
Lecture Notes for COSC329

Lecture on Combinatorial Generation

1. Introduction
We consider the problem of generating all member of a certain class of combinatorial

objects. These include binary strings, permutations, combinations, parenthesis strings,

etc. Generation algorithms for those objects have practical applications. Binary strings,

for example, can be used to test the behaviour of a logical circuit involving an n-bit

register. The set of permutations can be used to obtain the shortest circuit tour of a

salesperson for the travelling salesperson’s problem. The order of generation is

important. Two representative orders are lexicographic order and minimal change

order. The former is clear from its name. The latter defines some order in which we go

from one object to the next with a very few changes, one or two. In addition to the

correctness of algorithms, our major concern is the time necessary to generate all the

objects.

2. Binary Strings
Let us generate n bit binary strings in lexicographic order for n=4 as follows:

    0 0 0 0

    0 0 0 1

    0 0 1 0

    0 0 1 1

    0 1 0 0

    0 1 0 1

    0 1 1 0

    0 1 1 1

    1 0 0 0

    1 0 0 1

    1 0 1 0

    1 0 1 1

    1 1 0 0

    1 1 0 1

    1 1 1 0

    1 1 1 1

Let B(n) be the set of n bit binary strings arranged in lexicographic order. Then the set

can be characterized as follows:

        B(n+1)  =     0B(n)

                            1B(n),

where 0B(n) is the set of n+1 bit strings obtained by attaching 0 to the beginning to all

string of B(n). 1B(n) is similar. The important point here is that those set are ordered

using the order in B(n). This observation leads to the following recursive algorithm.

Array a is to hold combinatorial objects. The output statement outputs array elements

in reverse order, that is, i=n, ..., 1..



Algorithm 1

procedure binary(n);

    begin
          if n>0 then begin
              a[n]:=0; binary(n-1);

              a[n]:=1; binary(n-1)

        end else output(a)

     end;
     begin {main program}

        binary(n)

     end.

As we see from the above example, we have many changes form object to object

occasionally, such as from 0111 to 1000, that is, n, changes. Based on this observation

we give the following iterative algorithm for binary strings.

Algorithm 2

for i:=1 to n do a[i]:=0;

    repeat
       output(a);
       i:=0;

       while a[i+1]=1 do
           a[i+1]:=0;

           i:=i+1;

       end;

       a[i+1]:=1

    until i=n.

Let us analyze the computing time of these algorithms. We measure the time by the

number of assignment statements executed on array a. Then for Algorithms 1, we have

the following recurrence equation. Note that we exclude the time for output.

   T(1) = 2

   T(n) = 2T(n-1) + 2,    for n>1.

Theorem 1.  T(n) = 2^(n+1) - 2. (2^n =  2
n
)

Proof. By induction. Basis is true for n=1. Induction step. Assume the theorem is true

for n-1. Then we have

      T(n) = 2T(n-1) + 2 = 2∗ (2^n - 2) + 2 = 2^(n + 1) - 2

The analysis of Algorithm 2 is similar. Since we have 2^n binary strings, we see that

the average time for one string is O(1). This time is sometimes called O(1) amortized

time to distinguish from the average time based on the randomness of the input data,

such as that for quicksort.



Next we devise algorithms for binary strings with minimal changes. The following is

the binary reflected Gray code, invented by Gray in the 1930s with a patent from the

US Government. See the following for n=4.

    0 0 0 0

    0 0 0 1

    0 0 1 1

    0 0 1 0

    0 1 1 0

    0 1 1 1

    0 1 0 1

    0 1 0 0

    1 1 0 0

    1 1 0 1

    1 1 1 1

    1 1 1 0

    1 0 1 0

    1 0 1 1

    1 0 0 1

    1 0 0 0

The general structure is given below. G(n) is the Gray code of length n

      G(1)  =   {0, 1}

      G(n)  =    0G(n-1)

                     1G’(n-1),

where G’(n) is the Gray code of length n arranged in reverse order as follows:

      G’(1)  =   {1, 0}

      G’(n)  =   1G(n-1)

                      0G’(n-1).

Theorem 2. In the Gray code G(n), we can go from a string to the next with a bit

change.

