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C H A P T E R

AC POWER ANALYSIS

1 1

An engineer is an unordinary person who can do for one dollar what any

ordinary person can do for two dollars.

—Anonymous

Enhancing Your Career

Career in Power Systems The discovery of the principle
of an ac generator by Michael Faraday in 1831 was a major
breakthrough in engineering; it provided a convenient way
of generating the electric power that is needed in every elec-
tronic, electrical, or electromechanical device we use now.

Electric power is obtained by converting energy from
sources such as fossil fuels (gas, oil, and coal), nuclear
fuel (uranium), hydro energy (water falling through a head),
geothermal energy (hot water, steam), wind energy, tidal en-
ergy, and biomass energy (wastes). These various ways of
generating electric power are studied in detail in the field of
power engineering, which has become an indispensable sub-
discipline of electrical engineering. An electrical engineer
should be familiar with the analysis, generation, transmis-
sion, distribution, and cost of electric power.

The electric power industry is a very large employer
of electrical engineers. The industry includes thousands of
electric utility systems ranging from large, interconnected
systems serving large regional areas to small power
companies serving individual communities or factories.
Due to the complexity of the power industry, there are
numerous electrical engineering jobs in different areas of
the industry: power plant (generation), transmission and
distribution, maintenance, research, data acquisition and
flow control, and management. Since electric power is used
everywhere, electric utility companies are everywhere, of-
fering exciting training and steady employment for men and
women in thousands of communities throughout the world.

A pole-type transformer with a low-voltage, three-wire distribution

system. Source: W. N. Alerich, Electricity, 3rd ed. Albany, NY:

Delmar Publishers, 1981, p. 152. (Courtesy of General Electric.)



11.1 INTRODUCTION

Our effort in ac circuit analysis so far has been focused mainly on cal-
culating voltage and current. Our major concern in this chapter is power
analysis.

Power analysis is of paramount importance. Power is the most
important quantity in electric utilities, electronic, and communication
systems, because such systems involve transmission of power from one
point to another. Also, every industrial and household electrical device—
every fan, motor, lamp, pressing iron, TV, personal computer—has a
power rating that indicates how much power the equipment requires;
exceeding the power rating can do permanent damage to an appliance.
The most common form of electric power is 50- or 60-Hz ac power. The
choice of ac over dc allowed high-voltage power transmission from the
power generating plant to the consumer.

We will begin by defining and deriving instantaneous power and
average power. We will then introduce other power concepts. As practi-
cal applications of these concepts, we will discuss how power is measured
and reconsider how electric utility companies charge their customers.

11.2 INSTANTANEOUS AND AVERAGE POWER

As mentioned in Chapter 2, the instantaneous power p(t) absorbed by an
element is the product of the instantaneous voltage v(t) across the element
and the instantaneous current i(t) through it. Assuming the passive sign
convention,

p(t) = v(t)i(t) (11.1)

The instantaneous power is the power at any instant of time. It is the rate
at which an element absorbs energy.We can also think of the instantaneous power

as the power absorbed by the element at a spe-
cific instant of time. Instantaneous quantities are
denoted by lowercase letters.
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Figure 11.1 Sinusoidal source and passive
linear circuit.

Consider the general case of instantaneous power absorbed by an
arbitrary combination of circuit elements under sinusoidal excitation, as
shown in Fig. 11.1. Let the voltage and current at the terminals of the
circuit be

v(t) = Vm cos(ωt + θv) (11.2a)

i(t) = Im cos(ωt + θi) (11.2b)

whereVm and Im are the amplitudes (or peak values), and θv and θi are the
phase angles of the voltage and current, respectively. The instantaneous
power absorbed by the circuit is

p(t) = v(t)i(t) = VmIm cos(ωt + θv) cos(ωt + θi) (11.3)

We apply the trigonometric identity

cosA cosB =
1

2
[cos(A− B)+ cos(A+ B)] (11.4)

and express Eq. (11.3) as

p(t) =
1

2
VmIm cos(θv − θi)+

1

2
VmIm cos(2ωt + θv + θi) (11.5)



This shows us that the instantaneous power has two parts. The first part is
constant or time independent. Its value depends on the phase difference
between the voltage and the current. The second part is a sinusoidal
function whose frequency is 2ω, which is twice the angular frequency of
the voltage or current.

