CHAPTER]|I

AC POWER ANALYSIS

An engineer is an unordinary person who can do for one dollar what any

ordinary person can do for two dollars.

—Anonymous

Enhancing Your Career

Career in Power Systems The discovery of the principle
of an ac generator by Michael Faraday in 1831 was a major
breakthrough in engineering; it provided a convenient way
of generating the electric power that is needed in every elec-
tronic, electrical, or electromechanical device we use now.

Electric power is obtained by converting energy from
sources such as fossil fuels (gas, oil, and coal), nuclear
fuel (uranium), hydro energy (water falling through a head),
geothermal energy (hot water, steam), wind energy, tidal en-
ergy, and biomass energy (wastes). These various ways of
generating electric power are studied in detail in the field of
power engineering, which has become an indispensable sub-
discipline of electrical engineering. An electrical engineer
should be familiar with the analysis, generation, transmis-
sion, distribution, and cost of electric power.

The electric power industry is a very large employer
of electrical engineers. The industry includes thousands of
electric utility systems ranging from large, interconnected
systems serving large regional areas to small power
companies serving individual communities or factories.
Due to the complexity of the power industry, there are
numerous electrical engineering jobs in different areas of
the industry: power plant (generation), transmission and
distribution, maintenance, research, data acquisition and
flow control, and management. Since electric power is used
everywhere, electric utility companies are everywhere, of-
fering exciting training and steady employment for men and
women in thousands of communities throughout the world.

A pole-type transformer with a low-voltage, three-wire distribution
system. Source: W. N. Alerich, Electricity, 3rd ed. Albany, NY:
Delmar Publishers, 1981, p. 152. (Courtesy of General Electric.)
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We can also think of the instantaneous power
as the power absorbed by the element at a spe-
cific instant of time. Instantaneous quantities are
denoted by lowercase letters.
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Figure [1.I' Sinusoidal source and passive
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I1.I' INTRODUCTION

Our effort in ac circuit analysis so far has been focused mainly on cal-
culating voltage and current. Our major concern in this chapter is power
analysis.

Power analysis is of paramount importance. Power is the most
important quantity in electric utilities, electronic, and communication
systems, because such systems involve transmission of power from one
point to another. Also, every industrial and household electrical device—
every fan, motor, lamp, pressing iron, TV, personal computer—has a
power rating that indicates how much power the equipment requires;
exceeding the power rating can do permanent damage to an appliance.
The most common form of electric power is 50- or 60-Hz ac power. The
choice of ac over dc allowed high-voltage power transmission from the
power generating plant to the consumer.

We will begin by defining and deriving instantaneous power and
average power. We will then introduce other power concepts. As practi-
cal applications of these concepts, we will discuss how power is measured
and reconsider how electric utility companies charge their customers.

[1.2 INSTANTANEOUS AND AVERAGE POWER

As mentioned in Chapter 2, the instantaneous power p(t) absorbed by an
element is the product of the instantaneous voltage v(¢) across the element
and the instantaneous current i () through it. Assuming the passive sign
convention,

p) =v@®)i@®) (11.1)

The instantaneous power is the power at any instant of time. It is the rate
at which an element absorbs energy.

Consider the general case of instantaneous power absorbed by an
arbitrary combination of circuit elements under sinusoidal excitation, as
shown in Fig. 11.1. Let the voltage and current at the terminals of the
circuit be

v(t) =V, cos(wt + 6,) (11.2a)
i(t) = I, cos(wt + 6;) (11.2b)

where V,, and I, are the amplitudes (or peak values), and 6, and 6; are the
phase angles of the voltage and current, respectively. The instantaneous
power absorbed by the circuit is

p@) =v(@®)i(t) = V1, cos(wt + 0,) cos(wt + 6;) (11.3)

We apply the trigonometric identity
1
cos Acos B = 7 [cos(A — B) + cos(A + B)] (11.4)
and express Eq. (11.3) as

1 1
p(t) = EV,,,I,,, cos(8, —6;) + EVmIm cos(Rwt + 6, +6;) (11.5)



This shows us that the instantaneous power has two parts. The first part is
constant or time independent. Its value depends on the phase difference
between the voltage and the current. The second part is a sinusoidal
function whose frequency is 2w, which is twice the angular frequency of
the voltage or current.

A sketch of p(¢) in Eq. (11.5) is shown in Fig. 11.2, where T =
27 /w is the period of voltage or current. We observe that p(t) is periodic,
p(t) = p(t + Tp), and has a period of Ty = T /2, since its frequency
is twice that of voltage or current. We also observe that p(t) is positive
for some part of each cycle and negative for the rest of the cycle. When
p(t) is positive, power is absorbed by the circuit. When p(¢) is negative,
power is absorbed by the source; that is, power is transferred from the
circuit to the source. This is possible because of the storage elements
(capacitors and inductors) in the circuit.

p(0) 4

/

/%lem cos(0,—0;)

Figure [.2 The instantaneous power p(t) entering a circuit.

The instantaneous power changes with time and is therefore difficult
to measure. The average power is more convenient to measure. In fact,
the wattmeter, the instrument for measuring power, responds to average
power.

{ The average power is the average of the instantaneous power over one period.

Thus, the average power is given by

1 T
P = —f p(t)dt (11.6)
T Jo
Although Eq. (11.6) shows the averaging done over 7', we would get the
same result if we performed the integration over the actual period of p(z)
whichis Top = T /2.
Substituting p(¢) in Eq. (11.5) into Eq. (11.6) gives

P—1/T1VI @, —06;)dt
_T02mmcosv i

[
+ —/ VI, cosQwt + 6, + 6;) dt
T Jy 2



—lvl ® 0)1/Tdt
= - cos(6, —0;)=
2mm v T o

1 17
+ —VmI,,,—/ cosQwt + 0, + 6;) dt 11.7)
2 T Jo

The first integrand is constant, and the average of a constant is the same
constant. The second integrand is a sinusoid. We know that the average of
asinusoid over its period is zero because the area under the sinusoid during
a positive half-cycle is canceled by the area under it during the following
negative half-cycle. Thus, the second term in Eq. (11.7) vanishes and the
average power becomes

1
P = EVW’I’” cos(8, — 6;) (11.8)

Since cos(8, — 6;) = cos(6; — 6,), what is important is the difference in
the phases of the voltage and current.

Note that p(#) is time-varying while P does not depend on time.
To find the instantaneous power, we must necessarily have v(z) and i (¢)
in the time domain. But we can find the average power when voltage
and current are expressed in the time domain, as in Eq. (11.2), or when
they are expressed in the frequency domain. The phasor forms of v(z)
andi(¢) inEq. (11.2) are V = Vm@ andI = Imﬁ, respectively. P is
calculated using Eq. (11.8) or using phasors V and I. To use phasors, we
notice that

1

1
EVI* = szlm /0y — 6;

1
=5WMMw%%—0O+jﬂM%—&H

(11.9)

We recognize the real part of this expression as the average power P
according to Eq. (11.8). Thus,

1 1
P:ERﬁWﬂzzmMamm—@) (11.10)

Consider two special cases of Eq. (11.10). When 6, = 6;, the
voltage and current are in phase. This implies a purely resistive circuit
or resistive load R, and

1 1, 1 5
P=-V,l,==I,R=-|II'R (11.11)
2 2 2
where |I|> = I x I*. Equation (11.11) shows that a purely resistive
circuit absorbs power at all times. When 6, — ; = £90°, we have a
purely reactive circuit, and

1
P = EV'"I'" c0s90° =0 (11.12)



showing that a purely reactive circuit absorbs no average power. In sum-
mary,

A resistive load (R) absorbs power at all times, while a reactive load (L or C)
absorbs zero average power.

m||.|

Given that
v(t) = 120cos(377r +45°) V and i(t) = 10cos(377r —10°) A

find the instantaneous power and the average power absorbed by the
passive linear network of Fig. 11.1.