Proof. By induction. Basis of n=1 is obvious. Induction step. Suppose the theorem is

true for n-1. Then within 0G(n-1) and 1G(n-1), we can go with a bit change. Now the

last of G(n-1) is the same as the first of G’(n-1). Thus we can cross the boundary

between 0G(n-1) and 1G’(n-1) with a bit change. We can prove a similar property for

G’(n).

A recursive algorithm for the Gray code is given below. Gray1 and Gray2 correspond

to G and G’.



Algorithm 3. Recursive Gray code

procedure Gray1(n);

begin
    if n>0 then begin
        a[n]:=0; Gray1(n-1);

        a[n]:=1; Gray2(n-1)

    end else output(a)

end;

procedure Gray2(n);

begin
    if n>0 then begin
        a[n]:=1; Gray1(n-1);

        a[n]:=0; Gray2(n-1)

    end else output(a)

end;

begin {main program}

  Gray1(n)

end.

Theorem 3. We have the same analysis for Gray1 and Gray2 as that for binary strings

in lexicographic order in Theorem 1. Thus the amortized time for one string is O(1).

Proof. Hint. Set up recurrence for T1(n) and T2(n) for Gray1(n) and Gray2(n) as the

numbers of assignment executions on “a”.

Although the above algorithm generates one string in O(1) amortized time, it

sometimes spends up to O(n) time from string to string. In the following iterative

algorithm, we spend O(1) worst case time from string to string. To how it works, we

expand the process of generation for n=4 into in the following tree form.

level

0         1         2       3              4

                                                S

                               0               0        0 0 0 0

                      0                        1        0 0 0 1

                       B      1              1        0 0 1 1

          0                                    0 A    0 0 1 0

                      C       1              0 D     0 1 1 0

                      1                        1        0 1 1 1

                                0              1        0 1 0 1

                                                0        0 1 0 0

                                0              0        1 1 0 0

                    1                          1        1 1 0 1

                                1              1        1 1 1 1

                                                0        1 1 1 0

           1                   1              0        1 0 1 0

                    0                          1        1 0 1 1

                                0              1        1 0 0 1

                                                0        1 0 0 0



We generate bit strings by traversing the above tree starting from S. The general move

of “up”, “cross”, and “down” is demonstrated by the move  (...,A,B,C,D, ...). The move

A ->B is guided by the array “up”. The algorithm follows.

Algorithm 4. Iterative Gray code

program ex(input,output);

var i,n:integer;

    a,d,up:array[0..100] of integer;

procedure out;

var i:integer;

begin
  for i:=1 to n do write(a[i]:2);

  writeln
end;

begin
  readln(n);

  for i:=1 to n do a[i]:=0;

  for i:=1 to n do d[i]:=1;

  for i:=0 to n do up[i]:=i;

  repeat
    out;

    i:=up[n];

    up[n]:=n;

    a[i]:=a[i]+d[i];

     up[i]:=up[i-1];

     up[i-1]:=i-1;

     d[i]:=-d[i]

  until i=0;

end.

Exercise. Design an algorithm for ternary strings with minimal changes, in both

recursive and iterative forms.

3. Permutations
There are very many algorithms for permutation generation. We start with observing

the process in lexicographic order.

    1 2 3 4           2 1 3 4            3 1 2 4            4 1 2 3

    1 2 4 3           2 1 4 3            3 1 4 2            4 1 3 2

    1 3 2 4           2 3 1 4            3 2 1 4            4 2 1 3

    1 3 4 2           2 3 4 1            3 2 4 1            4 2 3 1

    1 4 2 3           2 4 1 3            3 4 1 2            4 3 1 2

    1 4 3 2           2 4 3 1            3 4 2 1            4 3 2 1

 Let S be the set of items to be permuted. In the above S = {1, 2, 3, 4}.

A general recursive framework is given below.



procedure perm(n);

    begin
        if n>=0 then begin
           for each x in S in increasing order do begin
               delete x from S;

               perm(n-1);

               return x to S

           end
         else output(a)

    end;

    begin {main program}

        perm(n)

    end.

There are many ways to implement the set S. The following is not an efficient way.

Algorithm 5

var used: array[1..100] of Boolean;

procedure perm(k);

    begin
        if k<=n then begin
           for i:=1 to n do
              if not used[i] then begin
                   a[k]:=i;

                   used[i]:=true;

                   perm(k+1);

                   used[i]:=false
              end
         else output(a)

    end;

    begin {main program}

        for i:=1 to n do used[i]:=false;

        perm(1)

    end.