A sketch of p(t) in Eq. (11.5) is shown in Fig. 11.2, where T =
2π/ω is the period of voltage or current. We observe thatp(t) is periodic,
p(t) = p(t + T0), and has a period of T0 = T/2, since its frequency
is twice that of voltage or current. We also observe that p(t) is positive
for some part of each cycle and negative for the rest of the cycle. When
p(t) is positive, power is absorbed by the circuit. When p(t) is negative,
power is absorbed by the source; that is, power is transferred from the
circuit to the source. This is possible because of the storage elements
(capacitors and inductors) in the circuit.
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Figure 11.2 The instantaneous power p(t) entering a circuit.

The instantaneous power changes with time and is therefore difficult
to measure. The average power is more convenient to measure. In fact,
the wattmeter, the instrument for measuring power, responds to average
power.

The average power is the average of the instantaneous power over one period.

Thus, the average power is given by

P =
1

T

∫ T

0

p(t) dt (11.6)

Although Eq. (11.6) shows the averaging done over T , we would get the
same result if we performed the integration over the actual period of p(t)
which is T0 = T/2.

Substituting p(t) in Eq. (11.5) into Eq. (11.6) gives

P =
1

T

∫ T

0

1

2
VmIm cos(θv − θi) dt

+
1

T

∫ T

0

1

2
VmIm cos(2ωt + θv + θi) dt



=
1

2
VmIm cos(θv − θi)

1

T

∫ T

0

dt

+
1

2
VmIm

1

T

∫ T

0

cos(2ωt + θv + θi) dt (11.7)

The first integrand is constant, and the average of a constant is the same
constant. The second integrand is a sinusoid. We know that the average of
a sinusoid over its period is zero because the area under the sinusoid during
a positive half-cycle is canceled by the area under it during the following
negative half-cycle. Thus, the second term in Eq. (11.7) vanishes and the
average power becomes

P =
1

2
VmIm cos(θv − θi) (11.8)

Since cos(θv − θi) = cos(θi − θv), what is important is the difference in
the phases of the voltage and current.

Note that p(t) is time-varying while P does not depend on time.
To find the instantaneous power, we must necessarily have v(t) and i(t)
in the time domain. But we can find the average power when voltage
and current are expressed in the time domain, as in Eq. (11.2), or when
they are expressed in the frequency domain. The phasor forms of v(t)
and i(t) in Eq. (11.2) are V = Vm θv and I = Im θi, respectively. P is
calculated using Eq. (11.8) or using phasors V and I. To use phasors, we
notice that

1

2
VI∗ =

1

2
VmIm θv − θi

=
1

2
VmIm [cos(θv − θi)+ j sin(θv − θi)]

(11.9)

We recognize the real part of this expression as the average power P
according to Eq. (11.8). Thus,

P =
1

2
Re

[

VI∗] =
1

2
VmIm cos(θv − θi) (11.10)

Consider two special cases of Eq. (11.10). When θv = θi , the
voltage and current are in phase. This implies a purely resistive circuit
or resistive load R, and

P =
1

2
VmIm =

1

2
I 2
mR =

1

2
|I|2R (11.11)

where |I|2 = I × I∗. Equation (11.11) shows that a purely resistive
circuit absorbs power at all times. When θv − θi = ±90◦, we have a
purely reactive circuit, and

P =
1

2
VmIm cos 90◦ = 0 (11.12)



showing that a purely reactive circuit absorbs no average power. In sum-
mary,

A resistive load (R) absorbs power at all times, while a reactive load (L or C)
absorbs zero average power.

E X A M P L E 1 1 . 1

Given that

v(t) = 120 cos(377t+45◦) V and i(t) = 10 cos(377t−10◦) A

find the instantaneous power and the average power absorbed by the
passive linear network of Fig. 11.1.

Solution:

The instantaneous power is given by

p = vi = 1200 cos(377t + 45◦) cos(377t − 10◦)

Applying the trigonometric identity

cosA cosB =
1

2
[cos(A+ B)+ cos(A− B)]

gives

p = 600[cos(754t + 35◦)+ cos 55◦]

or

p(t) = 344.2 + 600 cos(754t + 35◦)W

The average power is

P =
1

2
VmIm cos(θv − θi) =

1

2
120(10) cos[45◦ − (−10◦)]

= 600 cos 55◦ = 344.2 W

which is the constant part of p(t) above.

P R A C T I C E P R O B L E M 1 1 . 1

Calculate the instantaneous power and average power absorbed by the
passive linear network of Fig. 11.1 if

v(t) = 80 cos(10t + 20◦) V and i(t) = 15 sin(10t + 60◦) A

Answer: 385.7 + 600 cos(20t − 10◦)W, 385.7 W.

