)a [B3] = ((())a)a [B2] = (a)a [B3] = (). 
                            RL: (a)((a)) [TR] = (a′)a′ [B3] = ().        

Remark. Recall the group theory notation of §3.4. Group theory proves C3 by noting that (a′)a′ = () 
and a′a = () both hold, so that a′′ and a are both inverses of a′. Since group theory inverses are pro-
vably unique, a′′=a. This proof carries over to the pa if we can prove that pa complements are 
unique, which the following lemma does.  

Lemma. Let b and c be hypothetical complements of any a∈B, so that ba = () = ca. 

Dem. b [B2] = b(()) [Hyp.] = b(ba) [B4] = b(a).  a [B2] = a(()) [Hyp.] = a(ba) [B4] = a(b). 

[(a)b∧(b)a]→ a=b. This demonstration holds if c replaces b, implying that a=c. By the Euclidian 
property (2.3.8) of equality, (a=b)∧(a=c) → b=c.         
 
C4. Dem.  ((a)b)a [B4] = ((ab)ba)a [TR] = ((ab)ab)a [B3] = (())a [B2] = a.     

Remark. Substituting b′ for b in C4 yields the primal of the absorption law. The dual is: 

Dem:   ((ab)a′) [C3] = (((a′)b)a′) [C4] = (a′) [C3] = a.        

The close connection between C4 and absorption should now be evident. The primal and dual toge-
ther imply L1, [ab]a=a=[[ab]a], the absorption law, because (a′b′)a ⇔ [ab]a and ((ab)a′) ⇔ 
[[ab]a] are the case. BA is a lattice by virtue of TR, Associativity, C1, and absorption. 
 
C5. Dem. a((b)(c)) [B4,4x] = a((ab)(ac)) [C3; χ/((ab)(ac))] = (a′)χ [B4] = (a′χ)χ  [((ab)(ac))/ χ; 

B4,3x] = (a′(a′(a′ab)(a′ac)))χ [B3,2x] = (a′(a′(()b)(()c)))χ [C2,2x] = (a′(a′(())(())))χ = 
[B2,2x] (a′(a′))χ [B3] = (())χ [B2; ((ab)(ac))/ χ] = ((ab)(ac)).      

Remark. Note that the demonstration requires only C2 and C3 in addition to B1-B4. 
 
The following calculation may be easier to follow: 

Cal. RL: (((ab)(ac)))a(b′c′) [C3] = (ab)(ac)a(b′c′) [B4,2x] = b′c′a(b′c′) [OI] = (b′c′)b′c′a [B3] = ()a 
[C2] = ().  

LR: (a(b′c′))((ab)(ac)) [B4,3x] = (a(a(ab)(ac)))((ab)(ac)) [B4] = (a((ab)(ac)))((ab)(ac)) [B4] = 
a′((ab)(ac)) [B4,3x] = a′(a′(a′ab)(a′ac) [B3,2x] = a′(a′(()b)(()c)) [C2,2x] = a′(a′(())(())) [B2,2x; 
OI] = (a′)a′ [B3] = ().            

  
C6. Dem. (a′b′)(a′b) [C3] = (((a′b′)(a′b))) [C5] = (a′((b′)b′)) [B3] = ((())a') [B2] = (a′) [C3] = a.   
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C7. Dem. ((a'b)c) [C3] = ((a'(b'))c) [C5] = (((ac)(b'c))) [C3] = (ac)(b'c).      
 
C8 is simpler than its LoF counterpart, and its demonstration is new: 
 
C8. Dem.  ((b′r)(a′r′)) [C5] = ((((b′r)a)((b′r)r))) [C3; B4] = ((b′r)a)((b′)r) [C3; TR] = (a(b′r))(br) 

[B4] = (a(b′r)(br))(br) [TR; C3,2x] = (a((r′)b′)((r′)b))(br) [C5, r′/A, b/B] = (ar′)(br).   

It is usually easier to calculate a consequence than to demonstrate it. C8 is an exception; the RL part 
of the following calculation is surprisingly difficult. 

Cal.   LR:     (((b′r)(a′r′)))(ar′)(br) [C3; TR] = (rb′)(rb)(r′a′)(r′a) [C3,2x] = ((r′)b′)((r′)b)(r′a′)(r′a) 
[C6,2x] = r′r [B3] = (). 

          RL:     ((ar′)(br))((b′r)(a′r′)) [C7,2x] = (r(br))(a′(br))(b(a′r′))(r′(a′r′)) [B4,2x]  = 
(r(b))(a′(br))(b(a′r′))(r′(a′)) [C3; TR] = (rb′)(a′(rb))(b(r′a′))(r′a) [B4,2x] = 
(rb′)(a′(rb′)(rb))(b(r′a′)(r′a))(r′a) [C6,2x] = (rb′)(a′r′)(br)(r′a) [TR, 3x; LR] = ().   

The RL part of the above calculation is much more easily verified by TVA: 

r=(): ((a)(b()))((b′())(a′)) [C2; B2, 2x] = ((a))((a′)) [C3,2x] = aa′ [B3] = (). 
r=⊥: ((a())(b))((b′)(a′())) [C2; B2,2x] = ((b))((b′)) [C3,2x] = bb′ [B3] = ().    

 

C1-C7 are LoF consequences, by different names. B2 and B3 are demonstrable in the system of 
LoF, to wit: 

Dem. (())a [J1] = (a′a)a [C4] = a.  Dem. (a)a [C1] = a′aa [C3] = ((a′a))a [J1] = ()a [C2] = ().   
 

Huntington’s Approach to Associativity. 

The above suggests that Huntington’s (1904) demonstration of associativity from the basis (a′a)=⊥, 
B2, C5, and TR, as reproduced in Eves (1990: 217-19), was needlessly elaborate. From C3 (imme-
diately below), it follows trivially that the dual of juxtaposition associates: Dem. (((a′b′))c′) [C3] = 
(a′b′c′) [C3] = (a′((b′c′))).  That juxtaposition itself associates then follows from 4.1.4. Hence that 
juxtaposition associates requires only what the proof of 4.1.4 and the demonstration of C3 require. 
Proof: C3, R1  4.1.4. B3, C3, B4  R1. B3, B4, TR  C3. Hence B3, B4, TR  4.1.4.     
 
 
A.1.3. From Any Contradiction, Anything Can Be Proved. 

Proof. By B4, b(ba)=b(a) for any a,b. Now let b be any pa formula whatsoever, and let a be a 
formula such that both a=() and a=⊥ are demonstrable by hypothesis. The lhs of B4 evaluates as 
b(ba) [let a=()] = b(b()) [C2] = b(()) [J1] = b. The rhs of B4 evaluates as b(a) [let a=⊥] = b(⊥) [B4] 
= b(b⊥) [J1] = b(b) [B3] = (). Hence b=(), the desired absurd result.      
 

 
A.2.  Proof of 2.3.10. 

2.3.10. Theorem. R is an equivalence relation iff R is reflexive and Euclidian. 

Proof. I assume that the uniform replacement of letters ranging over the field of a relation is 
allowed (the analogous BA property is R2). Since formulae of the form xRy have truth values, they 
can be treated as BA atomic formulae. The BA version of Euclidian is (aRc)(bRc)aRb = (). Then: 
 
(aRc)(bRc)aRb [a/c] = (aRa)(bRa)aRb [reflexive; J1] = (bRa)aRb ⇔ bRa→aRb. 
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(aRc)(bRc)aRb [a/b; b/a; c/b] = (bRb)(aRb)bRa [reflexive; J1] = (aRb)bRa ⇔ aRb→bRa. Hence 
aRb ↔ bRa, i.e., R is symmetric. 

(aRc)(bRc)aRb [c/b; b/c] = (aRb)(cRb)aRc [symmetric] = (aRb)(bRc)aRc ⇔ (aRb ∧ bRc) → aRc. 
Hence R is transitive.            

Remark. Using ponential methods, Lukasiewicz (1967: 97-98) derives the three properties of equiv-
alence relations from a variant of Euclidian, (cRb)(cRa)aRb, 1 on p. 97. Reflexivity and symmetry 
are *6 and *7 on p. 97; transitivity is 5 on p. 98. 
 
 
A.3. Demonstrations Needed in §3.3. 

The following demonstration of C3 holds for any complemented lattice. 

C3. ((a))=a. Dem. ((a)) [L3a; L7b] = ((())(a)(a)) [L8; TR] = ((a)(a)((b)b))  [L9] = [aa[(b)b]] [L8] = 
[aa[()]] [TR] = [[()]aa] [L7b] = [aa] [L3b] = a.       

 

3.3.13. Theorem (Consistency Principle).  a≤b, a∪b=b, and a∩b=a are equivalent Ba statements, 
and these in turn have the pa equivalents a′b=(), ab=b and (a′b′)=a. 