This algorithm takes O(n^n) time instead of O(n!) time, meaning the amortized time

for one permutation can not be O(1). What is its amortized time?

The following is a more efficient method. This algorithm prepares the set of available

items in increasing order after each recursive call. Reverse(k+1) is to reverse (a[k+1],

..., a[n]). Since the order was in decreasing order after each recursive call, we have this

sequence in increasing order after “reverse”. After that we swap a[k] and a[j] where

a[j] is the minimum in the sequence.



Algorithm 6

var a: array[1..100] of integer;

procedure swap(i, j);

var w:integer;

begin  w:=a[i]; a[i]:=a[j]; a[j]:=w;end;

function minimum(k);

var i,j,temp:integer;

begin
  j:=0; temp:=99;

  for i:=k to n do
    if (a[i]<temp) and (a[i]>a[k-1]) then begin
      temp:=a[i]; j:=i

    end;

  minimum:=j;

end;

procedure reverse(k);

var i:integer;

begin  for i:=k to (k+n-1) div 2 do swap(i, n-i+k);end;

porcedure perm(k);

    begin
        if k<=n-1 then
           for i:=k to n do begin
                perm(k+1);

                if i<>n then begin
                   reverse(k+1);

                   j:=minimum(k+1)

                   swap(k,j); output(a)

                end
            end
end;

begin {main program}

   read(n);

   for i:=1 to n do a[i]:=i;

   output(a);

   perm(1)

end.

The next is the iterative version of the above algorithm.

Algorithm 7.

{Declarations variables and procedures are the same as before}

begin {main program}

   readln(n);



   for i:=1 to n do a[i]:=i;

   out;

   repeat
     i:=n;

     while a[i-1]>a[i] do i:=i-1;

     i:=i-1;

     if i>0 then begin
       reverse(i+1);

       j:=minimum(i+1);

       swap(i,j);

       out

     end
   until i=0;

In the while loop, the algorithm scans the sequence from left to right while it is

monotone increasing. It sets i to the first point after the peak. Then it reverses the

increasing sequence, and swap a[i] and a[j] where a[j] is minimum among the reversed

portion.

We analyze Algorithms 6 and 7 by counting the executions in the assignment

statements on array a in the procedure reverse. Other times are proportional to it. We

express this number by T(n). Then we have the following recurrence.

      T(1) = 0

      T(n) =  nT(n-1) + n(n-1)

Theorem 4. T(n) = O(n!). Thus the amortized time for one permutation is O(1).

Proof. We first prove the following by induction.

                 n-1

      T(n) = Σ   n(n-1) ... (n-i)   for n > 1,    T(1) = 0

                 i=1

Basis follows from the definition. Induction step. Assume the theorem is true for n-1.

Then we have

                     n-2

      T(n) = .n Σ    (n-1)(n-1-1) ... (n-1-i) + n(n-1)

                     i=1

                n-1

              = Σ   n(n-1) ... (n-i)

                i=1

From this we see

      T(n)  =  n!(1 + 1/2! + ... + 1/(n-2)!) ≤  (e-1)*n!,



where e = 2.719..., and we use the fact that   e  =  1 + 1/1! + 1/2! + 1/3! + ...

4. The Johnson-Trotter Algorithm

This method swaps items from permutations to permutation. in the following way. We

take an example of n up to 4. Let P(n) be the set of permutations.

P(1)  =  {1}              P(2)  = 1 2             p(3)  =  1 2 3

                                            2 1                          1 3 2

                                                                           3 1 2

                                                                           3 2 1

                                                                           2 3 1

                                                                           2 1 3

P(4)  =  1 2 3 4          3 1 2 4          2 3 1 4

             1 2 4 3          3 1 4 2          2 3 4 1

             1 4 2 3          3 4 1 2          2 4 3 1

             4 1 2 3          4 3 1 2          4 2 3 1

             4 1 3 2          4 3 2 1          4 2 1 3

             1 4 3 2          3 4 2 1          2 4 1 3

             1 3 4 2          3 2 4 1          2 1 4 3

             1 3 2 4          3 2 1 4          2 1 3 4

The definition of order is recursive. The item “n” moves from right to left in the first

permutation in P(n-1), and from left to right in the next permutation, etc

We first make the following nested structure.