Solution:

The instantaneous power is given by
p = vi = 1200 cos(377t + 45°) cos(377t — 10°)
Applying the trigonometric identity
cosAcosB = % [cos(A 4 B) + cos(A — B)]
gives
p = 600[cos(754t + 35°) + cos 55°]
or
p(t) = 344.2 + 600 cos(754t + 35°) W

The average power is
1 1
P = Elem cos(6, —6;) = 5120(10) cos[45° — (—107)]

= 600cos55° = 3442 W

which is the constant part of p(¢) above.

PRACTICE PROBLEMMNNN

Calculate the instantaneous power and average power absorbed by the
passive linear network of Fig. 11.1 if

v(t) = 80cos(10r +20°) V and i(t) = 15sin(10z 4+ 60°) A
Answer: 385.7 + 600 cos(20r — 10°) W, 385.7 W.

mﬂu,z

Calculate the average power absorbed by an impedance Z = 30 — j70 Q
when a voltage V = 120 ﬁ is applied across it.



PRACTICE PROBLEM

Solution:
The current through the impedance is

vV 120/0° 120 /0°
= —_— = - = = 1576 66.80 A
Z 30-j70 76,16/ — 66.8°

The average power is

1 1
P = 2Vl cos®, — 6) = 5(120)(1.576) cos(0 — 66.8°) = 37.24 W

2

A current I = 10,/30° flows through an impedance Z = 20/ — 22° Q.
Find the average power delivered to the impedance.

Answer: 9272 W.

M||.3

5/30°V

Figure 11.3
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For Example 11.3.

PRACTICE PROBLEMENE

8/45°V

Figure 11.4

For the circuit shown in Fig. 11.3, find the average power supplied by the
source and the average power absorbed by the resistor.

Solution:
The current I is given by
5/30° 5/30°

I= — — =1.118 /56.57° A
4—J2 4472/ -2657°

The average power supplied by the voltage source is
P = %(5)(1.118) cos(30° — 56.57°) =2.5W
The current through the resistor is
I=1Izx=1.118 /56.57° A
and the voltage across it is
Vg =41 =4.472 /56.57° V
The average power absorbed by the resistor is

1
P =(4472)(1118) =25 W

which is the same as the average power supplied. Zero average power is
absorbed by the capacitor.

3

30

For Practice Prob. 11.3.

In the circuit of Fig. 11.4, calculate the average power absorbed by the
resistor and inductor. Find the average power supplied by the voltage
source.

Answer: 9.6 W,0W, 9.6 W.




M||.4

Determine the power generated by each source and the average power ab-
sorbed by each passive element in the circuit of Fig. 11.5(a).

200 ‘1‘5‘ Q 20Q ‘1‘5‘ Q
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Figure [1.5  For Example 11.4.

Solution:
We apply mesh analysis as shown in Fig. 11.5(b). For mesh 1,
I, =4A

For mesh 2,

(j10 — j5)I, — j10I; + 60 /30° = 0, I, =4A
or

Jj5k = —60,/30° + j40 = L=-12/-60°+8
=10.58 /79.1° A

For the voltage source, the current flowing fromitis I, = 10.58 /79.1° A
and the voltage across it is 60 /30° V, so that the average power is

1
Ps = 5 (60)(10.58) cos(30° — 79.1°) = 207.8 W

Following the passive sign convention (see Fig. 1.8), this average power
is absorbed by the source, in view of the direction of I, and the polarity
of the voltage source. That is, the circuit is delivering average power to
the voltage source.

For the current source, the current through it is I} = 4 /0° and the
voltage across it is

Vi =201, + j10(I, — L) = 80 + j10(4 — 2 — j10.39)
= 183.9 4 j20 = 184.984 /6.21° V

The average power supplied by the current source is
1
P = —5(184.984)(4) cos(6.21° — 0) = —367.8 W

It is negative according to the passive sign convention, meaning that the
current source is supplying power to the circuit.

For the resistor, the current through itisI; = 4 & and the voltage
across it is 20I; = 80,/0°, so that the power absorbed by the resistor is

P, = %(80)(4) =160 W

60/30°V



PRACTICE PROBLEMHENE

For the capacitor, the current through it is I, = 10.58 /79.1° and the
voltage  across it  is —jSL = (5/ —90°)(10.58 /79.1°) =
52.9 /779.1° — 90°. The average power absorbed by the capacitor is
1
P, = 5(52.9)(10.58) cos(—90°) =0
For the inductor, the current through it is I} — I, =2 — j10.39 =
10.58 / —79.1°.  The voltage across it is jlO(I;, —I) =

105.8 / —79.1° 4+ 90°. Hence, the average power absorbed by the in-
ductor is

1
P; = 5(105.8)(10.58) cos90° =0

Notice that the inductor and the capacitor absorb zero average power
and that the total power supplied by the current source equals the power
absorbed by the resistor and the voltage source, or

P+P+ P+ P+ Ps=-367.84+160+0+0+207.8=0

indicating that power is conserved.

4

Calculate the average power absorbed by each of the five elements in the
circuit of Fig. 11.6.

80 j4Q
o
40/0°V = 20 20/90° V

Figure [1.6 For Practice Prob. 11.4.

Answer: 40-V Voltage source: —100 W; resistor: 100 W; others: 0 W.

1.3 MAXIMUM AVERAGE POWER TRANSFER

In Section 4.8 we solved the problem of maximizing the power deliv-
ered by a power-supplying resistive network to a load R;. Represent-
ing the circuit by its Thevenin equivalent, we proved that the maximum
power would be delivered to the load if the load resistance is equal to the
Thevenin resistance R; = Rt,. We now extend that result to ac circuits.

Consider the circuit in Fig. 11.7, where an ac circuit is connected
to a load Z, and is represented by its Thevenin equivalent. The load
is usually represented by an impedance, which may model an electric
motor, an antenna, a TV, and so forth. In rectangular form, the Thevenin
impedance Zry, and the load impedance Z; are

Zt, = Rtn+ j X (11.13a)
Z, =R, +jX, (11.13b)



The current through the load is
[— Vo Vo
Zw+Zy  (Rmn+ jXm) + R+ jX1)

From Eq. (11.11), the average power delivered to the load is

1 Vrnl?R./2
P =—|I’R, = V| "Re/ (11.15)
2 (Rth + Rp)* + (Xn + X1)?
Our objective is to adjust the load parameters R; and X, so that P is
maximum. To do this we set d P/ R, and d P/d X, equal to zero. From
Eq. (11.15), we obtain

(11.14)

P __ [Vonl* Ry (X + X1) (11.163)
Xy [(Rmn + R.)? 4+ (X + X1)2)? ’

AP |VmP[(Rm + R)® + (X + X1)* = 2R (Rmn + R1)]

11.16b
0, 2A(Rey + R + Ko + X0 F (160
Setting d P /9 X, to zero gives
X, =—Xm (11.17)
and setting d P /0 Ry, to zero results in
R, = \/R%h+ (X1h + X1)? (11.18)

Combining Eqgs. (11.17) and (11.18) leads to the conclusion that for max-
imum average power transfer, Z; must be selected so that X; = — Xy,
and RL = RTh, i.e.,

ZLZRL+jXL=RTh_jXTh=Z§‘h (11.19)

For maximum average power transfer, the load impedance Z; must be equal to the
complex conjugate of the Thevenin impedance Z.

This result is known as the maximum average power transfer theorem for
the sinusoidal steady state. Setting R; = Rty and X; = —Xry, in Eq.
(11.15) gives us the maximum average power as

P — |V |
max 8RTh

(11.20)

In a situation in which the load is purely real, the condition for
maximum power transfer is obtained from Eq. (11.18) by setting X; = 0;

that is,
Ry =/ R} + X3, = |Zm| (11.21)

This means that for maximum average power transfer to a purely resistive
load, the load impedance (or resistance) is equal to the magnitude of the
Thevenin impedance.