Dem:  a∪b=b ⇔ ab=b ⇔ (((ab)b)(b(ab))) [B4,2x] = (((a)b)(b(a))) [TR; C1] = (((a)b)) [C3] = a′b. 

a∩b=a ⇔ (a′b′)=a ⇔ ((((a′b′))a)((a′b′)(a))) [C3; B4] = ((a′b′a)((b′)a′)) [C3] = ((a′b′a)(ba′)) [TR] = 
((a′ab′)(a′b)) [J1] = ((a′b)) [C3] = a′b. 

Moreover, a′b ⇔ a≤b because a′b satisfies the three criteria for a partial ordering: 
Reflexivity: a′a [B3] = ().  Antisymmetry: a≤b ∧ b≤a ⇔ ((a′b)(b′a)) [Def. of =] ⇔ a=b. 
Transitivity: (a≤b ∧ b≤c) → a≤c ⇔ (((a′b)(b′c)))a′c [C3] = (a′b)(b′c)a′c [B4,2x] = (b)(b′)a′c [B3] = 

()a′c [C2] = ().      
 

3.3.17. Theorem. The cardinality of the base set B in BA is necessarily 2. 

Cal. x=() ∨ x=⊥ ⇔ (x′(()))(x())(x′(⊥))(x⊥) [J1,2x] = (x′)(x())(x′(⊥))(x) [TR] = (x())(x′(⊥))(x′)(x) 

[B3] = (x())(x′(⊥))() [C2] = ().          

 

 

A.4.  Demonstrating B2-B4 from C6 and Order Irrelevance. 
Huntington (1933), which LoF cited on p. 88, showed that C1, C6, TR, and Ass. form a basis for 
Ba. LoF is unaware that Huntington (1933a) proved C1 redundant. I now verify that H={C6, TR, 
Ass.} is a Ba basis by demonstrating H   B2-B4. The demonstration of Lemmas 2-3 and B2 are 
adapted from Huntington (1933a: 4.15); the remaining demonstrations are adapted from Kauffman 
(1990).1 A.4 is more concise than Huntington’s and Mann’s (2003) verification that H is a basis, 
and also implies that Johnson’s (Table 6-2) axioms C1 and C3 are redundant. 

Lemma 1. Dem. a′a [C6,2x] = ((a′)(b′))((a′)b′)(a′(b′))(a′b′) [TR] = ((a′)(b′))(a′(b′))((a′)b′)(a′b′) 
[TR,4x] = ((b′)(a′))((b′)a′)(b′(a′))(b′a′) [C6,2x] = b′b.      

Remark. This lemma means that a′a has the same value for all a. I go with a′a=(), which yields B3 
and J1. a′a=⊥ is equally valid, and gives rise to the dual interpretation. 

C3. Dem. (a′) [C6] = (((a′))a′)(((a′))(a′))  [Lem. 1] = (((a′))a′)((a′)a′) [TR; C6] = a.    

                                                           
1. See http://www.lawsofform.org/logic.html. This URL also includes the demonstrations in Bricken (1986). 
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Def. A =: a′a.  Lem. 1 now implies that A=A′A, and that C6 can take the form a = (a′a′)A′. A and A′ 
are, of course, algebraic synomyms for () and (()). 

Lemma 2. Dem. A′ [C6] = ((A′)(A′))((A′)A′) [C3,2x] = (AA)((A′)A′) [Lem. 1] = (AA)A′.    
Lemma 3. Dem. A′ [Lem. 2] = (AA)A′ [Lem. 1] = (A′AA)A′ [Lem. 2] = ((AA)A′AA)A′ [Lem. 1] = 

((AA)AA)A′ {Lem. 1] = A′A′.           
B2. Dem. (())a [B3; Def.] = A′a [C6] = A′(a′a′)A′ [TR] = (a′a′)A′A′ [Lem. 3] = (a′a′)A′ [C6] = a.   

C1. Dem. aa [C3] = ((aa)) [B2; B3] = ((a′a)(aa)) [C3,2x] = ((a′(a′))(a(a′))) [C6] = (a′) [C3] = a.   
B4. Dem. a′b [C6,2x] = ((a′)b)((a′)b′)(b′a)(b′a′) [C3,2x] = (ab)(ab′)(b′a)(b′a′) [TR; C1] = 

(ab)(b′a)(b′a′) [C6] = (ab)b.          
 
 
A.5.  α=β ⇔ α↔β ⇔ ((α′β)(β′α)) Because ‘↔’ Is an Equivalence/Congruence Relation. 

Here I employ ‘⇔’ in place of ‘=’ because, for the sake of argument, I am temporarily setting aside 
the fact that ‘=’ is an equivalence relation. 
 

Symmetric: [α=β]⇔[β=α] ⇔ [α↔β]↔[β↔α]. 
LR: Cal. (((α′β)(β′α)))((β′α)(α′β)) [C3] ⇔ (α′β)(β′α)((β′α)(α′β)) [B4,2x] ⇔ (). 
RL: Trivial, and also evaluates to ().          

Transitive: Let χ stand for (α′β)(β′α)(β′δ)(δ′β). “α=β and β=δ implies α=δ” translates as 
(α′β)(β′α)(β′δ)(δ′β)((α′δ)(δ′α)) ⇔ χ((α′δ)(δ′α)) [C5] ⇔ ((χα′δ)(χδ′α)). 

Cal. χα′δ ⇔ (α′β)(β′α)(β′δ)(δ′β)α′δ [B4,2x] ⇔ (β)(β′α)(β′)(δ′β)α′δ [C3] ⇔ β′(β′α)β(δ′β)α′δ 
[TR; B3] ⇔ ().  χδ′α ⇔ () follows, mutatis mutandis.        

Reflexive:  Cal. [α=β] ⇔ ((α′α)(α′α)) [J1,2x] ⇔ ().          
 
By virtue of satisfying conditions C1 and C2 below, ‘=’ is also a congruence relation (cf. 3.3.12 in 
the text; also see Stoll 1963: 259-61). I now demonstrate this fact, ∀a,b,c∈B, again translating ‘=’ 
as ‘↔’: 

C1. a=b → ac=bc.  Cal. (a′b)(b′a)(((ac)bc)((bc)ac)) [B4,2x] ⇔ (a′b)(b′a)(((a)bc)((b)ac)) [C5] ⇔ 
(a′b)(b′a)((a′b)(b′a))c [TR] ⇔ ((a′b)(b′a))(a′b)(b′a)c [B3] ⇔ ().    

C2.  a=b → a′=b′.    Cal. (a′b)(b′a)(((a′)b′)((b′)a′)) [C3,2x] ⇔ (a′b)(b′a)((ab′)(ba′)) [TR] ⇔ 
((a′b)(b′a))(a′b)(b′a) [B3] ⇔ ().        

C3.  a′=b′ → a=b.    Cal. ((a′)b′)((b′)a′)((a′b)(b′a)) [C3,2x] ⇔ (ab′)(ba′)((ab′)(ba′)) [TR] ⇔ 
((a′b)(b′a))(a′b)(b′a) [B3] ⇔ ().        

Remark.  Stoll does not mention C3, which enables replacing C2 with a′=b′ ↔ a=b, a corollary of 
which being that either of B3 or J1 may do duty for the other. Note how the calculations reveal that 
C2 and C3 reduce to the same thing, one differing only slightly from C1. 
 

 

A.6.  More re B4. 

Proof. A quick TVA proof. Given (ba)a = (b)a, let: 
• b=⊥:  Simply erase b. The lhs becomes (a)a [B3] = (), and the rhs becomes ()a [C2] = (). 
• b=():  The lhs becomes (()a)a [C2] = (())a, and the rhs, (())a. 
Invoke T7 twice to complete the proof.          
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Equivalents of B4 include Johnson’s (1892: 342) Law of Exclusion, the third consequence proved 
in his system, Th. 7 in Byrne (1946), (48) in Rosser (1953: 113), T8-6.j4 in Carnap (1958), T12 in 
Stoll (1963: 257), and exercise 3.12.a in Hohn (1966). The Implication axiom (§A.12) in Gries and 
Schneider (1994) is a→b = (a∨b)↔b. B4 is an important property of residuated lattices, in which 
ab⇔ a∪b, (a′b′)⇔a∩b, and ab′ is read as the residual of a and b; see Dilworth (1938) and 
references therein. 

(31) in Suppes (1957: 204) is B4, given that a~b (in the sense of Suppes) ⇔ (a′b). B4 is a trivial 
corollary of (b→a)↔[(b∨a)↔a], *4.72 in PM, T73 in Kalish et al (1980: §II.11), and (38) in Cori 
and Lascar (2000: 32). B4 can be obtained from [(a→b)∧ (c→b)]↔[(a∨c)→b] (*4.77 in PM, (18) 
in Stoll (1974: 85), and (57) in Cori and Lascar (2000: 33)), via b/c and noting that [(a→b)∧ 
(b→b)]↔(a→b). 