Start from {1, 2, 3, 4}

d[2]:=-1; d[3]:=-1; d[4]:=-1;

for i2:=1 to 2 do begin

    for i3:=1 to 3 do begin

        for i4:=1 to 4 do

            if i4<4 then move 4 by d[4].

        d[4]:=-d[4];

        if i3<3 then move 3 by d[3]

    end;

    d[3]:=-d[3];

    if i2<2 then move 2 by d[2]

end;

d[2]:=-d[2]

As we can not have a variable number of nested loops, we have the following recursive

algorithm that simulate the above algorithm. In the algorithm, 4 is generalized into n.

The call nest(k) corresponds to the k-th loop. The array element p[i] holds the position

of item i.



Algorithm 8. Recursive Johnson

program ex(input,output);

var i,j,k,m,n:integer;

    a,d,p:array[1..100] of integer;

procedure out;

var i:integer;

begin
  for i:=1 to n do write(a[i]:2);

  writeln
end;

procedure move(x:integer);

var w:integer;

begin
  w:=a[p[x]+d[x]]; a[p[x]+d[x]]:=x; a[p[x]]:=w;

  p[w]:=p[x]; p[x]:=p[x]+d[x];

end;

procedure nest(k:integer);

var i:integer;

begin
  if k<=n then begin
    for i:=1 to k do begin
      nest(k+1);

      if i<k then begin move(k); out end;

    end;

    d[k]:=-d[k]

  end
end;

begin
  readln(n);

  for i:=1 to n do begin a[i]:=i; p[i]:=i; d[i]:=-1 end;

  out;

  nest(2)

end.

Theorem 5. The amortized time for one permutation by Algorithm 8 is O(1).

Proof. The time spent from two adjacent permutations (..., n) to (..., n), or from (n, ...)

to (n, ...), where n does not move is O(n). There are (n-1)! such occasions. The time

from permutation to permutation where n moves is obviously O(1). Thus the total time

is

      O(n(n-1)!) + O(n!) = O(n!).

Hence the amortized time for one permutation is O(n!)/n! = O(1).



To convert the above recursive algorithm into an iterative one, we analyze the tree

structure of the recursive calls in the following.

                                                                              move(4)  1 2 3 4

                                                                              move(4)  1 2 4 3

                                                                              move(4)  1 4 2 3

                                              move(3)

                                                                                             4 1 2 3

                                                                              move(4)  4 1 3 2

                                                                              move(4)  1 4 3 2

                                            move(3)                     move(4)  1 3 4 2

                  move(2)

                                                                                             1 3 2 4

                                                                              move(4)  3 1 2 4

                                                                              move(4)  3 1 4 2

                                                                              move(4)  3 4 1 2

                                                                                             4 3 1 2

                                                                              move(4)  4 3 2 1

                                                                              move(4)  3 4 2 1

                                           move(3)                      move(4)  3 2 4 1

                                                                                             3 2 1 4

                                                                              move(4)  2 3 1 4

                                                                              move(4)  2 3 4 1

                                         move(3)

                                                                              move(4)  2 4 3 1

                                                                                             4 2 3 1

                                                                              move(4)  4 2 1 3

                                                                              move(4)  2 4 1 3

                                                                              move(4)  2 1 4 3

                                                                                             2 1 3 4



When we go to a last branch, we update the value of array “up”, so that we can

navigate to go up to an appropriate node. The core part of the iterative algorithm

follows.

Algorithm 9. Iterative Johnson

procedure move(x:integer);

var w:integer;

begin
  c[x]:=c[x]+1;

  w:=a[p[x]+d[x]]; a[p[x]+d[x]]:=x; a[p[x]]:=w;

  p[w]:=p[x]; p[x]:=p[x]+d[x]; out

end;

begin
  readln(n);

  for i:=1 to n do a[i]:=i;

  for i:=1 to n do c[i]:=0;

  for i:=1 to n do d[i]:=-1;

  for i:=1 to n do p[i]:=i;

  for i:=0 to n do up[i]:=i;

  out;

  repeat
    i:=up[n];

    up[n]:=n;

    if i>1 then move(i);

    if c[i]=i-1 then begin
      up[i]:=up[i-1];

      up[i-1]:=i-1;

      d[i]:=-d[i];

      c[i]:=0

    end
  until i=1;

end.