Linear

. Z
circuit L

(b)

Figure 1.7 Finding the
maximum average power transfer:
(a) circuit with a load, (b) the
Thevenin equivalent.

When Z, = ZTh we say that the load is matched
to the source.



4Q Jj5Q Determine the load impedance Z; that maximizes the average power
drawn from the circuit of Fig. 11.8. Whatis the maximum average power?
8Q ion:
10,/0°V 7, Solution:
-6 Q First we obtain the Thevenin equivalent at the load terminals. To get Zry,
1 consider the circuit shown in Fig. 11.9(a). We find
. 48— jo6
Figure [18 For Example 11.5. Zin=j5+4 1 B—j6) = j5+ 0 IO 59331 jase70
448—j6
To find V1, consider the circuit in Fig. 11.8(b). By voltage division,
8—j6
Vin=——"—7(10)=7.454/—-10.3°V
=g e

The load impedance draws the maximum power from the circuit when
Z, =75 =2.933 — j4.467 Q
According to Eq. (11.20), the maximum average power is

VP (7.454)

Prax = = =2.368 W
8Rth 8(2.933)
4Q j5Q 4Q j5Q
8Q Zyy,

-— 10V

Figure [ 1.9 Finding the Thevenin equivalent of the circuit in Fig. 11.8.

PRACTICE PROBLEMNNEEE

J4Q j10Q For the circuit shown in Fig. 11.10, find the load impedance Z,, that ab-
| SLLN sorbs the maximum average power. Calculate that maximum average
power.
8Q 2A 50 Z,  Answer: 3.415— j0.7317 2, 1.429 W.

Figure [1.10 " For Practice Prob. 11.5.

£ X A 1P L E NN

In the circuit in Fig. 11.11, find the value of R, that will absorb the max-
imum average power. Calculate that power.



Solution:
We first find the Thevenin equivalent at the terminals of R .
. . J20(40 — j30) .
Zm, = (40 — ;30 20=-—————"7"-=9412+j2235Q
h = ( J30) I j 120440 — 30 +J
By voltage division,

20
J 15 (150/30°) = 72.76 /134" V

Vi = o
™20 440 —

The value of R, that will absorb the maximum average power is

Ry = |Zm| = v9.4122 +22.352 = 24.25 Q

The current through the load is

Vo 7276 /134°

I= - , = 1.8,/100.2° A
Zm + R, 3339+ j22.35

The maximum average power absorbed by R is

1 1
Prax = §|I|2RL = 5(1.8)2(24.25) =3929W

PRACTICE PROBLEMMEEEN

150,/30°V

Figure [1.11

400 0Q

j200Q

For Example 11.6.

In Fig. 11.12, the resistor Ry is adjusted until it absorbs the maximum
average power. Calculate R; and the maximum average power absorbed
by it.

80Q  j60Q

120,60° V 90Q = —j30Q R,

Figure .12 For Practice Prob. 11.6.

Answer: 30 2, 9.883 W.

I1.4 EFFECTIVE OR RMS VALUE

The idea of effective value arises from the need to measure the effec-
tiveness of a voltage or current source in delivering power to a resistive
load.

The effective value of a periodic current is the dc current that delivers the same
average power to a resistor as the periodic current.
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Figure [1.13 Finding the
effective current: (a) ac circuit,
(b) dc circuit.

In Fig. 11.13, the circuit in (a) is ac while that of (b) is dc. Our objective
is to find I ¢ that will transfer the same power to resistor R as the sinusoid
i. The average power absorbed by the resistor in the ac circuit is

I R (T
P = —/ i*Rdt = —/ i*dt (11.22)
T Jo T Jo
while the power absorbed by the resistor in the dc circuit is
P =I%R (11.23)

Equating the expressions in Egs. (11.22) and (11.23) and solving for I,

we obtain
1 T
It = ([ = 12 dt 11.24
eff T /o l ( )

The effective value of the voltage is found in the same way as current;

that is,
1 T
Vet = 4| = v2dt 11.25
eff T/o ( )

This indicates that the effective value is the (square) root of the mean (or
average) of the square of the periodic signal. Thus, the effective value is
often known as the root-mean-square value, or rms value for short; and
we write

Ieff = 11‘[1’187 Veff = Vrms (11.26)

For any periodic function x(¢) in general, the rms value is given by

1 T
Xims = [ = 2dr 11.27
rms T /(; X ( )

{ The effective value of a periodic signal is its root mean square (rms) value.

Equation 11.27 states that to find the rms value of x (), we first find
its square x* and then find the mean of that, or

1 T
— f x2 dt
T Jo
and then the square root (_/ ) of that mean. The rms value of a

constant is the constant itself. For the sinusoid i(t) = I,, cos wt, the
effective or rms value is

1 T
Lms = —/ 12 cos? wt dt
T Jo

1%/T1(1+ 2wt) dt L
= e — COS Zw = —
T ), 2 V2

(11.28)




Similarly, for v(¢) = V,, cos wt,

Vin
V2
Keep in mind that Eqs. (11.28) and (11.29) are only valid for sinusoidal
signals.

The average power in Eq. (11.8) can be written in terms of the rms
values.

Vims = (11.29)

Vi In
= ———cos(@, — 6;)
V22 ! (11.30)

= VrmsIrms COS(@U - 91)

1
P = Elem cos(6, — 6;)

Similarly, the average power absorbed by a resistor R in Eq. (11.11) can
be written as

V2
P=1I2R= % (11.31)

When a sinusoidal voltage or current is specified, it is often in terms
of its maximum (or peak) value or its rms value, since its average value
is zero. The power industries specify phasor magnitudes in terms of their
rms values rather than peak values. For instance, the 110 V available at
every household is the rms value of the voltage from the power company.
It is convenient in power analysis to express voltage and current in their
rms values. Also, analog voltmeters and ammeters are designed to read
directly the rms value of voltage and current, respectively.

M||.7

Determine the rms value of the current waveform in Fig. 11.14. If the
current is passed through a 2- resistor, find the average power absorbed
by the resistor.

Solution:

The period of the waveform is T = 4. Over a period, we can write the
current waveform as

(t) = 5t, O0<t<?2
=110, 2<1<4

The rms value is

1 (7 17 (2 4
Iems = ?/0 i2dt = Z[/o (St)zdt+/;(—10)2dt:|

1 3 4 1 /200
= |=|25— = |- (==+200) =8.165A
4 3 4\ 3

+ 100z
2
The power absorbed by a 2-2 resistor is

0

P =12 R =(8.165%(12) = 133.3 W

rms

i(t) 4
10
0
4 6 8 10
_10 —
Figure [1.14  For Example 11.7.



PRACTICE PROBLEMNNEN

i(1)
4|/\/\/\
1 1 1 >
0 1 2 3 4 5 6 t

Figure 11.15

For Practice Prob. 11.7.

Find the rms value of the current waveform of Fig. 11.15. If the current
flows through a 9-<2 resistor, calculate the average power absorbed by the
resistor.

Answer: 2.309 A, 48 W.

M||.s

o(t)

10

0

Figure 11.16

PRACTICE PROBLEM

o(t)

8

T 2 37

For Example 11.8.

The waveform shown in Fig. 11.16 is a half-wave rectified sine wave.
Find the rms value and the amount of average power dissipated in a 10-2
resistor.

Solution:

The period of the voltage waveform is 7' = 27, and

o(t) = 10sint, O<t<m
o, T<t<2mw

The rms value is obtained as

T b4 2
Vv: o= l/ V(1) dt = N / (10sint)2dt+/ 0% dt
rms T 0 27 0 .