One half of B4, viewed as a biconditional, is B4′, (a→b)→[(a∨b)→b]. B4′ is (22) in Grassmann 
(1966: Be-13), *2.621 in PM (the other half is *2.67), Zeman (1973: 2.20), and Leblanc and 
Wisdom (1976: 99, Example 21). Zeman shows that B4′ is merely a substitution instance of a 
tautology equivalent to modus ponens. The converse of B4′ is likewise a substitution instance of his 
2.12. Zeman derives B4′ from that part of the implicational calculus intuitionists accept. B4′ is also 
an axiom in a system Hilbert set out in 1922 (system 1.3) and in four other CTV axiom systems set 
out in Epstein (1995: 408-9). c/a turns Reichenbach’s (1947: 39) (8h)2, ((b∨c)→a)→(b→a), into 
the converse of B4′. Even though B4′ is a substitution instance of Mendelson’s (1997: 35) axiom 
A3, his proof of the converse (Th. 1.11.g) requires 43 lines and the Deduction Theorem! B4′ can 
even be viewed as an analogue to the special case φ=Δ of the “left” version of Bostock’s (1997: 
§2.5) structural rule THIN. 

A tautology related to B4′ is B4″, (b→a)→[(b∨c)→(a∨c)], axiom *1.6 of PM (Prior 6.11). Hence 
B4″ is included in the PM axiom system as modified by Lukasiewicz and Bernays (Table 6-2; Prior 
6.11 net of (4)) and commonly used since (e.g., Carnap 1958: 86, P1-P4; Kneebone 1963: 43; Men-
delson 1997: 45, system L1; Halmos and Givant 1998: 22, T1-T4). To obtain B4′, substitute a for c 
in B4″ and note that this axiom system trivially implies (a∨a)↔a, C1 in the pa. Yet another tautol-
ogy that is B4′ in disguise is B4′′′, (a→c)→[(b→c)→((a∨b)→c)], one of the axioms in Kleene 
(1952) and (6) in §A.13. Substitute b for c in B4′′′, note that ((b→b)→ vanishes, and B4 results. 

As best as I can determine, however, only one demonstration in the sources I cite invoke any of B4, 
B4′, or the converse of B4′: Zeman’s demonstration of his 2.21. I conclude that extant expositions 
of the CTV are unnecessarily complicated. 

B4 has the following intuitionistic interpretation. Substituting b for c in (6) in §A.13 yields 
[(a→b)∧(b→b)]→[(a∨b)→b]. Now b→b evaluates to T, and (a→b)∧T evaluates to a→b. Hence 
(a→b)→[(a∨b)→b], one half of B4, is an intuitionist tautology. Meanwhile, the other half of B4, 
[(a∨b)→b]→(a→b), cannot be demonstrated using axioms (1) to (8a) in §A.13. 
 

 

A.7.  B2, B3, C1-C5, and J1 Are Standard Identities in Logic and Boolean Algebra. 

Lipschutz (1964) is an elementary text on set theory and sentential logic published a few years be-
fore LoF. Table A-1 shows the correspondence between Lipschutz’s (p. 195) “Laws of the Algebra 
of Propositions” and BA. 8a and 8b excepted, each law is actually a dual pair; 8a is self-dual. 
Corresponding to each law is a law for the algebra of sets (p. 104). The table also shows which of 

                                                           

2. Cal. ((b∨c)→a)→(b→a) ⇔ ((bc)a)b′a [B4] = ((bc))b′a [C3; OI] = b′bac [B3] = ()ac [C2] = ().    
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these laws Huntington (1904) deemed postulates (P) and consequences (C). Only two basic BA no-
tions are missing from Table A-1: A1, a trivial consequence of 5 and 6, and B4. 
 

Table A-1: Correspondences between Lipschutz and Ba.  

  Algebra of 
Propositions 

BA Huntington 

(1904) 
1  Idempotent C1 C 

2  Associative B1 C 

3  Commutative B1 P 

4  Distributive C5 P 

5  Identity A2 C 

6      “ C2 C 

      “ B2 P 
7b  Complement J1 P 

8a      “ C3 C 

8b      “ A2 C 

9  De Morgan’s Transcriptional triviality C 

 
 

A.8.  Proof of Theorem 4.1.4 on Duality. 

The proof is by induction on formula length, a standard technique well-explained in Bostock (1997: 
§2.8). The proof below follows Bostock closely in all respects but notation. 

Definition: Given a formula α, its length l(α) = number of variables in α less 1, plus the number of 
left parentheses and primes in α. If l(β) < l(α), then β is shorter than α. 

Notation:  Given the pa formula 1α α ,..., nx x= 〈 〉 , its contradual is 1α α ,..., .nx x′ ′= 〈 〉df  

Lemma: α (α)D = . 

Proof. The hypothesis of strong induction is: 
For all formulae β such that l(β) < l(α), β (β)D = . 

There are three cases to consider. 

α is atomic:  α αD =  [C3] = ((α)) [Def. of overbar] = (α) . 

α is enclosed:  α = (β). 

α (β)D D=   Substitute (β) for α [R1] 
      = (β )D   Def. of duality 
      = ((β))   Inductive hypothesis 
      = ((β))   Def. of overbar 
      = (α)   Substitute α for (β) [R1]. 

α is a concatenate:  α = βχ for some formula χ. 

 [βχ]D Dα =   Substitute βχ for α [R1] 
       = ((β )(χ ))D D  Def. of duality 
       = (((β))((χ)))  Inductive hypothesis 
       = (βχ)   C3, 2x 
       = (βχ)   Def. of overbar 
       =  (α)   Substitute α for βχ [R1].        
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Theorem 4.1.4:  α φ=  ↔ α φD D= . 

Proof.  If α=φ , then α=φ  [R2], so that (α)=(φ) . Hence α =φD D  by the lemma above.    
 
The lemma / 4.1.4 is Bostock’s (1997: §2.10) First / Third Duality Theorem and Quine’s (1982: 
§12) second / 5th law of duality. 
 
 
A.9.  The LoF metatheorems. 

 

3.1.9. (T10). C5 extends to any finite number n of divisions (2.1.7) of the subspace of depth 1. 

Proof (LoF, pp. 38-39). T10 with n=0 is simply C2. T10 with n=1 yields ((a))r [C3] = ar [C3] = 
((ar)). The following demonstration verifies the case n=3. 

Dem. r( 1a′
2a′

3a′ ) [C3,2x] = r( 1a′ (( 2a′ (( 3a′ ))))) [C5] = ((ra1)(r( 2a′ (( 3a′ ))))) [C5] = 
((ra1)(((ra2)(r( 3a′ ))))) [C3,2x] = ((a1r)(a2r)( a3r)). 

The case n=3 generalizes to any finite n, if both instances of ‘2x’ in the preceding demonstration are 
replaced by ‘(n-1)x’.             
 

 

4.4.2 (T14). Let *dα >2 for some formula α. Then α can be transformed, by taking steps, into an 
equivalent formula β such that *dβ =2. 

Proof. (This proof is new except for its repeated use of C7, which I took from LoF.)  α can be seen 
as an ordered tree, one or more of whose branches terminate at some maximal depth *dα . Let *dα >2, 
and let β, χ, and φ be subformulae appearing at depths *dα , *dα −1, and *dα −2, respectively, of any 
longest branch of α. Let γ denote all of α not accounted for by β, χ, and φ, so that α=(((β)χ)φ)γ. By 
C7, (((β)χ)φ)γ=(βφ)(χ′φ)γ. The maximum depth of (βφ)(χ′φ)γ is 1 less than that of (((β)χ)φ)γ. This 
depth-reducing procedure based on C7 can be repeated, each time suitably redefining β, χ, φ, and γ. 
When one branch of α is exhausted, switch to the longest remaining branch. Continue until no 
branch of α has depth>2.            

Remark: Each application of C7 to the terminus of any branch of α reduces that branch’s depth by 
1. This fact enables another, perhaps simpler, algorithm. Beginning at the terminus of any branch, 
apply C7 repeatedly until a node is encountered, then switch to the terminus of any other branch. 
Continue until no further applications of C7 are possible, at which time no branch will have 
depth>2. For more on ordered trees, see Smullyan (1968: §§I.0-1). Ordered trees are models of 
bounded semilattices. 
 

 

4.4.3. (T15).  Let the pa formula α〈v〉 contain more than two instances of the variable v. Then α can 
be transformed, by taking steps, into an equivalent formula β〈v〉, such that β〈v〉 contains at most two 
instances of v. 

Proof (Adapted from LoF).  By C3 and T14, there exist a subformula f〉v〈, and the sequences of sub-
formulae, ai, pi, and xj, such that 

α〈v〉 (( ) )... ( )...i i iva p f vx=  
 (( ) )... ( )...i i iv a p f vx′ ′= ( )( )  Apply C3 twice for each value of i. 
 ( )( )... ( )...i iv a f vx′ ′= i ip p  Apply C5 and C3 once for each value of i. 