Theorem 6. The worst case time from permutation to permutation of Algorithm 9 is

O(1).

Proof. Obvious.



6. Combinations
We consider the problem of generating combinations of n elements out of r elements.

As usual, we start with an example of n=4 and r=6 in the following. The order is

lexicographic.

      1 2 3 4

      1 2 3 5

      1 2 3 6

      1 2 4 5

      1 2 4 6

      1 2 5 6

      1 3 4 5

      1 3 4 6

      1 3 5 6

      1 4 5 6

      2 3 4 5

      2 3 4 6

      2 3 5 6

      2 4 5 6

      3 4 5 6

We have the following obvious nested loop structure for the generation.

Algorithm 10.

for i1:=1 to 3 do
    for i2:=i1+1 to 4 do
        for i3:=i2+1 to 5 do
            for i4:=i3+1 to 6 do
               writeln(i1,i2,i3,i4)

We translate this into the following recursive algorithm.

Algorithm 11. Recursive algorithm for combinations

procedure nest(k, j);

begin
    if i<=n then begin
        for i:=j to r-n+k do begin
            a[k]:=i;

            nest(k+1, i+1);

        end
    else output(a)

end;

begin
    read(n, r);

    nest(1, 1)

end.

This algorithm is converted to an iterative one in the following.



Algorithm 12.

readln(n,r);

a[0]:=-1;

for i:=1 to n do a[i]:=i;

j:=1;

while j<>0 do begin
  out;

  j:=n;

  while a[j]=r-n+j do j:=j-1;

  a[j]:=a[j]+1;

  for i:=j+1 to n do a[i]:=a[i-1]+1

end;

Let us analyze the move from 1 4 5 6 to 2 3 4 5 in the example. The inner while loop

scans from the end. While the value at the j-th position is the maximum possible at the

position, we keep going to the left. In this example we stop at the 1st position with the

value of 1. Then we add 1 to 1 and make the increasing sequence to the right. In this

case we create 3 4 5 to the right of 2.

Theorem 7. The amortized time for one combination by Algorithm 11 or 12 is O(1)

for most of n and r, i.e., except for n = r - o(r).

Proof. We measure the time by the number of updates from combination to

combination. We have a change by “a[j]:=a[j]+1” in the above algorithm always. This

number accounts for C(r, n) where C(r, n) = r!/(n!(r-n)!) is a binomial number, the

number of combinations when n items are taken out of r items. When a[n]=r, this

statement is executed once more to reset a[n] to some value. When a[n-1] = r-1, this is

executed once more to reset a[n-1] to some value, ... etc. This leads to the following

measurement of cost, T(r, n).

      T(r, n) = C(r, n) + C(r-1, n-1) + ... + C(r-n, 0) = C(r+1, n).

Dividing this value by C(r, n) yields

      T(r, n)/C(r, n) = (r+1)/(r+1-n),

which the amortised time for one combination.



7. Combinations in vector form
 We consider the problem of generating combinations in a binary vector form, that is,

generation all subsets of size k out of the set of size n. We take the following example

of k=4 and n=6 in lexicographic order.

      0 0 1 1 1 1

      0 1 0 1 1 1

      0 1 1 0 1 1

      0 1 1 1 0 1

      0 1 1 1 1 0

      1 0 0 1 1 1

      1 0 1 0 1 1

      1 0 1 1 0 1

      1 0 1 1 1 0

      1 1 0 0 1 1

      1 1 0 1 0 1

      1 1 0 1 1 0

      1 1 1 0 0 1

      1 1 1 0 1 0

      1 1 1 1 0 0

Let B(n, k) be the set of those sequences, i.e., n=6 and k=4 in the example. Then a

general scheme looks like

      B(n, k)  =    0B(n-1, k)

                         1B(n-1, k-1).

A recursive algorithm follows.