But sin’ 7 = %(1 — cos 2t). Hence

) 1 (7 100 50 sin 2t
Vs = =— — (1 —cos2t)dt = — (t —
27 Jo 2 2 2

50 1.
=— |7 — <sin2xr — 0| =25, Vims =5V
2 2

T

0

The average power absorbed is

V2 52
P=-5_"_"=25W
R 10

.8

0

Figure [1.17

T 2 37

For Practice Prob. 11.8.

t

Find the rms value of the full-wave rectified sine wave in Fig. 11.17. Cal-
culate the average power dissipated in a 6-£2 resistor.

Answer: 5.657V, 5.334 W.




|1.5 APPARENT POWER AND POWER FACTOR

In Section 11.2 we see that if the voltage and current at the terminals of
a circuit are

v(t) =V, cos(wt + 0,) and i(t) =I,cos(wt +6;) (11.32)
or, in phasor form, V =V, @ andI =1, &, the average power is

1
P = Elem cos(8, —6;) (11.33)

In Section 11.4, we saw that
P = VimsIims cos(6, — 6;) = Scos(8, — 6;) (11.34)

We have added a new term to the equation:

S = VimsIrms (11.35)

The average power is a product of two terms. The product Vipmglims 1S
known as the apparent power S. The factor cos(f, — 6;) is called the

power factor (pf).

{The apparent power (in VA) is the product of the rms values of voltage and current.

The apparent power is so called because it seems apparent that the power
should be the voltage-current product, by analogy with dc resistive cir-
cuits. It is measured in volt-amperes or VA to distinguish it from the
average or real power, which is measured in watts. The power factor is
dimensionless, since it is the ratio of the average power to the apparent
power,

P
pf = 3 = cos(8, — 6;) (11.36)

The angle 8, — 6; is called the power factor angle, since it is the
angle whose cosine is the power factor. The power factor angle is equal
to the angle of the load impedance if V is the voltage across the load and
I is the current through it. This is evident from the fact that

V_ VbV, /
Z:T: Imﬁ :I—m Gv—Gi (11.37)

Alternatively, since

\Y%

Vims = _2 = Vrms@ (11.38a)
and
1
L = E = Irmsﬁ (11.38b)

the impedance is

V Vrrm Vrm‘
ZZTZ S =8, -6 (11.39)



From Eq. (11.36), the power factor may also be
regarded as the ratio of the real power dissipated
in the load to the apparent power of the load.

The power factor is the cosine of the phase difference between voltage and current.
It is also the cosine of the angle of the load impedance.

From Eq. (11.36), the power factor may be seen as that factor by which the
apparent power must be multiplied to obtain the real or average power.
The value of pf ranges between zero and unity. For a purely resistive
load, the voltage and current are in phase, so that 8, — 6; = 0 and pf
= 1. This implies that the apparent power is equal to the average power.
For a purely reactive load, 6, — 6; = £90° and pf = 0. In this case the
average power is zero. In between these two extreme cases, pf is said
to be leading or lagging. Leading power factor means that current leads
voltage, which implies a capacitive load. Lagging power factor means
that current lags voltage, implying an inductive load. Power factor affects
the electric bills consumers pay the electric utility companies, as we will
see in Section 11.9.2.

PRACTICE PROBLEMHENE

A series-connected load draws a current i(t) = 4cos(100wt + 10°) A
when the applied voltage is v(t) = 120cos(100xt — 20°) V. Find the
apparent power and the power factor of the load. Determine the element
values that form the series-connected load.

Solution:

The apparent power is

120 4
S = VimsIrms = — =240 VA

V22
The power factor is
pf = cos(6, — 6;) = cos(—20° — 10°) = 0.866 (leading)
The pf is leading because the current leads the voltage. The pf may also
be obtained from the load impedance.
z-Y =u=30{—300=25.98—j159
I 4,/10°
pf = cos(—30°) = 0.866 (leading)
The load impedance Z can be modeled by a 25.98-Q2 resistor in series
with a capacitor with
Xc=—-15= —L

oC
or

1 1

- = —2122uF
150 15 x 1007

9

Obtain the power factor and the apparent power of a load whose imped-
ance is Z = 60 4+ j40 © when the applied voltage is v(t) =
150 cos(377t + 10°) V.

Answer: 0.832 lagging, 156 VA.




mu.w

Determine the power factor of the entire circuit of Fig. 11.18 as seen by
the source. Calculate the average power delivered by the source.

Solution:

The total impedance is
. —j2 x4 .
Z=6+4| (—]2)=6+ﬁ=6.8—]1.6=7 —13.24 Q
—J

The power factor is
pf = cos(—13.24) = 0.9734 (leading)

since the impedance is capacitive. The rms value of the current is

Vims 30,/0°

Irms = = = 4.286 13.24O A
Z 7/ 1324

The average power supplied by the source is
P = VimsIims pf = (30)(4.286)0.9734 = 125 W

or
R = (4.286)%(6.8) = 125 W
where R is the resistive part of Z.

PRACTICE PROBLEMMNEEN

P=12

rms

6Q

30,0°V rms

Figure [1.18  For Example 11.10.

Calculate the power factor of the entire circuit of Fig. 11.19 as seen by
the source. What is the average power supplied by the source?

Answer: 0.936 lagging, 118 W.

10Q 8Q

40,0°V rms j4Q T —j6 Q

Figure .19 For Practice Prob. 11.10.

1.6 COMPLEX POWER

Considerable effort has been expended over the years to express power
relations as simply as possible. Power engineers have coined the term
complex power, which they use to find the total effect of parallel loads.
Complex power is important in power analysis because it contains all the
information pertaining to the power absorbed by a given load.

Consider the ac load in Fig. 11.20. Given the phasor form V =
Vi /0, and I = I, /6; of voltage v(¢) and current i(¢), the complex
power S absorbed by the ac load is the product of the voltage and the
complex conjugate of the current, or

1
S = EVI* (11.40)

assuming the passive sign convention (see Fig. 11.20). In terms of the
rms values,

S = Vi I* (11.41)

ms

i

Load
Z

S

Figure 1120 The
voltage and current
phasors associated
with a load.

<




When working with the rms values of currents
or voltages, we may drop the subscript rms if no
confusion will be caused by doing so.

where

Vims = % = Vims /0y (11.42)
and
Lims = I Lims /6i (11.43)
V2

Thus we may write Eq. (11.41) as

S = Vrms’rms{ 0, — 0;

= Vrmslrms COS(QU - 91) + erms Irms Sin(ev - 91)

(11.44)

This equation can also be obtained from Eq. (11.9). We notice from Eq.
(11.44) that the magnitude of the complex power is the apparent power;
hence, the complex power is measured in volt-amperes (VA). Also, we
notice that the angle of the complex power is the power factor angle.
The complex power may be expressed in terms of the load impedance
Z. From Eq. (11.37), the load impedance Z may be written as
_V _ Vo _ Vm

7= == /6, —06 (11.45)
I Irms Irms

Thus, Vs = Zlys. Substituting this into Eq. (11.41) gives

V2
S=172 7= (11.46)

rms 7

Since Z = R + j X, Eq. (11.46) becomes
S=I2(R+jX)=P+j0 (11.47)

where P and Q are the real and imaginary parts of the complex power;
that is,

P =Re(S) =12 R (11.48)

ms

Q0 =Im(S) =12 X (11.49)

rms

P is the average or real power and it depends on the load’s resistance
R. Q depends on the load’s reactance X and is called the reactive (or
quadrature) power.

Comparing Eq. (11.44) with Eq. (11.47), we notice that

P = VimsIrms COS(@U - 91’): O = Vimslims Sil’l(@v - 91’) (11.50)

The real power P is the average power in watts delivered to a load; it
is the only useful power. It is the actual power dissipated by the load.
The reactive power Q is a measure of the energy exchange between the
source and the reactive part of the load. The unit of Q is the volt-ampere
reactive (VAR ) to distinguish it from the real power, whose unit is the watt.
We know from Chapter 6 that energy storage elements neither dissipate
nor supply power, but exchange power back and forth with the rest of
the network. In the same way, the reactive power is being transferred
back and forth between the load and the source. It represents a lossless
interchange between the load and the source. Notice that:



1. Q = 0 for resistive loads (unity pf).

2. Q < 0 for capacitive loads (leading pf).

3. Q > 0 for inductive loads (lagging pf).
Thus,

Complex power (in VA) is the product of the rms voltage phasor and the
complex conjugate of the rms current phasor. As a complex quantity, its
real part is real power P and its imaginary part is reactive power Q.