( )...( )... ( )...i i i iv p a p f vx′ ′=  By OI, the disjuncts ( )iv p′ can grouped together, to the 
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  left of the ( )i ia p′ . 
 ( )... ( )...i jv p g vx′=   Let ( )...i ig a p f′= . 
 ( )... ( )...i jv p vx g′= (( ))(( ))  C3, 2x; OI g. 
 (( ...) )(( ...) )i jp v x v g′ ′ ′=   T10, 2x.         

 

 

4.4.4. (T16). Let the variable v appear in at least one of the formulae α and β. Let v ∈B be a 
possible value of v, and α〈 v 〉 be α〈v〉 with v set to v . Then if [ ]υ α υ β υ∀ 〈 〉 = 〈 〉 , then α=β. 

Proof (Adapted from LoF, pp. 47-49). Let v vary between ⊥ and (). Now consider the following two 
mutually exclusive and exhaustive cases: 

1. Variation in v either alters or does not alter both α〈v〉 and β〈v〉. If α〈v〉=β〈v〉 after a change in v, 
then α〈v〉=β〈v〉 must have been the case before the change. Hence α=β in this case. 
2. Variation in v causes the value of one of α〈v〉 or β〈v〉 to change, but not both. If both were to 
change, there would exist a v  such that α〈 v 〉≠β〈 v 〉, contrary to hypothesis. Hence if varying the 
value of v causes one of α〈v〉 or β〈v〉 to change, the other must change as well, so that the reasoning 
of case 1 applies. 

Hence α〈v〉 and β〈v〉 are equivalent in all cases of v, from which α=β follows.     

Remark. If only one of α〈v〉 and β〈v〉 is the case, then variation in v cannot affect the value of the 
formula in which v appears. 
 

 

4.4.5. (T17).  The pa is complete. 

Proof. (adapted from LoF, pp. 50-52). Let αk, βk be formulae each containing some variable v. Let 
k-1 be the number of distinct variables other than v appearing in either αk or βk. The proof proceeds 
by strong induction on k, with the inductive hypothesis being ∀k<n [αk=βk] for some integer n>0. 
T15 assures us that there exist formulae *

nα  and *
nβ , with v appearing at most twice in each, such 

that *
n nα α=  and *

n nβ β= . Moreover, T14 assures us that the depths of *
nα  and *

nβ  need not exceed 
2. Since *

nα  and *
nβ  are the normal forms of αn and βn, they can be written as: 

(E1) *
nα  = (v′a1)(va2)a3  (E2) *

nβ  = (v′b1)(vb2)b3 , 

where ai and bi, i=1,2,3, are suitable sub-formulae whose depth do not exceed 1. 

Now evaluate *
1nα −  and *

1nβ −  at each of v=() and v=⊥: 

v=():   *
1nα −  = ((())a1)(()a2)a3 = (a1)a3 ;   *

1nβ −  = ((())b1)(()b2)b3 = (b1)b3. 

v=⊥:   *
1nα −  = ((⊥)a1)(⊥a2)a3 = (()a1)(a2)a3 = (a2)a3 ; *

1nβ −  = ((⊥)b1)(⊥b2)b3 = (b2)b3. 

The inductive hypothesis asserts that *
1nα − = *

1nβ −  can be proved. Hence: 

(E3) *
1nα −  = *

1nβ −  → (a1)a3 = (b1)b3, and 

(E4)  *
1nα −  = *

1nβ −  → (a2)a3 = (b2)b3, 

are provable. I now demonstate that *
nα = *

nβ .   (N.B. C8 is ((A′R′)(B′R)) = (AR′)(BR) ). 

 (v′a1)(va2)a3 E1, transcription of *
nα . 

 ((v′(a1))(v(a2)))a3 C8, a1/A, a2/B, v/R 
 ((v′(a1)a3)(v(a2)a3)) C5 
 ((v′(b1)b3)(v(b2)b3)) Substitute E3, E4 



 BOUNDARY ALGEBRA 89 

 ((v′(b1))(v(b2)))b3 C5 

 (v′b1)(vb2)b3 C8, b1/A, b2/B, v/R 
 *

nβ  E2. 

It remains to be shown is that there exists a value of n for which the inductive hypothesis, αk=βk 
∀k<n, holds. Suppose that n to be 1, in which case only k=0 need be considered. Now if k=0, then 
α0 and β0 are PA formulae. α0=β0 can be proved in the pa if A1 and A2 are pa consequences. This 
is indeed the case: A1 is C1 with ()/A, and A2 is C3 with ⊥/A. Also, ⊥⊥ [C1, ⊥/A] = ⊥; (⊥) [A2] 
= ((())) [C3, ()/A] = ();  ⊥()= ()⊥ [C2, ⊥/A] =().         

4.4.5. Alternate Proof (adapted from Kneebone 1963: 48). 
Completeness means that all tautologies are demonstrable from the pa initials. By T14, any 
formula α has an NF representation β= *( ...) ...ai j . Keep in mind that for some j, i may equal 1. 
Every step in the derivation of β from α is justified by invoking one of C7, C3, or B4, which are all 
initials or consequences derivable from the initials. Hence if β is derivable from the initials, then so 
is α. Also if β is a tautology, α is as well, because β=α by T14. To demonstrate that β is a 
tautology, it suffices to consider two cases: 

Case 1. ∀j *( ...)ai j
=⊥. If every disjunct contains some variable in both primed and unprimed form, 

then each disjunct (and hence β as well) simplifies to ⊥ by J1. 

Case 2. ∃j *( ...)ai j =(). This is demonstrable if there exists a variable x such that one disjunct is 

simply (x) and another is ((x)). Then β=() by B3. 

B3, B4, J1, C3, and C7 are either initials, or can be derived from the initials. Hence if α is a tau-
tology, the initials suffice to verify that fact.          
 

 

4.4.7. (T18).  The initials making up certain bases are independent. 

Each proof below points out an aspect of each initial not shared by the other initials making up the 
given basis. This aspect suffices to prove that each initial cannot be derived from the others. Hence 
the initials are independent of each other. This approach is that of LoF. 

J1-2:  Proof (adapted from LoF). In J2, r changes from one instance at depth 0 to two instances at 
depth 2. In J1, nothing changes depth. J2 does not create or eliminate any variable. J1 creates/elim-
inates a.  

B1-B4: Proof. Only B1 has no boundaries. Only B3 creates/erases all instances of a variable. Only 
B2 creates/erases boundaries. Only B4 creates/erases some (but not all) instances of a variable.      
 
To prove independent the axioms for an abelian group, omit each of the axioms in turn and obtain 
the model on the right: 
• Commutativity: group 
• Associativity: commutative loop. 
• Identity:  commutative inverse semigroup 
• Inverse:  commutative monoid. 

{C6, B1}:  Proof. C6 creates/eliminates a variable and five boundaries. B1 alters no variable instan-
ces and has no boundaries.            
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A.10. Two Important Metatheorems on the Expressive Power of BA. 

 
5.4.1. Theorem. BA  CTV and CTV  BA.  BA and the CTV have the same expressive power. 

Proof. The proof is in two parts. The first derives in BA the rule modus ponens (hereinafter “MP”) 
and the CTV basis Prior 1.4c , PC1−PC3 below and hereinafter PC1−3. Hence BA  CTV. I then 
derive B1, B3, and B4 (simple form) in the CTV, and note that R1 and R2 are CTV metatheorems 
⎯see the references in §3.1. Hence CTV  BA. 
BA  CTV. The basis PC1−3 and the rule modus ponens are all easy BA consequences: 

PC1: Cal. ϕ→ξ→ϕ  ⇔  (ϕ)(ξ)ϕ [TR] = (ξ)(ϕ)ϕ [B3] = (ξ)() [C2] = ().      
PC2: Cal. [ϕ→ξ→ν]→[(ϕ→ξ)→(ϕ→ν)]  ⇔  ((ϕ)(ξ)ν)((ϕ)ξ)(ϕ)ν [TR; B4] = ((ξ)(ϕ)ν)(ξ)(ϕ)ν 

[B3] = ().             
PC3: Cal. [~ϕ→~ξ]→ξ→ϕ  ⇔  (((ϕ))(ξ))(ξ)ϕ [C1; TR] = ((ξ)ϕ)(ξ)ϕ[B3] = ().     
MP: Cal. (α)(α′β)β [TR] = (α′β)α′β [B3] = ().         
 