Algorithm 13.

program ex(input,output);

var i,j,k,m,n:integer;

    a:array[0..100] of integer;

procedure binary(i, k:integer);

begin
  if (k>=0) and (i<=n-k) then begin
    a[i]:=0;

    binary(i+1, k);

    a[i]:=1;

    if k>0 then binary(i+1,k-1);

  end
  else out

end;

begin
  write('input k, n '); readln(k,n);

  for i:=n-k+1 to n do a[i]:=1;

  binary(1,k)

end.



The procedure binary(i, k) is to generate the sequences from the i-th position to the n-th

position with k 1’s. An iterative version is left as an exercise. The amortized time for

one vector is O(1) for most values of k and n.

Notice that the last sequence in 0B(n-1, k) and 1B(n-1, k-1) are different at two

positions. Thus if we modify the order of B by

      B(n, k)  =   0B(n-1, k)

                        1B’(n-1, k-1),

where B’(n,k) is the reversed set of B(n, k), then we can go from a sequence to the next

with two changes. An iterative version of this approach establishes O(1) worst case

time. Details are omitted. In this case we use O(r) space. There is another algorithm

that establishes O(1) worst case time from combination to combination with O(n)

space, that is, combinations are given in an array of size n. See attached paper.

8. Parenthesis strings
We consider the problem of generating well-formed parenthesis strings of n pairs. We

go with an example as usual with n=4.

Level

0              1             2            3                4

                                             0

                               0                              4       0 0 0 4     ( ( ( ( ) ) ) )

                                              1               3       0 0 1 3     ( ( ( ) ( ) ) )

                0                            2               2       0 0 2 2     ( ( ( ) ) ( ) )

                                              3               1       0 0 3 1     ( ( ( ) ) ) ( )

                                1            0               3       0 1 0 3     ( ( ) ( ( ) ) )

                                              1               2       0 1 1 2     ( ( ) ( ) ( ) )

                                              2               1       0 1 2 1     ( ( ) ( ) ) ( )

                                2            0               2       0 2 0 2     ( ( ) ) ( ( ) )

                                              1               1       0 2 1 1     ( ( ) ) ( ) ( )

                                0            0               3       1 0 0 3     ( ) ( ( ( ) ) )

                1                            1               2       1 0 1 2     ( ) ( ( ) ( ) )

                                              2               1       1 0 2 1     ( ) ( ( ) ) ( )

                                1            0               2       1 1 0 2     ( ) ( ) ( ( ) )

                                              1               1       1 1 1 1     ( ) ( ) ( ) ( )

As we see in the above there are 14 sequences for n=4. At the left hand side are

corresponding characteristic sequences a[1], ..., a[n] defined in the following.

    a[i] is the number of right parentheses between the i-th left parenthesis and

    the (i+1)-th left parenthesis.

Confirm that the above characteristic sequences are correct. The definition of well-

formedness is now defined by a[1] + ... + a[i] ≤  i and a[1] + ... + a[n] = n.

If we define s[i] = a[1] + ... + a[i] for i=1, ..., n, and s[0]=0, the above condition can be

restated as  follows:



    The value of a[i] can change over the range of 0, 1, ..., i - s[i] and a[n] = n-s[n-1].

This observation leads to the following recursive algorithm for generation parenthesis

strings in lexicographic order, where the order is defined in terms of the lexicographic

order of the characteristic sequences.

Algorithm 14. Parenthesis strings

program ex(input,output);

var i,j,k,m,n:integer;

    a:array[0..100] of integer;

    q:array[0..100] of char;

procedure out;

var i:integer;

begin
  for i:=1 to n do write(a[i]:2);

  for i:=1 to 2*n do write(q[i]:2);

  readln
end;

procedure paren(i,s:integer);

var i,t:integer;

begin
  if i<=n-1 then begin
    for k:=0 to i-s do begin
      a[i]:=k;

      t:=s+a[i];

      q[t+i+1]:='(';

      paren(i+1,t);

      q[t+i+1]:=')'

    end
  end
  else if i=n then begin a[i]:=n-s; out end
end;

begin
  readln(n);

  for i:=1 to 2*n do q[i]:=')';

  paren(0,0);

end.

The correctness of this algorithm is seen by observing the changes of k at level i=2, for

example, in the previous figure. When the accumulated sum of s=a[1]=0, k changes as

k=0, 1, 2. For each value of k, we set q[s+k+i+1] to “(“ and call the procedure

recursively. After that, we set q[s+k+i+1] to “)”, and increase k by 1. The general

situation is described in the following.