Introducing the complex power enables us to obtain the real and reactive
powers directly from voltage and current phasors.

1
Complex Power =S =P + jQO = EVI*

= VimsIrms /0y — 6;
Apparent Power = § = |S| = Vimglims = m
Real Power = P = Re(S) = Scos(9, — 6;)
Reactive Power = Q = Im(S) = Ssin(6, — 6;)

(11.51)

P
Power Factor = 5= cos(6, — ;)

This shows how the complex power contains all the relevant power in-
formation in a given load.

It is a standard practice to represent S, P, and Q in the form of
a triangle, known as the power triangle, shown in Fig. 11.21(a). This
is similar to the impedance triangle showing the relationship between
Z, R, and X, illustrated in Fig. 11.21(b). The power triangle has four
items—the apparent/complex power, real power, reactive power, and the
power factor angle. Given two of these items, the other two can easily
be obtained from the triangle. As shown in Fig. 11.22, when S lies in the
first quadrant, we have an inductive load and a lagging pf. When S lies
in the fourth quadrant, the load is capacitive and the pf is leading. It is
also possible for the complex power to lie in the second or third quadrant.
This requires that the load impedance have a negative resistance, which
is possible with active circuits.

P R
(@) (b)

Figure [1.2 (a) Power triangle,
(b) impedance triangle.

S contains all power information of a load. The
real part of S is the real power P; its imaginary
part s the reactive power Q; its magnitude is the
apparent power §; and the cosine of its phase
angle is the power factor pf.

Im A
S +Q (lagging pf)

0,-0
Jo,-0, P Re

i

—Q (leading pf)

]

Figure [1.22  Power triangle.



PRACTICE PROBLEMENE

The voltage across a load is v(t) = 60cos(wt — 10°) V and the cur-
rent through the element in the direction of the voltage drop is i(z) =
1.5 cos(wt 4+ 50°) A. Find: (a) the complex and apparent powers, (b) the
real and reactive powers, and (c) the power factor and the load impedance.

Solution:
(a) For the rms values of the voltage and current, we write
60 1.5

Vims = — / — 10°, L = — 50°
S ﬁ? s \/EL

The complex power is
1.5

S = VimsIis = (%ﬂ) (ﬁﬂ) =45/ —60° VA
The apparent power is
S=1|S|=45VA
(b) We can express the complex power in rectangular form as
S =45/ —60° = 45[cos(—60°) + j sin(—60°)] = 22.5 — j38.97
Since S = P + j Q, the real power is
P=225W
while the reactive power is
0 = —38.97 VAR
(c) The power factor is
pf = cos(—60°) = 0.5 (leading)

It is leading, because the reactive power is negative. The load impedance
is

vV 60/—10°
Z=-—=—"—— —40/-60°Q
I 15/450

which is a capacitive impedance.

For a load, Vs = 110,/85° V, Iy = 0.4/15° A. Determine: (a) the
complex and apparent powers, (b) the real and reactive powers, and (c)
the power factor and the load impedance.

Answer: (a)44/70° VA, 44 VA, (b) 15.05 W, 41.35 VAR,
(c) 0.342 lagging, 94.06 + j258.4 .

A load Z draws 12 kVA at a power factor of 0.856 lagging from a 120-V
rms sinusoidal source. Calculate: (a) the average and reactive powers
delivered to the load, (b) the peak current, and (c) the load impedance.



Solution:

(a) Given that pf = cos6 = 0.856, we obtain the power angle as 6§ =
cos~!0.856 = 31.13°. If the apparent power is S = 12,000 VA, then the
average or real power is

P = Scosf = 12,000 x 0.856 = 10.272 kW
while the reactive power is
Q = Ssinf = 12,000 x 0.517 = 6.204 kVA
(b) Since the pf is lagging, the complex power is
S=P+ ;0 =10.272 4 j6.204 kKVA

From S = V,, I* , we obtain

S 10,272 + j6204
rms = =
Vims 120 /0°

*

=85.6+ j51.7A =100,/31.13° A

Thus Iiys = 100 / — 31.13° and the peak current is

Ly = V2L = v/2(100) = 141.4 A
(c) The load impedance
Vims 120 /0°

— - =12/31.13°Q
Ims 100/ —31.13°

which is an inductive impedance.

PRACTICE PROBLEMENEEW

A sinusoidal source supplies 10 kVA reactive power to load Z =
250/ —75° Q. Determine: (a) the power factor, (b) the apparent power
delivered to the load, and (c) the peak voltage.

Answer: (a) 0.2588 leading, (b) —10.35 kVAR, (c) 2.275 kV.

fI1.T  CONSERVATION OF AC POWER

The principle of conservation of power applies to ac circuits as well as to
dc circuits (see Section 1.5).

To see this, consider the circuit in Fig. 11.23(a), where two load
impedances Z; and Z, are connected in parallel across an ac source V.
KCL gives

I=L+0 (11.52)
The complex power supplied by the source is
1 1 1 1
S=-VI"=-V{I;+ ) ==-VI[ + -VI; =S, +S, (1153
2 ) ( 1 + 2) ) 1 + B 1 + 2 ( )

where S; and S, denote the complex powers delivered to loads Z; and
Z,, respectively.

In fact, we already saw in Examples 11.3and 1.4
that average power is conserved in ac circuits.



In fact, all forms of ac power are conserved: in-
stantaneous, real, reactive, and complex.

v (t) Z, zZ,

(2) (b)

Figure [123  Anac voltage source supplied loads connected in:
(a) parallel, (b) series.

If the loads are connected in series with the voltage source, as shown
in Fig. 11.23(b), KVL yields

V=V, +V, (11.54)

The complex power supplied by the source is
S—lVI*—l(V +V)I*—1VI*+1VI*—S +S 11.55
=3 =57 DL =5w SVl =51 2 (1L55)

where S; and S, denote the complex powers delivered to loads Z; and
Z,, respectively.

We conclude from Eqgs. (11.53) and (11.55) that whether the loads
are connected in series or in parallel (or in general), the total power
supplied by the source equals the total power delivered to the load. Thus,
in general, for a source connected to N loads,

S=S+S1+---+Sy (11.56)

This means that the total complex power in a network is the sum of the
complex powers of the individual components. (This is also true of real
power and reactive power, but not true of apparent power.) This expresses
the principle of conservation of ac power:

The complex, real, and reactive powers of the sources equal the respective sums
of the complex, real, and reactive powers of the individual loads.

From this we imply that the real (or reactive) power flow from sources in
a network equals the real (or reactive) power flow into the other elements
in the network.

Figure 11.24 shows a load being fed by a voltage source through a trans-
mission line. The impedance of the line is represented by the (4 4 j2) Q
impedance and a return path. Find the real power and reactive power
absorbed by: (a) the source, (b) the line, and (c) the load.



2

. 4Q

15Q
220,/0° V rms

—j10 Q
o]’

Source Line > Load

Figure [1.24 " For Example 11.13.