CTV  BA. The proof relies on the CUT rule (Table 5-3), which is derivable in the CTV. PC1−3 + 
MP  PM holds simply because PC1−3 is a CTV basis and MP is *1.11. To show that PM  BA, 
translate BA concatenation as alternation and ‘=’ as the biconditional. Then note that B3 is *2.08 in 
PM, and that the two halves of B4, viewed as a biconditional, are *2.621 and *2.67. Recall that the 
only purpose of B1 is to prove that alternation commutes and associates, facts which the PM axioms 
*1.4 and *1.5 assure. Now invoke CUT, letting Γ= PC1−3+MP, ϕ=PM, Θ= BA, and Δ,Φ = ∅. Then 
the following clause is valid: ([PC1−3+MP  PM] ∧ [PM  BA]) → [PC1−3+MP  BA].    

Remark. PC1−3 neither are, nor claim to be, “obvious” and “elementary.” The calculations for PC1 
and PC2 reveal that they are B4 in disguise. The axioms PC1 and PC2 are popular because they fac-
ilitate the proof of the Deduction Theorem (Machover 1996: 7.7.3), stated in Table 5-3 above. PC3 
and its variants (see §6, fn. 9) govern negation. J1 fills that role in LoF; simpler axioms of this na-
ture are B3, C2, or C3. Note that every calculation in the first half of the proof invokes B3 in the 
final step.3 
 
Theorem. The pa and Ba are isomorphic. 

Proof. 
The proof is in two parts. First, I show that there exists a variant of Ba whose postulates are all pa 
consequences. Second, I show that B1−B4 are Ba identities.  

The Ba variant employed in the first part of the proof is that of Huntington (1933), who defines Ba 

as a 〈+,-,1〉 algebra of type 〈2,1,0〉. This variant readily translates the pa as follows: concatenation 
⇔ infix '+', ‘(a)’ ⇔ '-a', and ()⇔ 1. Huntington's Ba postulates are: 
• '+' commutes (TR) and associates (Ass.); 
• An identity that translates as C6. 
Thus his Ba postulates are all pa consequences. 

Turning to the second part of the proof, see the description of Ba in Eves (1997: 8.2), an accessible 
re-exposition of Huntington’s (1904) landmark paper on Boolean axiomatics. Then Eves's: 
• B1 (Th. 5) implies that concatenation commutes (associates); 
• B2 implies the primal and dual interpretations of B2; 

                                                           
3. PC1−3 commands pride of place in Church (1956: 119) and Bostock (1997: 387). PC1, PC2, and the con-

verse of PC3 are three of the six axioms in Frege’s Begriffschrifft (Prior 1.1). In 1930, Lukasiewicz de-
rived Frege’s three other axioms from PC1-3. 
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• B4 implies the primal and dual interpretations of B3; 
• B3 implies the primal and dual interpretations of C5. 
 
I now need to demonstrate B4 as a Ba consequence: 

Dem. (ab)a [C3,2x] = ((a′)(b′))a [C5] = ((a′a)(b′a)) [B3] = ((())(b′a)) [B2] = ((b′a)) [C3] = b′a.     

This demonstration of B4 invoked C3. To complete the proof of the theorem, I need to derive C3 
from B2, B3, and C5, as follows: 

C3. Dem.  (a′) [B2] = (())(a′) [B3] = ((a′)a′)(a′) [C5] = (((a′)a′)((a′)a)) [B3] = ((())((a′)a)) [B2,2x] 
= (((a′)a)(())) [B3] = (((a′)a)(a′a)) [C5] = (((a′))(a′))a [B3] = (())a [B2] = a.  

Hence B1−B4 are either postulates or consequences of Huntington's (1904) formalisation of Ba.   

Remark. This is not to say that the pa is just a notation for 2. B2 means that the blank page is part of 
pa syntax and is a lattice bound. (a)a [C1] = (a)aa [B3] = ()a [C2] = () means that complementation 
can have an empty scope, in which case it denotes a primitive value and the lattice bound other than 
(()). I know of no hint of either fact in any extant treatment of Ba. 
 
 
Systems Going Beyond LoF. 

 

A.11. Theorem 6.1.1: 1i,e preserve tautologies. 

Proof. Let γ be a subformula of the formula α. It follows from T14 that there exists a formula β=α, 
also containing γ, such that the depth of γ in β does not exceed 2. Alternatively, if γ is to be inserted 
in α, the result is equivalent to inserting γ in some β whose depth also does not exceed 2. Hence 
only three cases need be considered: γ has depth 0, 1, or 2. As the EG map very naturally into the 
dual reading of the pa, the objective is to reduce β to ⊥. 

Erase γ at depth 0. Cal.  aγb′→ab′ ⇔ (aγb′(ab′)) [TR] = ((ab′)abγ′) [J1] = ⊥. 
Insert γ at depth 1. Cal.  (ab′)→(aγb′) ⇔ ((ab′)((aγb′))) [C3; B1] = ((ab′)ab′γ) [J1] = ⊥. 
Erase γ at depth 2. Cal.  (a(bγ))→(ab′) ⇔ ((a(bγ))((ab′))) [C3] = ((a(bγ))ab′) [B4] = (((bγ))ab′) 

[C3] = (bγab′) [B1,2x] = (b′bγa) [J1] = ⊥ . 

The cases where depth = 0 or 2 justify Erase Even. The case depth=1 justifies Insert Odd. 
I now show that the three remaining possibilities do not reduce to tautologies: 

Insert γ at depth 0.  Dem.  ab′→aγb′ ⇔ (ab′(aγb′)) [B1; B4,2x] = (ab′γ′). 
Erase γ at depth 1.  Dem.  (aγb′)→(ab′) ⇔ ((aγb′)((ab′))) [C3] = ((aγb′)ab′) [B4,2x] = (ab′γ′). 
Insert γ at depth 2.  Dem.  (ab′)→(a(bγ)) ⇔ ((ab′)((a(bγ)))) [C3] = ((ab′)a(bγ)) [B4] = ((b′)a(bγ)) 

[C3] = (ba(bγ)) [B4; TR] = (abγ′).        

Remark. The six demonstrations making up 6.1.1 require only C3 (3i,e), B4 (2i,e), B1 (tacit in the 
EG), and J1. I infer that J1 in effect plays the same role in BA that 1i and 1e play in EG. 
 
 
A.12. The Axioms of Gries and Schneider Are pa Identities. 

 
Definition of ↔:  p↔q ⇔ (p′q′)(pq). 
 
↔ Associates:  ((p↔q)↔r) = (p↔(q↔r)). 
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I will demonstrate this identity in a novel way, by showing that both sides have the same normal 
form. I begin by finding the normal form of the lhs using C7: ((A′B)C) = (AC)(B′C). 

Dem. (((p′q′)(pq))r′)((p′q′)(pq)r) [C7] =  (p′q′r′)(pqr′)((p′q′)(pq)r) [C7] = 
(p′q′r′)(pqr′)(p(pq)r)(q(pq)r) [B4,2x] = (p′q′r′)(pqr′)(pq′r)(qp′r). 

Notice that the pa translation of the rhs can be obtained by substituting q for p, r for q, and p 
for r into the pa translation of the lhs. Hence the normal form of the rhs is 
(q′r′p′)(qrp′)(qr′p)(rq′p) [OI] = (p′q′r′)(qp′r)(pqr′)(pq′r) [OI] = (p′q′r′)(pqr′)(pq′r)(qp′r). 
Hence the normal forms of both sides are identical.        

 
↔ Commutes:   p↔q = q↔p. 

Dem. (p′q′)(pq)[TR,2x] = (q′p′)(qp).           

 
Identity of ↔:   true = q↔q. 

Dem. (q′q′)(qq) [C1,2x] = (q′)q′ [B3] = ().          

 
Definition of false:   false = ~true ⇔ (()).  
Trivial if () ⇔ true. Follows trivially from A2 if (()) ⇔ true. 
 
Definition of p|q ⇔ p∨q ⇔ pq. 
 
| Commutes, Associates:  p|q = q|p, (p|q)|r = p|(q|r). 
Both follow from B1.  
 
| Idempotent:     p|p = p.  
This is just C1. 
 
| distributes over ↔:     p|(q↔r) = p|q ↔ p|r.  

Dem. Transform rhs into lhs:  ((pq)(pr))(pqpr) [C5] = ((q)(r))p(pqr) [B4; TR] = p((q)(r))(qr).   

 
Golden rule: (p & q) ↔ p = q↔(p|q). 

Dem. Simplify lhs:  (((p′q′))p′)((p′q′)p) [C3] = (p′q′p′)((p′q′)p) [TR; C1] = (p′q′)((p′q′)p) [B4] = 
(p′q′)p′ [B4] = (q′)p′[C3]  = qp′. 
Simplify rhs: (q′(pq))(qpq) [TR; C1] = (q′(pq))(pq) [B4] = (q′)(pq) [C3] = q(pq) [B4] = qp′.   
 
Axioms governing not, ~: 
 

Implication: ~p|q = (p|q)↔q. 
This is simply the second half of the preceding. 
 
Consequence: p|~q = ~q|p. 
Follows trivially by TR. 
 

Excluded Middle: p|~p. 
This is just B3. 
 