E X A M P L E 1 1 . 2

Calculate the average power absorbed by an impedance Z = 30 − j70�
when a voltage V = 120 0◦ is applied across it.



Solution:

The current through the impedance is

I =
V

Z
=

120 0◦

30 − j70
=

120 0◦

76.16 − 66.8◦
= 1.576 66.8◦ A

The average power is

P =
1

2
VmIm cos(θv − θi) =

1

2
(120)(1.576) cos(0 − 66.8◦) = 37.24 W

P R A C T I C E P R O B L E M 1 1 . 2

A current I = 10 30◦ flows through an impedance Z = 20 − 22◦ �.
Find the average power delivered to the impedance.

Answer: 927.2 W.

E X A M P L E 1 1 . 3

For the circuit shown in Fig. 11.3, find the average power supplied by the
source and the average power absorbed by the resistor.

4 Ω

+
−

I

−j2 Ω5   30° V

Figure 11.3 For Example 11.3.

Solution:

The current I is given by

I =
5 30◦

4 − j2
=

5 30◦

4.472 − 26.57◦
= 1.118 56.57◦ A

The average power supplied by the voltage source is

P =
1

2
(5)(1.118) cos(30◦ − 56.57◦) = 2.5 W

The current through the resistor is

I = IR = 1.118 56.57◦ A

and the voltage across it is

VR = 4IR = 4.472 56.57◦ V

The average power absorbed by the resistor is

P =
1

2
(4.472)(1.118) = 2.5 W

which is the same as the average power supplied. Zero average power is
absorbed by the capacitor.

P R A C T I C E P R O B L E M 1 1 . 3

In the circuit of Fig. 11.4, calculate the average power absorbed by the
resistor and inductor. Find the average power supplied by the voltage
source.

3 Ω

+
− j1 Ω8   45° V

Figure 11.4 For Practice Prob. 11.3.

Answer: 9.6 W, 0 W, 9.6 W.
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Determine the power generated by each source and the average power ab-
sorbed by each passive element in the circuit of Fig. 11.5(a).

20 Ω

+
−j10 Ω

−j5 Ω

4   0° Α 60   30° V1 3 5
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(a)

20 Ω

+
−j10 Ω

−j5 Ω

4   0° Α 60   30° V
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+ −
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V1
I1 I2

Figure 11.5 For Example 11.4.

Solution:

We apply mesh analysis as shown in Fig. 11.5(b). For mesh 1,

I1 = 4 A

For mesh 2,

(j10 − j5)I2 − j10I1 + 60 30◦ = 0, I1 = 4 A

or

j5I2 = −60 30◦ + j40 	⇒ I2 = −12 − 60◦ + 8

= 10.58 79.1◦ A

For the voltage source, the current flowing from it is I2 = 10.58 79.1◦ A
and the voltage across it is 60 30◦ V, so that the average power is

P5 =
1

2
(60)(10.58) cos(30◦ − 79.1◦) = 207.8 W

Following the passive sign convention (see Fig. 1.8), this average power
is absorbed by the source, in view of the direction of I2 and the polarity
of the voltage source. That is, the circuit is delivering average power to
the voltage source.

For the current source, the current through it is I1 = 4 0◦ and the
voltage across it is

V1 = 20I1 + j10(I1 − I2) = 80 + j10(4 − 2 − j10.39)

= 183.9 + j20 = 184.984 6.21◦ V

The average power supplied by the current source is

P1 = −
1

2
(184.984)(4) cos(6.21◦ − 0) = −367.8 W

It is negative according to the passive sign convention, meaning that the
current source is supplying power to the circuit.

For the resistor, the current through it is I1 = 4 0◦ and the voltage
across it is 20I1 = 80 0◦, so that the power absorbed by the resistor is

P2 =
1

2
(80)(4) = 160 W



For the capacitor, the current through it is I2 = 10.58 79.1◦ and the
voltage across it is −j5I2 = (5 − 90◦)(10.58 79.1◦) =
52.9 79.1◦ − 90◦. The average power absorbed by the capacitor is

P4 =
1

2
(52.9)(10.58) cos(−90◦) = 0

For the inductor, the current through it is I1 − I2 = 2 − j10.39 =
10.58 − 79.1◦. The voltage across it is j10(I1 − I2) =
105.8 − 79.1◦ + 90◦. Hence, the average power absorbed by the in-
ductor is

P3 =
1

2
(105.8)(10.58) cos 90◦ = 0

Notice that the inductor and the capacitor absorb zero average power
and that the total power supplied by the current source equals the power
absorbed by the resistor and the voltage source, or

P1 + P2 + P3 + P4 + P5 = −367.8 + 160 + 0 + 0 + 207.8 = 0

indicating that power is conserved.