Solution:

The total impedance is
Z=(4+j2)+(15-,10) =19 — j8 =20.62/ —22.83° Q
The current through the circuit is

v, 220 /0°

= = 10.67 /22.83° A rms
Z 2062/ —22.83°

(a) For the source, the complex power is
S =V, IF = (220&)(10.67{ — 22.83%)
=2347.4/ —22.83° = (2163.5 — j910.8) VA

From this, we obtain the real power as 2163.5 W and the reactive power
as 910.8 VAR (leading).
(b) For the line, the voltage is

Vine = (4 + j2)I = (4.472,/26.57°)(10.67 /22.83%)
= 47.72/49.4° V rms
The complex power absorbed by the line is
Siine = Viinel* = (47.72,/49.4°)(10.67 / — 22.83°)
=509.2/26.57° = 455.4 + j227.7 VA
or
Sine = 1*Ziine = (10.67)*(4 + j2) = 455.4 + j227.7 VA

That is, the real power is 455.4 W and the reactive power is 227.76 VAR

(lagging).
(c) For the load, the voltage is

V. =(15-;10I=(18.03/ — 33.7%(10.67@)
=192.38 / — 10.87° V rms
The complex power absorbed by the load is
St =V, I =(192.38 / — 10.87°)(10.67 / — 22.83°)
= 2053/ —33.7° = (1708 — j1139) VA




The real power is 1708 W and the reactive power is 1139 VAR (leading).
Note that S; = Sjine + S, as expected. We have used the rms values of
voltages and currents.

PRACTICE PROBLEMNNEEEK

200 In the circuit in Fig. 11.25, the 60-2 resistor absorbs an average power
of 240 W. Find V and the complex power of each branch of the circuit.
What is the overall complex power of the circuit?

Answer: 240.67 /21.45° V (rms); the 20-2 resistor: 656 VA; the
(30 — j10) €2 impedance: 480 — j160 VA; the (60 + j20) 2 impedance:
240 + j80 VA; overall: 1376 — j80 VA.

Figure [1.25  For Practice Prob. 11.13.

I In the circuit of Fig. 11.26, Z; = 60,/ — 30° Q2 and Z, = 40,/45° Q.
- Calculate the total: (a) apparent power, (b) real power, (c) reactive power,
* I * L and (d) pf.
120£10°V rms (@) z, z, Solution:
The current through Z; is
A" 120 /10°
, L =—=—"——=2/40° Arms
Figure [1.26  For Example 11.14. Zi 60/ —30°

while the current through Z, is

\Y 120 /10°

T 40/a5

The complex powers absorbed by the impedances are

I, =3/ —35° Arms

V2 120)2
S) = s = 207 _ 240/ — 30° = 207.85 — j120 VA
Zi 60,30
V2 120)2
S, = s — _ 2007 360,/45° = 254.6 + j254.6 VA

L, 40/—45
The total complex power is
S: =81 +S,=462.4+ j134.6 VA

(a) The total apparent power is

S| = ~/462.42 + 134.6> = 481.6 VA.
(b) The total real power is
P, =Re(S,) =4624Wor P, = P, + Ps.
(c) The total reactive power is
0, =Im(S;,) = 134.6 VAR or Q; = Q; + Q>.
(d) The pf = P;/|S;| = 462.4/481.6 = 0.96 (lagging).



We may cross check the result by finding the complex power S, supplied
by the source.

L =1 +1L = (1532 + j1.286) + (2.457 — j1.721)
=4 — j0.435 =4.024/ — 6.21° A rms
S, = VI = (120,/10°)(4.024 /6.21°)
= 482.88 /16.21° = 463 + j135 VA

which is the same as before.

PRACTICE PROBLEMENNEK

Two loads connected in parallel are respectively 2 kW at a pf of 0.75 lead-
ing and 4 kW at a pf of 0.95 lagging. Calculate the pf of the two loads.
Find the complex power supplied by the source.

Answer: 0.9972 (leading), 6 — j0.4495 kVA.

1.8 POWER FACTOR CORRECTION

Most domestic loads (such as washing machines, air conditioners, and
refrigerators) and industrial loads (such as induction motors) are inductive
and operate at a low lagging power factor. Although the inductive nature
of the load cannot be changed, we can increase its power factor.

The process of increasing the power factor without altering the voltage or current
to the original load is known as power factor correction.

Since most loads are inductive, as shown in Fig. 11.27(a), a load’s
power factor is improved or corrected by deliberately installing a capacitor
in parallel with the load, as shown in Fig. 11.27(b). The effect of adding
the capacitor can be illustrated using either the power triangle or the
phasor diagram of the currents involved. Figure 11.28 shows the latter,
where it is assumed that the circuit in Fig. 11.27(a) has a power factor of
cos 01, while the one in Fig. 11.27(b) has a power factor of cos6,. It is

I I
e

o

29 + 29 e

3 Inductive \" Inductive 3 3 —~C

! load load L
o

(a) (b)

Figure [1.27  Power factor correction: (a) original inductive load,
(b) inductive load with improved power factor.

Alternatively, power factor correction may be
viewed as the addition of a reactive element (usu-
ally a capacitor) in parallel with the load in order
to make the power factor closer to unity.

An inductive load is modeled as a series combi-
nation of an inductor and a resistor.

Figure 11.28

Phasor diagram showing the
effect of adding a capacitor in parallel with
the inductive load.



Oc

O

Figure [129  Power triangle illustrating power
factor correction.

evident from Fig. 11.28 that adding the capacitor has caused the phase
angle between the supplied voltage and current to reduce from 6; to 6,
thereby increasing the power factor. We also notice from the magnitudes
of the vectors in Fig. 11.28 that with the same supplied voltage, the circuit
in Fig. 11.27(a) draws larger current /; than the current / drawn by the
circuitin Fig. 11.27(b). Power companies charge more for larger currents,
because they result in increased power losses (by a squared factor, since
P = IZR). Therefore, it is beneficial to both the power company and the
consumer that every effort is made to minimize current level or keep the
power factor as close to unity as possible. By choosing a suitable size for
the capacitor, the current can be made to be completely in phase with the
voltage, implying unity power factor.

We can look at the power factor correction from another perspective.
Consider the power triangle in Fig. 11.29. If the original inductive load
has apparent power S, then

P = S cosb, Q) = §;sinf; = Ptan6, (11.57)

If we desire to increase the power factor from cos 6, to cos 6, without
altering the real power (i.e., P = S, cos 0,), then the new reactive power
is

0, = Ptan6, (11.58)

The reduction in the reactive power is caused by the shunt capacitor, that
is,
Qc = 01— Q= P(tan6; — tan6,) (11.59)

But from Eq. (11.49), Q¢ = V2. /Xc = oCV2

ms- The value of the
required shunt capacitance C is determined as

. Oc _ P(tanf; — tan6,)

- 2 T 2
w Vrms w Vrms

(11.60)

Note that the real power P dissipated by the load is not affected by the
power factor correction because the average power due to the capacitance
is zero.

Although the most common situation in practice is that of an in-
ductive load, it is also possible that the load is capacitive, that is, the load
is operating at a leading power factor. In this case, an inductor should
be connected across the load for power factor correction. The required
shunt inductance L can be calculated from

Vr%ns Vr%ns V2
— - SN L= 11.61
L=y, T wL w0y (ren

where Q; = Q| — Q,, the difference between the new and old reactive
powers.

When connected to a 120-V (rms), 60-Hz power line, a load absorbs 4 kW
at a lagging power factor of 0.8. Find the value of capacitance necessary
to raise the pf to 0.95.



Solution:
If the pf = 0.8, then

cosfd; = 0.8 - 6, = 36.87°

where 0 is the phase difference between voltage and current. We obtain
the apparent power from the real power and the pf as

P 4
= ﬂ = 5000 VA

S, = =
cos 61 0.8

The reactive power is
Q1 = S;sinf = 5000 5sin 36.87 = 3000 VAR
When the pf is raised to 0.95,
cos6p = 0.95 = 0, = 18.19°

The real power P has not changed. But the apparent power has changed;
its new value is

P 4000
h = = —— =42105VA
cos 6, 0.95

The new reactive power is

0, = Spsinf, = 1314.4 VAR

The difference between the new and old reactive powers is due to the
parallel addition of the capacitor to the load. The reactive power due to
the capacitor is

Qc = 01— 02=3000—1314.4 = 1685.6 VAR

and
Oc 1685.6

C= = —310.5 uF
wV2 27 x 60 x 120° H

ms

PRACTICE PROBLEMENEENE

Find the value of parallel capacitance needed to correct a load of
140 kVAR at 0.85 lagging pf to unity pf. Assume that the load is supplied
by a 110-V (rms), 60-Hz line.