Distributivity of not, ~:  (~(p↔q) ↔ ~p) = q.  
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Dem. ((((p′q′)(pq)))(p′))(((p′q′)(pq))p′) [C3] = ((p′q′)(pq)p)(((p′q′)(pq))p′) [B4, 2x] = 
((p′q′)q′p)(((q′)(pq))p′) [B4; C3] = ((p′)q′p)((q(pq))p′) [C3; B4] = (pq′p)((qp′)p′) [TR; C1; 
B4] = (q′p)(q′p′) [TR; C6] = q.            

 
 
A.13. Kleene’s CTV axioms. 

The following axioms for the CTV are from Kleene (1952: 82). I now derive Kleene’s axioms as pa 
consequences. 
 
1a. Same as PC1 in §A.10. 

1b. Cal. (a→b)(a→(b→c))→(a→c) ⇔ (a′b)(a′b′c)a′c [TR; B4] = (a′b)(b′)a′c [TR] = (a′b)a′(b′)c 

[B4] = (b)a′(b′)c [TR] = a′(b′)b′c [B3] = a′()c [C2,2x] = ().       

2. (Modus ponens). Cal. (a∧(a→b))→b ⇔ ((a′(a′b)))b [TR] = (((a′b)a′))b [B4,2x] = (((a′b)a′b)b)b 

[B3] = ((())b)b [B2] = (b)b [B3] = ().          

   Remark. This is MP in §A.10. 

3. Cal. a→(b→(a∧b)) ⇔ a′b′(a′b′) [B3] = ().         

4a. Cal. (a∧b)→a ⇔ ((a′b′))a [B4,2x] = ((a′ab′)a)a [B3]= ((()b′)a)a [C2] = ((())a)a [B2] = (a)a 

[B3] = ().              

      Remark. The same reasoning holds for (a∧b)→b. This is Kleene’s 4b. 

5b. Cal. b→(a∨b) ⇔ b′ab [TR; B3] = ()a [C2] = ().         

      Remark. The same reasoning holds for a→(a∨b), except that TR is not needed. This is Kleene’s 
5a. 

6. Cal. (a→c)→((b→c)→((a∨b)→c)) ⇔ (a′c)(b′c)(ab)c [B4,2x] = (a′)(b′)(ab)c [C3,2x] = ab(ab)c 

[B3] = ()c [C2] = ().            

7. Cal. (a→b)→((a→¬b)→¬a) ⇔ (a′b)(a′b′)a′ [B4,2x] = b′(b′)a′ [B3] = ()a′ [C2] = ().    

8. Cal. (¬¬a)→a ⇔ ((a′))a [B4,2x] = ((a′a)a)a [B3] = ((())a)a [B2] = (a)a [B3] = ().    

    Remark. B3 and the LR half of C4 are acceptable alternatives.  
 
(6) requires two instances of C3. All other steps in the above calculations are justified by B2-B4, 
order irrelevance, and C2.  

(8) assures that the CTV basis (1a) – (8) treats negation in the manner classical logic requires. The 
resulting logic is classical because a∨~a, the law of excluded middle, is demonstrable from these 
axioms. Boundary logic is a classical logic simply because (a∨~a)↔T, interprets B3. (1a) – (7) also 
hold in intuitionistic logic, where ∧,∨, and → are all taken as primitive, and no subset of {∧,∨,→,~} 
is EA – whence the large number of axioms. Intuitionistic logic replaces (8) with (8a) F→a, which 
results in an axiom set from which none of B3, C3, and C4 is demonstrable. Devising a boundary 
syntax and proof theory for intuitionist logic would be an interesting exercise. 
 

 

A.14. Abelian Groups. 

Let GA1 be ab.c=ac.b; GA2, ()a=a; and GA3, (a)a = (). Deduce that group product commutes and 
associates from GA1, as follows: 
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TR: Dem. An instance of G1 is (a)ab.c=(a)ac.b [GA3,2x] ⇒ ()b.c=()c.b [GA2,2x] ⇒ bc=cb.   
Ass.: Dem. ab.c [TR] = ba.c [GA1] = bc.a [TR] = a.bc.        

McCune’s (1993) single axiom for an abelian group, recast in the boundary notation of this book, 
and assuming that juxtaposition associates from the left, is G0: abc(ac)=b. G0 reveals the funda-
mental calculation rule for abelian groups: if the subformulae α and (α) appear in the same depth, 
erase them both. G0 highlights a crucial difference between abelian groups and the pa, illustrated 
by the following example. In abelian group theory, the expression abc(ac) simplifies as abc(ac) 
[3.4.1] = abc(c)(a) [OI] = b(a)a(c)c [GA3,2x] = b()() [GA2,2x] = b. If the same expression is taken 
as a pa formula, it simplifies as abc(ac) [B4] =  abc(a) = [GA1] = bc(a)a [B3] = bc() [C2] = (). In 
nonabelian group theory, abc(ac) [3.4.1] = abc(c)(a) [GA3] = ab()(a) [GA2] = ab(a). 

McCune’s (1993) computer-generated proof that G0 suffices to axiomatize commutative groups re-
quires 101 steps to prove TR, 28 further steps to prove GA2 and GA3, and 108 yet further steps to 
prove Associativity. The ponderousness of computer exercises involving G0 resembles that of Mc-
Cune’s single axioms for Ba, DN1 and Sh1, discussed in §6.2. 

I do not derive GA1-GA3 from G0 here, but conclude with the following derivation of Associativi-
ty given G0, TR, GA2, and GA3. 

Dem. a.bc [G0] = a.ab.c(ac).c [TR,2x] = a.ab.(ca)c.c [TR] = a.ab.c.(ca)c [TR] = (ca)ca.ab.c [GA3] 
= ().ab.c [GA2] = ab.c.            

I conclude that McCune’s computer generated proof is unnecessarily involved. 
 
 
A.15. How Rosser Grounded Ba in Point Set Topology. 

Unless otherwise specified, all axioms, definitions, and theorems in this section are from Rosser 
(1969). Let X be a set of abstract objects called points (a primitive notion), with typical elements x 
and y (Def. 2.1). A basis is a set B whose members are nonempty subsets of X, called basis sets, 
satisfying the axioms RO1 and RO2 below (Axioms 2.1, 2.2).4 Let Bn, n∈N, denote arbitrary basis 
sets of X, and let x range over the elements of X. 
 
RO1:   The basis covers X, i.e., every point in X is contained in at least one basis set. 

∀x∃B0[x∈(B0⊆X)]. 
RO2:    If x is an element of the basis sets B1 and B2, then there exists a basis set B3 whose elements 

include x and that is a subset of the intersection of B1 and B2. 
∀x∃B3[(x∈B1 ∧ x∈B2) → (x∈B3 ∧ (B3 ⊆ B1∩B2))]. 

 
A set X for which RO1 and RO2 hold is a topological space,5 whose open sets are those sets that 
can be formed as the union of two or more basis sets of X (Def. 2.2). The open sets of X include X 
itself (Th. 2.3) and the empty set (Th. 2.4). Let the closure of P, denoted Cl(P), be the set of all x 
such that if x is a member of a basis set, that basis set must also include a member of P (Def. 2.3). 

                                                           
4. Let x, y, and w range over B, a set of sets. Then Metamath theorem isbasis2g expresses the predictate “B is 

a basis” as ∀x,y∀z∈(x∩y)∃w[z∈w ∧ w⊆(x∩y)]. Remarkably, the only axiom of standard (ZFC) set theory 
required to prove isbasis2g is Extensionality. 

5. Kolmogorov and Fomin (1975: 81), Th. 2. The corresponding Metamath theorem is istopg, http://us. 
metamath.org/mpegif/istopg.html. Let y and z range over some basis B of X. Then istopg defines the pred-
icate “X is a topology” as ∀y[y⊆X → (∪y)∈X] ∧ ∀y,z[(y∩z)∈X]. Again, the only ZFC axiom required to 
prove istopg is Extensionality. 
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Let Co(P) denote the complement of P relative to X (Def. 2.4). Letting Cc(P) =df  Co(Cl(P)), P is 
regular iff P= Cc(Cc(P)). Regular sets are also open sets (Def. 2.8). 

Let P and Q be any two regular sets of X. Let (()) ⇔ empty set, () ⇔ X, (P) ⇔ Cc(P), and PQ ⇔ 
Cc(Cc(P∪Q)) (Def. 2.9). Then Th. 2.18 shows that the resulting algebra is a model of BA: A1 is an 
instance of (2.18), A2 is (2.11), OI is (2.20) and (2.21), B3 is (2.16), and C5 is (2.22). 

I conjecture that Rosser’s approach can be connected to that of this book, and invite someone 
versed in point set topology to pursue this. 
 
 
A.16. LoF Sheds No Light on the Incompleteness of Peano/Robinson Arithmetic. 