P R A C T I C E P R O B L E M 1 1 . 4

Calculate the average power absorbed by each of the five elements in the
circuit of Fig. 11.6.

8 Ω

+
−

+
− −j2 Ω

j4 Ω

40   0° V 20   90° V

Figure 11.6 For Practice Prob. 11.4.

Answer: 40-V Voltage source: −100 W; resistor: 100 W; others: 0 W.

11.3 MAXIMUM AVERAGE POWER TRANSFER

In Section 4.8 we solved the problem of maximizing the power deliv-
ered by a power-supplying resistive network to a load RL. Represent-
ing the circuit by its Thevenin equivalent, we proved that the maximum
power would be delivered to the load if the load resistance is equal to the
Thevenin resistance RL = RTh. We now extend that result to ac circuits.

Consider the circuit in Fig. 11.7, where an ac circuit is connected
to a load ZL and is represented by its Thevenin equivalent. The load
is usually represented by an impedance, which may model an electric
motor, an antenna, a TV, and so forth. In rectangular form, the Thevenin
impedance ZTh and the load impedance ZL are

ZTh = RTh + jXTh (11.13a)

ZL = RL + jXL (11.13b)



The current through the load is

I =
VTh

ZTh + ZL
=

VTh

(RTh + jXTh)+ (RL + jXL)
(11.14)

From Eq. (11.11), the average power delivered to the load is

P =
1

2
|I|2RL =

|VTh|2RL/2
(RTh + RL)2 + (XTh +XL)2

(11.15)

Our objective is to adjust the load parameters RL and XL so that P is
maximum. To do this we set ∂P/∂RL and ∂P/∂XL equal to zero. From
Eq. (11.15), we obtain

∂P

∂XL
= −

|VTh|2RL(XTh +XL)
[(RTh + RL)2 + (XTh +XL)2]2

(11.16a)

∂P

∂RL
=

|VTh|2[(RTh + RL)2 + (XTh +XL)2 − 2RL(RTh + RL)]
2[(RTh + RL)2 + (XTh +XL)2]2

(11.16b)

Setting ∂P/∂XL to zero gives

XL = −XTh (11.17)

and setting ∂P/∂RL to zero results in

RL =
√

R2
Th + (XTh +XL)2 (11.18)

Combining Eqs. (11.17) and (11.18) leads to the conclusion that for max-
imum average power transfer, ZL must be selected so that XL = −XTh

and RL = RTh, i.e.,

ZL = RL + jXL = RTh − jXTh = Z∗
Th (11.19)

I

ZL

(a)

VTh

ZTh

(b)

ZL
+
−

Linear 
circuit

Figure 11.7 Finding the
maximum average power transfer:
(a) circuit with a load, (b) the
Thevenin equivalent.

When ZL =Z
*
Th, we say that the load is matched

to the source.

For maximum average power transfer, the load impedance ZL must be equal to the
complex conjugate of the Thevenin impedance ZTh.

This result is known as the maximum average power transfer theorem for
the sinusoidal steady state. Setting RL = RTh and XL = −XTh in Eq.
(11.15) gives us the maximum average power as

Pmax =
|VTh|2

8RTh
(11.20)

In a situation in which the load is purely real, the condition for
maximum power transfer is obtained from Eq. (11.18) by settingXL = 0;
that is,

RL =
√

R2
Th +X2

Th = |ZTh| (11.21)

This means that for maximum average power transfer to a purely resistive
load, the load impedance (or resistance) is equal to the magnitude of the
Thevenin impedance.



E X A M P L E 1 1 . 5

Determine the load impedance ZL that maximizes the average power
drawn from the circuit of Fig. 11.8. What is the maximum average power?

4 Ω

8 Ω
+
−

−j6 Ω

j5 Ω

10   0° V ZL

Figure 11.8 For Example 11.5.