        1 2 3         s+i

        (  ) ( ... ) ...( (        0th paren

        (  ) ( ... ) ...( ) (      1st paren

        (  ) ( ... ) ...( ) ) (   2nd paren



The number of parenthesis strings can be calculated from the following table. We first

start from binomial numbers. We count the number of paths from coordinate (0, 0) to

coordinate (i, j), denoted by B(i, j). Obviously we have

      B(i, 0) = 1, for i = 1, 2, ...,    B(0, j) = 1, for j=1, 2, ...

      B(i, j) = B(i, j-1) + B(i-1, j)

        0    1    2    3    4    5

     ___________________

 0     *    1    1    1    1     1

 1     1    2    3    4    5     6

 2     1    3    6  10  15   21

 3     1    4  10  20  35   56

 4     1    5  15  35  70  126

 5     1    6  21  56 126 252

The value of B(i, j) defines the binomial number C(i+j, i) = C(i+j, j).

Now the number H(n) of parenthesis strings of length n is calculated by the number of

paths from co-ordinate (0, 0) to co-ordinate (n, n) without crossing the diagonal as

shown below.

            0    1    2    3    4    5                      -1  0    1    2    3    4   5

     ____________________                   ______________________

 0         *    1    1    1    1    1                  0        *    *    *

 1    #   0    1    2    3    4    5                  1    #              *

 2         0    0    2    5    9  14                  2    #              *

 3         0    0    0    5  14  28                  3    #   #   #    *

 4         0    0    0    0  14  42                  4                    *    *    *

 5         0    0    0    0    0  42                  5                                *   *

The number H(n) is the number X of paths from (0, 0) to (n, n) minus the number Y of

paths that visit in violation of parenthesis strings the co-ordinate (i+1, i) for i between 0

and n-1, both ends inclusive. As we saw before, X = C(2n, n). To estimate Y, take up

an arbitrary path that satisfies the condition for Y and let the first co-ordinate of

violating visit be (i+1, i). Let us flip the portion of the path from (0, 0) to (i+1, i)

symmetrically over the diagonal (-1, 0), (1, 0), ..., (i+1, i). See the portion shown by

“#” in the above figure. Then the original path and this modified path correspond one

to one. Thus the number Y is the number of paths from (-1, 0) to (n, n), which is C(2n,

n-1). Thus H(n) is given by

      H(n) = C(2n, n) - C(2n, n-1) = C(2n, n)/(n+1).

This number H(n) is called the n-th Catalan number.

Theorem 8. The amortized time for one parenthesis string by Algorithm 14 is O(1).

Proof. Observe in the figure of the tree of recursive calls that the number of nodes at

level i is C(2i, i). From Stirling’s approximation formula n! ≅  (√ 2π n)(n^n)(e^(-n)), we

have



      C(2n, n) = O(2^(2n)/(n√ n) =O(4^n).

The time spent from a node to the next sibling node is proportional to the path length

from the node to the leaves. Thus from the following lemma, we have the result.

Lemma. For a general recursive algorithm, suppose we expand the execution into a

tree of recursive calls where each call produce at most c calls and the depth of tree is n.

Suppose the time spent from a node to the next sibling node is proportional to the path

length form the node to the leaf level. Suppose also the lengths from all nodes at the

same level to the leaf level are equal. Then the total time is O(c^n), and hence the

amortized time for each node is O(1).

Proof. Ignoring the constant factor, the time is given by

      T  =  c(n-1) + (c^2)(n-2) + ..., (c^(n-1)) + c^n

          = n(c + c^2 + ... c^(n-1)) - (c + 2(c^2) + ... + (n-1)(c^(n-1)) + c^n

          = nc(c^(n-1)-1)/(c-1) - ((n-1)c^n - (c^n - 1)/(c -1)) + c^n

          = O(c^n).

On the other hand there are N nodes where

      N  =  c + c^2 + ... c^n = c(c^(n+1) -1) = O(c^n).

Thus we have

      T/N = O(1)

 There exist algorithms that can generate parenthesis strings by swapping two

parentheses at a time, and also there exist algorithms that can generate parenthesis

strings in O(1) worst case time per string. See attached paper.