A succint definition of Robinson arithmetic is: 
• The universe of discourse is the natural numbers (naturals); 
• There exists a function, called successor, whose domain is the naturals and whose range is every 

natural but 0; 
• Addition and multiplication are binary operations over the naturals, defined in the usual recur-

sive fashion. 
Augmenting Robinson arithmetic by the axiom schema of induction yields Peano arithmetic. 

Spencer-Brown claimed that the “imaginary” truth values of LoF’s chpt. 11 reduce the scope and 
importance of the classic limitative theorems. (LoF mentions the theorems of Gödel⎯Peano arith-
metic is incompletable⎯and of Church: first order logic with uninterpreted predicates is undecida-
ble.) In the 1950s and 60s, those who believed that those theorems required much or all of the form-
al machinery (e.g, first order logic, Peano arithmetic, Gödel numbering, recursive function theory, 
number theory) employed at that time to state and prove those theorems could be forgiven. Subse-
quent work by Smullyan (1991: chpts 1,2; 1994: chpts. 4,9; 2001) and Boolos (1998) has shown 
how to dispense with most of this machinery. 

Smullyan’s (1994: chpt. 4) proofs require little more than an elementary formal language capable of 
the self-reference required for diagonalization, and some way of coding strings as natural numbers. 
Smullyan has also rightly drawn attention to Tarski’s theorem (a finitely axiomatized formal system 
strong enough for Robinson arithmetic cannot define its own truth predicate), because its philosoph-
ical implications rival those of Gödel’s theorem, yet it is much easier to prove. Smullyan (1994) re-
views how first order Peano arithmetic is but one of many incompletable formal systems for which 
Tarski’s theorem holds. Smullyan also shows that the self-referential paradoxes that LoF (p. ix) 
tried to explain away cannot be easily dismissed. 

Boolos (1998: 383-88) states and proves the following metatheorem: 
 

Theorem. "There is no algorithm M whose output contains all true sentences of arithmetic and no 
false ones." 

Proof sketch. The requisite Gödel sentence builds on the following variant of Berry's paradox: "the 
least number not definable by a formula, having n symbols, of the language of [first order] arith-
metic." 

Let [n] abbreviate n (a natural number) successive applications of the successor function, starting 
from 0. Boolos then defines several related predicates, starting with Cxz, which comes out true iff 
an arithmetic formula containing z symbols "names" (see below) the number x. The construction of 
C is only sketched. This sketch assumes that every formula in the language of arithmetic has a Gö-
del number; this is the only mention of Gödel numbering in the entire proof. The “language of arith-
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metic” is first order logic, augmented by the successor function, and the defined binary relation '<' 
and trinary relation '×'. Boolos tacitly assumes that the language of arithmetic includes enough 
formal machinery for these symbols to have their usual meanings. The other defined predicates are: 

Bxy ↔ ∃z(z<y ∧ Cxz),  
Axy ↔ ¬Bxy ∧ ∀a(a<x→Bay),  
Fx ↔ ∃y((y=[10]×[k]) ∧ Axy).   k = the number of symbols appearing in Axy.  

Fx "names" n if the output of M includes the sentence ∀x(Fx ↔ (x=[n])). Thus Berry's paradox is 
formalized. The balance of the proof, requiring but 12 lines of text, shows that while this sentence is 
true in a semantic sense, no algorithm M can prove it true. Thus arithmetic truth necessarily outruns 
proof, the essence of Gödel’s famous result.          
Boolos’s proof requires less than two pages, because he assumes rather than demonstrates that his 
syntax can be arithmetized. His proof requires but two existential quantifiers, shown above in the 
definitions of the predicates Bxy and Fx, and is: 
• Silent about the axioms and theorems of Robinson and Peano arithmetics; 
• Innocent of infinity in any form, of any notions from proof theory, and of any facts about the 

connectives or quantifiers; 
• Is intuitionistically valid. 
Boolos even claimed that his proof dispenses with diagonalization. 
 

 

A.17. Robbins Algebras Are Boolean: The Proof Restated Using Boundary Notation. 

A Robbins algebra is a 〈B,∪,′〉 algebra of type 〈2,1〉, with ∪ assumed to commute and associate, and 
with the Robbins equation R (explained below) as the sole additional postulate. My notation for 
Robbins algebra replaces ∪ with concatenation, and the overbar with enclosure by parentheses or, 
in the case of a single letter, a postfix prime. (Hence a′ =: (a).)  

In 1933, Robbins conjectured that the algebras now named after him were in fact Boolean. This 
conjecture was finally proved by McCune (1997: §2) using computer methods. Dahn (1998) re-
worked McCune’s proof to bring it closer to the “tree of lemmas” style of mainstream mathematics. 
I rework Dahn’s proof below, using the boundary notation of the preceding paragraph, in order to 
show how boundary notation can simplify nontrivial contemporary mathematics. 

Dahn works hard the Boolean function δ(a,b) =: a b∪ , whose sentential logic equivalent is a b. 
(N.B: { ,¬} is expressively adequate; see Table 4-.) Dahn’s variant of R can be elegantly reex-
pressed using δ as δ(ab,δ(a,b)) = b. In pa notation, δ(a,b) is written as (a′b), so that Dahn’s variant 
of R is ((ab)(a′b)) = b. The proof below invokes the alphabetic variant of R, ((ab)(ab′)) = a, at least 
once. For a derivation of the Huntington equation, (a′b′)(a′b) = a, in Robbins algebra, see Mann 
(2003: §5). 
 

Theorem.  Robbins algebras are Boolean algebras. 
 
Proof.  We begin with some notation, U0-U2, then the preliminary facts δ1-δ3: 

U0: a0 =: (a′a);      δ1: a′=b′ [algebraic substitution] → (a′c)=(b′c); 

U1: an =: an-1a = 
Pn

0 ...a a a ;     δ2: ((aa)a0) [U0] = ((aa)(a′a)) [R] = a; 

       an =: aan-1 = 
Pn

0...a a a ;       δ3: ( 2a′ a) [U1; δ2] = ((aaa0)((aa)a0)) [R] = a0. 
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U2: aman = akal  if m+n = k+l. 

Remark. U0-U2 establish that numerical subscripts work like the superscripts denoting powers in 
numerical algebra. This notation of Dahn’s is required because we cannot assume that Robbins al-
gebras are idempotent until they are proved equivalent to Boolean algebra. U0 and U1 implicitly 
define (a′a) as the Boolean 0. Note that δ1 can be written a′=b′ → δ(a,c)= δ(b,c). Also recall that if 
equality is a congruence relation, then a′=b′ and ac=bc both follow from a=b. δ2 and δ3 are the 
familiar Boolean identities a′′= a, aa=a, and a0b=b in other guises. 
 
Let Ln denote “Lemma n.” Dahn then proves the 11 lemmas L1-L7 below. Each lemma equates the 
first and last formula in its proof. I have replaced Dahn’s α with χ because α is easily confused with 
a. “TR” signals the reordering of concatenated subformulae. 
 
L1. ( 3a′ a0) [δ3] = ( 3a′ ( 2a′ a)) [U1] = ((a2a)( 2a′ a)) [R] = a. 

Def. χ =: 3 1( ( ))a a aa′ . 

L2a. a [R] = (( 3a′ a0a)(( 3a′ a0)a)) [U1] = (( 3a′ a1)(( 3a′ a0)a)) [L1] = (( 3a′ a1)(aa)). 

L2b. (aa) [R] = (( 3a′ a1(aa))(( 3a′ a1)(aa))) [L2a] = (( 3a′ a1(aa))a) [Def. χ] = (χa). 

L2c. [L2b] (χa) = (aa) [δ1] → ((χa)a0) = ((aa)a0) [δ2] = a. 

L2d. 3a′  [R] = (χ((a1(aa)) 3a′ )) [TR] = (χ( 3a′ ((aa)a1))) [U1] = (χ((aaa1)((aa)a1))) [R] = (χa1). 

L2. [L2d] 3a′ = (χa1) [δ1] → 3( )a a′  = ((χa1)a) [U1] = ((χaa0)a) [L2c] = ((χaa0)((χa)a0)) [R] = a0. 

L3. ((a1a3)a) [R] = ((a1a3)((a3a) 3( )a a′ )) [L2] = ((a1a3)((a3a)a0)) [U2; U1] = ((a4a0) 4 0( )a a′ ) [R] =a0. 

L4. ((a1a2)a) [U2] = ((a3a0)a) [L1] = ((a3a0) 3 0( )a a′ ) [R] = a0. 

L5. ((a1a3)a0) [L4] = ((a1a3)((a1a2)a)) [U1] = ((a1a2a)((a1a2)a)) [R] = a. 

Def. β =: 1 3 3(( ) )a a aa′ . 

L6. (βa) [L1] = (β( 3a′ a0)) [L3] = (β( 3a′ ((a1a3)a))) [TR] = (β(((a1a3)a) 3a′ )) [R] = 3a′ . 