Answer: 30.69 mF.

fI1.9 APPLICATIONS

In this section, we consider two important application areas: how power
is measured and how electric utility companies determine the cost of
electricity consumption.

I1.9.1 Power Measurement
The average power absorbed by a load is measured by an instrument
called the wattmeter.

Reactive power is measured by an instrument
called the varmeter. The varmeter is often con-
nected to the load in the same way as the
wattmeter.



Some wattmeters do not have coils; the watt-
meter considered here is the electromagnetic

type.

ey

I+
+

S

d

Figure [130 A wattmeter.

[¢]
*

The wattmeter is the instrument for measuring the average power.

Figure 11.30 shows a wattmeter that consists essentially of two
coils: the current coil and the voltage coil. A current coil with very
low impedance (ideally zero) is connected in series with the load (Fig.
11.31) and responds to the load current. The voltage coil with very high
impedance (ideally infinite) is connected in parallel with the load as shown
in Fig. 11.31 and responds to the load voltage. The current coil acts like
a short circuit because of its low impedance; the voltage coil behaves like
an open circuit because of its high impedance. As a result, the presence
of the wattmeter does not disturb the circuit or have an effect on the power
measurement.

— + —
A115
Current coil |

+

+
. v Z,
Voltage coil E _

Figure [1.3] The wattmeter connected to the load.

When the two coils are energized, the mechanical inertia of the
moving system produces a deflection angle that is proportional to the
average value of the product v(¢)i(¢). If the current and voltage of the
load are v(t) = V,, cos(wt + 6,) and i (t) = I, cos(wt + 6;), their corre-
sponding rms phasors are

Vm Im
Vims = E@ and L= ﬁ& (11.62)

and the wattmeter measures the average power given by
1
P = |Vims||Tims| cos(0, — 6;) = szIm cos(@, —60;) (11.63)

As shown in Fig. 11.31, each wattmeter coil has two terminals
with one marked +. To ensure upscale deflection, the + terminal of the
current coil is toward the source, while the & terminal of the voltage coil
is connected to the same line as the current coil. Reversing both coil
connections still results in upscale deflection. However, reversing one
coil and not the other results in downscale deflection and no wattmeter
reading.



m||.|e

Find the wattmeter reading of the circuit in Fig. 11.32.

2o jloo |,
2112
+
8Q

-6 Q

150,/0° V rms

—

Figure [1.32  For Example 11.16.

Solution:

In Fig. 11.32, the wattmeter reads the average power absorbed by the
(8 — j6) 2 impedance because the current coil is in series with the
impedance while the voltage coil is in parallel with it. The current through
the circuit is

150 /0° 150
I= - — = — A rms
(124 j10)+ (8 —j6) 20+ j4
The voltage across the (8 — j6) €2 impedance is
150(8 — j6)

The complex power is
150(8 — j6) . 150 150%(8 — j6)
20+ j4 20 — j4 202 + 42
=423.7 — j324.6 VA

S=VI*=

The wattmeter reads

P =Re(S) =432.7TW

PRACTICE PROBLEMEEEENE

For the circuit in Fig. 11.33, find the wattmeter reading.

2112 AM—|
+

120/30° V rms . 90 E § 120

Figure [1.33  For Practice Prob. 11.16.

Answer: 1437 W.




[1.9.2 Electricity Consumption Cost

In Section 1.7, we considered a simplified model of the way the cost of
electricity consumption is determined. But the concept of power factor
was not included in the calculations. Now we consider the importance of
power factor in electricity consumption cost.

Loads with low power factors are costly to serve because they re-
quire large currents, as explained in Section 11.8. The ideal situation
would be to draw minimum current from a supply sothat S = P, 0 =0,
and pf = 1. Aload with nonzero Q means that energy flows forth and back
between the load and the source, giving rise to additional power losses.
In view of this, power companies often encourage their customers to have
power factors as close to unity as possible and penalize some customers
who do not improve their load power factors.

Utility companies divide their customers into categories: as resi-
dential (domestic), commercial, and industrial, or as small power, medium
power, and large power. They have different rate structures for each
category. The amount of energy consumed in units of kilowatt-hours
(kWh) is measured using a kilowatt-hour meter installed at the customer’s
premises.

Although utility companies use different methods for charging cus-
tomers, the tariff or charge to a consumer is often two-part. The first part
is fixed and corresponds to the cost of generation, transmission, and dis-
tribution of electricity to meet the load requirements of the consumers.
This part of the tariff is generally expressed as a certain price per kW of
maximum demand. Or it may instead be based on kVA of maximum de-
mand, to account for the power factor (pf) of the consumer. A pf penalty
charge may be imposed on the consumer whereby a certain percentage of
kW or kVA maximum demand is charged for every 0.01 fall in pf below
a prescribed value, say 0.85 or 0.9. On the other hand, a pf credit may be
given for every 0.01 that the pf exceeds the prescribed value.

The second part is proportional to the energy consumed in kWh; it
may be in graded form, for example, the first 100 kWh at 16 cents/kWh,
the next 200 kWh at 10 cents/kWh and so forth. Thus, the bill is deter-
mined based on the following equation:

Total Cost = Fixed Cost + Cost of Energy (11.64)

A manufacturing industry consumes 200 MWh in one month. If the
maximum demand is 1600 kW, calculate the electricity bill based on the
following two-part rate:

Demand charge: $5.00 per month per kW of billing demand.

Energy charge: 8 cents per kWh for the first 50,000 kWh, 5 cents
per kWh for the remaining energy.

Solution:
The demand charge is

$5.00 x 1600 = $8000 (11.17.1)
The energy charge for the first 50,000 kWh is



$0.08 x 50,000 = $4000 (11.17.2)

The remaining energy is 200,000 kWh — 50,000 kWh = 150,000 kWh,
and the corresponding energy charge is

$0.05 x 150,000 = $7500 (11.17.3)
Adding Egs. (11.17.1) to (11.17.3) gives
Total bill for the month = $8000 + $4000 + $7500 = $19,500
It may appear that the cost of electricity is too high. But this is often a

small fraction of the overall cost of production of the goods manufactured
or the selling price of the finished product.

PRACTICE PROBLEMEEEN

The monthly reading of a paper mill’s meter is as follows:
Maximum demand: 32,000 kW
Energy consumed: 500 MWh

Using the two-part rate in Example 11.17, calculate the monthly bill for
the paper mill.

Answer: $186,500.

mﬂu.w

A 300-kW load supplied at 13 kV (rms) operates 520 hours a month at
80 percent power factor. Calculate the average cost per month based on
this simplified tariff:

Energy charge: 6 cents per kWh

Power-factor penalty: 0.1 percent of energy charge for every 0.01
that pf falls below 0.85.

Power-factor credit: 0.1 percent of energy charge for every 0.01
that pf exceeds 0.85.
Solution:
The energy consumed is

W =300 kW x 520 h = 156,000 kWh

The operating power factor pf = 80% = 0.8 is 5 x 0.01 below the
prescribed power factor of 0.85. Since there is 0.1 percent energy charge
for every 0.01, there is a power-factor penalty charge of 0.5 percent. This
amounts to an energy charge of

5x0.1

AW = 156,000 x = 780 kWh

The total energy is



PRACTICE PROBLEMENE

W, =W+ AW = 156,000 + 780 = 156,780 kWh
The cost per month is given by

Cost = 6 cents x W, = $0.06 x 156,780 = $9406.80

| 8

An 800-kW induction furnace at 0.88 power factor operates 20 hours per
day for 26 days in a month. Determine the electricity bill per month based
on the tariff in Example 11.16.