L7. (βa) [L5] = (β((a1a3)a0)) [L2] = (β((a1a3) 3( )a a′ )) [TR] = (β((a1a3) 3( )aa′ )) [R] = (a1a3). 
 
According to Mann (2003: 7), Winker (1992) proved that if any of the following can be derived in 
Robbins algebra: 
• B2 or C3; 
• There exists x∈B such that xx=x (an instance of C1) holds; 
• There exist x,y∈B such that one of xy=y or (xy)=y′ holds, 
then all Robbins algebras are Boolean. L6 and L7 tells us that x=a1 and y=a3 satisfy (xy)=y′. Since 
L6 and L7 hold for any Robbins algebra, all Robbins algebras are Boolean.     
 
Remark. Surprisingly, Dahn’s proof relied on the most complex of Winker’s five possible sufficient 
conditions for Robbins algebras to be Boolean. Mann (2003: §§5,6) restates, using a uniform con-
ventional notation, the proofs of Winker (1992) and McCune (1998) by showing that Robbins alge-
bra satisfies ∃x∃y[xy=y].  
  



A Précis of Mathematical Logic. 

 
First Order Logic (FOL) unites two calculi: that of truth values (CTV) and that of quantified 

variables (CQV). For a masterly précis of FOL and its extension to axiomatic set theory, see 
Fraenkel, Bar-Hillel, and Levy (1973: §V.2). For more leisurely expositions, consult the references 
cited under “Quantifier Logic” in the Bibliographic Postscript. For a treatment more sophisticated 
than the one below, see http://plato.stanford.edu/entries/logic-classical/ . 

A string consists of a single symbol, or of concatenated symbols. Symbol is undefined except in 
semiotic theory. B={T,F} is the set of possible truth or primitive values. 

CTV. A statement (sentence, proposition) is a string that can be assigned a truth value. 
Statements include formulae, i.e., strings that satisfy a formation rule. Subformula and atomic 

formula are defined in 2.1.3. A statement letter (sentential variable) stands for any member of some 
set of statements. (Truth) functor, connective, and operator are defined in 3.1.2; these relate to map-
pings from Bn onto B, n∈N. The constants T and F are 0-ary functors by assumption. Common 
functors include the prefix ~ “not”, and the infix connectives ∧ “and”, ∨ “or”, → “if”, ↔ “iff”, and| 
“NAND”. 

An atomic valuation (i) assigns an element of B to every atomic formula, and (ii) completely 
describes the mapping fk: Bn→B for every n-ary operator k. A statement consisting of m∈N state-
ment variables (arguments) and constants, linked by connectives, is a truth function from Bm onto 
B. The truth value of a statement is the image of its truth function under some atomic valuation. If 
the image is T [F], the statement is valid [invalid]. If a statement is valid under [all/some] atomic 
valuations, the statement is [tautologous/satisfiable]. If a statement is not valid under any atomic 
valuation, its denial is a tautology. If all atomic valuations satisfying α also satisfy β, and vice 
versa, α and β are tautologically equivalent, denoted α↔β. 

Proof (adapted from Halmos and Givant 1998: §13). An axiom is a statement asserted true 
without proof. The rule of detachment is: If α and α→β are both tautologies, then β is also a tautol-
ogy. Let i,j,k,n ∈Ν. A formal proof (demonstration in LoF-speak, or simply proof) is an ordered 
sequence of n statements with typical statement αk 1≤k≤n<∞. A step transforms αk into αk+1. For 
each αk, i,j<k, αk is either (i) a substitution instance of some definition, axiom, or already proved 
consequence, resulting from the application, often tacit, of R1 and R2 (§3.1), or (ii) the result of ap-
plying detachment to some pair αi and αj. (i) alone suffices for equational logics (e.g., boundary 
logic), for which detachment is just a special case of propositional consequence (§5.3). If there 
exists a proof whose last statement is αn, αn is provable and a theorem. 

CTV is sound (all provable formulae are valid), complete (all valid formulae are provable), and 
decidable (there exist algorithms, e.g. TVA, for determining whether any finite formula is valid). 
The primitive basis (DeLong 1971: 91) of a formal system consists of its primitive symbols, defined 
constants, rules of formula formation, axioms and rules of inference, and a truth definition. A model 
is an interpretation of a formal system under which its formulae all come out true; see Suppes 
(1957: §4.2) or Mendelson (1997: §2.2). 

CQV. A variable stands for any member of a nonempty collection (domain [of interpretation]) 
of physical or abstract individuals, each having a name. A term, denoted by a lower case letter, is a 
name, variable, or a function thereof. A term letter may be uniformly replaced by another term let-
ter. Predicate letters are upper case. Associated with each predicate and function letter is a nonneg-
ative integer n, called its arity. By convention, a predicate [function] letter with an arity of 0 is a 
statement variable [constant]. An atomic formula (aka predicate) consists of a predicate letter fol-
lowed by n terms. An atomic formula such that n=1 [n>1] is monadic [polyadic]. ∀ [∃] is the uni-

versal [existential] quantifier. A quantifier operates on the variable that immediately follows it; ∀x 
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[∃x] translates as “for all [for some] x.” A CQV formula consists of quantified variables, and atomic 
formulae linked by truth functors. 

Let α,β be arbitrary CQV formulae. ∃xα =df  ~∀x[~α], so that there is in fact only one quant-
ifier. Let x and y be vectors of variables, of unspecified dimension. Let Qi be one of ∀ or ∃, and let 
Q(x) be a string of the form 1 1 2 2...Q x Q x  known as a prefix. Let a matrix M(x,y) consist of atomic 
formulae and truth functors but no quantifiers, with each xi and yi appearing at least once. Qi binds 

xi, and xi is a bound variable; the yi are free. An atomic formula has a truth value only if its varia-
bles are all bound. If y has dimension 0 (≥0), then α is closed (open). CTV formulae are the special 
case when both x and y have dimension 0. The prenex form of α is then Q(x)M(x,y), The scope of 
Qxi is M(x) by default, or overridden by parentheses. If x has dimension 1, and if α is closed and 
does not lie within the scope of another quantifier, then α is an elementary quantification. Writing 

1 2 ...y y∀ ∀  to the left of an open formula results in its universal closure. α is valid (is a “law of log-
ic”) if it evaluates to T for all nonempty domains. 

Let ‘α〉x〈’ denote that any instances of x in α are bound. CQV requires three axioms in addition 
to any basis sufficient for the CTV: ∀xα〈x〉 →α〈a/x〉 (called UI), α〉x〈→ ∀xα〉x〈, and ∀x[α→β]→ 
(∀xα→∀xβ) (Bostock 1997: 236). Fitch devised these axioms and Quine (1951) popularized them; 
they enable dispensing with the rule of generalization. CQV with identity includes a primitive dyad-
ic predicate, denoted by infix ‘=’, assumed reflexive (x= x) and governed by the axiom schema 
(x=y)→(F〈x〉↔F〈y//x〉), where F is any CQV formula. 

CQV is provably sound (Hunter 1971: §42), complete (§46), and undecidable. Some necessary 
conditions for a CQV formula to be undecidable include a domain with infinitely many individuals, 
a matrix that is not a substitution instance of a monadic formula, quantified variables nesting at least 
three deep, and a prefix with at least one ∃ preceding a ∀.1 

A first order theory is FOL augmented with at least one primitive intepreted predicate, and 
some some additional (proper) axioms involving the primitive predicates. Much, perhaps all, of 
mathematics can be formulated as first order theories involving at least one polyadic predicate and a 
suitable domain of abstract individuals. The claim that all of mathematics can be formalized by 
axiomatic set theory (AST) is equivalent to the claim that mathematics is a first order theory having 
but one binary predicate. AST is undecidable because Robinson arithmetic (§A.16) is undecidable, 
and the axioms of Robinson arithmetic are AST theorems (see fn. 2 on p. vi). The undecidability of 
AST in turn implies that AST requires quantified variables nesting at least three deep. Tarski and 
Givant (1987) show that AST does not require formulae with quantified variables nested more than 
three deep. 
 
 

Table of Cross-References between LoF and this book. 

LoF Here  LoF Here LoF Here LoF Here 

A1 Table 2-1  C2 B4 T1 2.3.2 T10 3.1.9 
A2 “  C3 C2 T2 2.3.3 T13 3.1.10 
R1 3.1.7  C4 C4 T3 2.3.4 T14 4.4.2 
R2 3.1.8  C5 C1 T4 2.3.5 T15 4.4.3 
J1 3.1.6, §A.1  C6 C6 T5 2.3.6 T16 4.4.4 
J2 C5  C7 C7 T6 2.3.7 T17 4.4.5 
C1 C3  C9 C8 T7 2.3.9 T18 4.4.7 

                                                           
1. Grädel et al (1997) review many results on the decidability and computational complexity of FOL. 
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