Answer: $24,885.12.

11.10  SUMMARY

1. The instantaneous power absorbed by an element is the product of
the element’s terminal voltage and the current through the element:
p = vi.

2. Average or real power P (in watts) is the average of instantaneous

power p:
1 T
P=— dt
Tfo p

If v(¢t) =V, cos(wt 4+ 6,) and i(t) = I, cos(wt + 6;), then Vs =
Vm/\/z’ Irms - m/\/zs and

1
P = Evmlm COS(GU - 91) = VrmsIrms COS(GU - 61)

Inductors and capacitors absorb no average power, while the aver-
age power absorbed by a resistoris 1/2 I2R = I2 R

rms” "
3. Maximum average power is transferred to a load when the load
impedance is the complex conjugate of the Thevenin impedance as
seen from the load terminals, Z; = Z7,.

4. The effective value of a periodic signal x (#) is its root-mean-square

(rms) value.
1 T
Xetp = Xoe = | — 2dt
eff rms TA X

For a sinusoid, the effective or rms value is its amplitude divided by

V2.

5. The power factor is the cosine of the phase difference between volt-
age and current:

pf = cos(6, — 6;)

It is also the cosine of the angle of the load impedance or the ratio
of real power to apparent power. The pf is lagging if the current
lags voltage (inductive load) and is leading when the current leads
voltage (capacitive load).



10.

11.

. Apparent power S (in VA) is the product of the rms values of volt-

age and current:
S = VimsIrms

It is also given by § = |S| = / P2 + Q2?, where Q is reactive
power.

. Reactive power (in VAR) is:

1
Q = Evmlm Sin(ev - 91) = VrmsIrms Sin(ev - 91)

. Complex power S (in VA) is the product of the rms voltage phasor

and the complex conjugate of the rms current phasor. It is also the
complex sum of real power P and reactive power Q.

S = Vrmsl;kms = VrmsIrms{ 0y, —6;, =P+ ]Q

Also,

2

Ve
S=12,2 ="

. The total complex power in a network is the sum of the complex

powers of the individual components. Total real power and reactive
power are also, respectively, the sums of the individual real powers
and the reactive powers, but the total apparent power is not calcu-
lated by the process.

Power factor correction is necessary for economic reasons; it is the
process of improving the power factor of a load by reducing the
overall reactive power.

The wattmeter is the instrument for measuring the average power.
Energy consumed is measured with a kilowatt-hour meter.




Salman Bin Abdul Aziz University nliyid] dut Gl bkt 4 b

Faculty of Engineering Tralli a2l dnlS
Electrical Engineering department | i) RS | ot bl gt
Electric Circuit Analysis (EE 2020) (¥+¥ o pRS) duted RS il gl Juea

jiellae (4 (jlnkw dienly 94 b slaskdl if9a ( &yl (1) e

Sheet (1) AC Power _ —
Salman bin Abdulaziz University

Problem #1
A) If v(t) = 160 cos (507) V and i(t) = —20 sin (507 — 30°) A, calculate the instantaneous

power and the average power.
B) At ¢t =2 s, find the instantaneous power on each of the elements in the circuit of Fig. 1.

20 puF
I
[

|

=

30 cos 500 A i) ﬂ 03H = 200Q
[' |

Fig. 1, Problem 1-B

C) Find the average power on each of the elements in the circuit of Fig. 2 and 3.

45k =0 20Q 10Q

A
L

I VY \
YATATAY, |

’

.

— = I : .

WV

Fig. 2, Problem 1-C Fig. 3, Problem 1-C

D) Compute the average power absorbed by the 4-C resistor in the circuit of Fig. 4.

10
(|
I
- av,
L e v
1/60° A (B) _5 20 1Q

Fig. 4, Problem 1-D




Problem #2
A) For each of the circuits in Fig. 5, determine the value of load Z for maximum power
transfer and the maximum average power transferred.

50 j3 L
AN [ i
8
L | ' 10/30°V (& ?jjﬂ >4Q
80 [l @ =—-20 @y T/ @S 2
| ?
]

Fig. 5, Problem 2-A
B) For the circuit in Fig. 6, find:
(a) the value of the load impedance that absorbs the maximum average power
(b) the value of the maximum average power absorbed

71000
2118 o
ocA @) 280Q 400 Lo

o

Fig. 6, Problem 2-B

C) Calculate the value of Z; in the circuit of Fig. 7 in order for Z; to receive maximurr
average power. What is the maximum average power received by Z..

ﬂmﬂ\(/ﬁ\w 300
K

Fig. 7, Problem 2-C

D) The variable resistor R in the circuit of Fig. 8 is adjusted until it absorbs the maximum
average power. Find R and the maximum average power absorbed.
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Fig. 8, Problem 2-D

Problem #3
A) A relay coil is connected to a 210-V, 50-Hz supply. If it has a resistance of 30 Q2 and an
inductance of 0.5 H, calculate the apparent power and the power factor.

B) For each circuit shown in Fig. 9, calculate:

(a) the power factor, (b) the average power delivered by the source,
(c) the reactive power, (d) the apparent power,
(e) the complex power.
20
\ \,-"-. v""n.""'- . l
|— H5Q = jeq + —~3 € .
tosemY C:) Im 9. [ 50 Y t> J 40 :% 5

T ] |
Fig. 9, Problem 3-B
C) Find the complex power absorbed by each of the five elements in the circuit of Fig. 10.

520Q  jipq

| s
1 Y

40,/0° V tms @) <200 (’: 50,/90° V rms

Fig. 10, Problem 3-C

D) Obtain the complex power delivered by the source in the circuit of Fig. 11.
3JQ j4Q

—MAAA—TTT

50 —j2Q 260

2/30° A

Fig. 11, Problem 3-D




Problem #4
A) Given the circuit in Fig. 12, find Io and the overall complex power supplied.

L
— 1.2 kW

0.8 KVAR (cap)

100/90° V @) 2 KVA 4 KW
0.707 pf leading 0.9 pflagging

Fig. 12, Problem 4-A.

B) For the circuit in Fig. 13, find Vs .
028 ;jOoO4Q 030 jo1s58)

MMM ETIR AAAN IR o
+
V; (i) 1w . LW : 120 'V rms
0.9 pf lagging 0.3 pf leading

Fig. 13, Problem 4-B.

C) For the circuit in Fig. 14, find Vo and the input power factor.

| * |

o 20 kW . 16 EW
6,0° Arms (A) _ \ |
Hne + 0.8 pf lagging s 0.9 pf lagging

Fig. 14, Problem 4-C.

D) Given the circuit in Fig. 15, find Io and the overall complex power supplied.
I,

—_—

12 KW lo EW 20 VAR

noseev (@) _ | ] _ )
At — 0.366 pf leading | | 0.35 pf lagging 0.6 pf lagging

Fig. 15, Problem 4-D




Problem #5
A) Consider the power system shown in Fig. 16. Calculate:
(a) the total complex power
(b) the power factor
(c) the capacitance necessary to establish a unity power factor

C
4

240V rms, 50 Hz

.

80—j50Q

120 + ;70 £2

60 + ;0
Fig. 16, Problem 5-A.

B) A 120-V rms 60-Hz source supplies two loads connected in parallel, as shown in Fig. 17.
(a) Find the power factor of the parallel combination.
(b) Calculate the value of the capacitance connected in parallel that will raise the
power factor to unity.

© | |
Load 1 Load 2
24 KW A0 KW
pf=038 pf=095
lagging lagging
o | |

Fig. 17, Problem 5-B

C) A 240-V rms 60-Hz supply serves a load that is 10 kW (resistive), 15 kVAR (capacitive),
and 22 kVAR (inductive). Find:
(a) the apparent power
(b) the current drawn from the supply
(c) the kVAR rating and capacitance required to improve the power factor to 0.96
lagging
(d) the current drawn from the supply under the new power-factor conditions