Solution:

First we obtain the Thevenin equivalent at the load terminals. To get ZTh,
consider the circuit shown in Fig. 11.9(a). We find

ZTh = j5 + 4 ‖ (8 − j6) = j5 +
4(8 − j6)

4 + 8 − j6
= 2.933 + j4.467 �

To find VTh, consider the circuit in Fig. 11.8(b). By voltage division,

VTh =
8 − j6

4 + 8 − j6
(10) = 7.454 − 10.3◦ V

The load impedance draws the maximum power from the circuit when

ZL = Z∗
Th = 2.933 − j4.467 �

According to Eq. (11.20), the maximum average power is

Pmax =
|VTh|2

8RTh
=
(7.454)2

8(2.933)
= 2.368 W

4 Ω

8 Ω

−j6 Ω

j5 Ω

10 V
ZTh

(a)

4 Ω

8 Ω

−j6 Ω

j5 Ω

VTh

(b)

+

−

+
−

Figure 11.9 Finding the Thevenin equivalent of the circuit in Fig. 11.8.

P R A C T I C E P R O B L E M 1 1 . 5

For the circuit shown in Fig. 11.10, find the load impedance ZL that ab-
sorbs the maximum average power. Calculate that maximum average
power.

5 Ω8 Ω

−j4 Ω j10 Ω

ZL2 A

Figure 11.10 For Practice Prob. 11.5.

Answer: 3.415 − j0.7317 �, 1.429 W.

E X A M P L E 1 1 . 6

In the circuit in Fig. 11.11, find the value of RL that will absorb the max-
imum average power. Calculate that power.



Solution:

We first find the Thevenin equivalent at the terminals of RL.

ZTh = (40 − j30) ‖ j20 =
j20(40 − j30)

j20 + 40 − j30
= 9.412 + j22.35 �

By voltage division,

VTh =
j20

j20 + 40 − j30
(150 30◦) = 72.76 134◦ V

The value of RL that will absorb the maximum average power is

RL = |ZTh| =
√

9.4122 + 22.352 = 24.25 �

The current through the load is

I =
VTh

ZTh + RL
=

72.76 134◦

33.39 + j22.35
= 1.8 100.2◦ A

The maximum average power absorbed by RL is

Pmax =
1

2
|I|2RL =

1

2
(1.8)2(24.25) = 39.29 W

40 Ω

+
− j20 Ω

−j30 Ω

150   30° V RL

Figure 11.11 For Example 11.6.

P R A C T I C E P R O B L E M 1 1 . 6

In Fig. 11.12, the resistor RL is adjusted until it absorbs the maximum
average power. Calculate RL and the maximum average power absorbed
by it.

80 Ω

+
− 90 Ω

j60 Ω

120   60° V RL−j30 Ω

Figure 11.12 For Practice Prob. 11.6.

Answer: 30 �, 9.883 W.

11.4 EFFECTIVE OR RMS VALUE

The idea of effective value arises from the need to measure the effec-
tiveness of a voltage or current source in delivering power to a resistive
load.

The effective value of a periodic current is the dc current that delivers the same
average power to a resistor as the periodic current.



In Fig. 11.13, the circuit in (a) is ac while that of (b) is dc. Our objective
is to find Ieff that will transfer the same power to resistorR as the sinusoid
i. The average power absorbed by the resistor in the ac circuit is

P =
1

T

∫ T

0

i2R dt =
R

T

∫ T

0

i2 dt (11.22)

while the power absorbed by the resistor in the dc circuit is

P = I 2
effR (11.23)

Equating the expressions in Eqs. (11.22) and (11.23) and solving for Ieff ,
we obtain

Ieff =

√

1

T

∫ T

0

i2 dt (11.24)

The effective value of the voltage is found in the same way as current;
that is,

Veff =

√

1

T

∫ T

0

v2 dt (11.25)

This indicates that the effective value is the (square) root of the mean (or
average) of the square of the periodic signal. Thus, the effective value is
often known as the root-mean-square value, or rms value for short; and
we write

Ieff = Irms, Veff = Vrms (11.26)

For any periodic function x(t) in general, the rms value is given by

Xrms =

√

1

T

∫ T

0

x2 dt (11.27)

R+
−

i(t)

v(t)

(a)

R

Ieff

Veff

(b)

+

−

Figure 11.13 Finding the
effective current: (a) ac circuit,
(b) dc circuit.

The effective value of a periodic signal is its root mean square (rms) value.

Equation 11.27 states that to find the rms value of x(t), we first find
its square x2 and then find the mean of that, or

1

T

∫ T

0

x2 dt

and then the square root (
√

) of that mean. The rms value of a
constant is the constant itself. For the sinusoid i(t) = Im cosωt , the
effective or rms value is

Irms =

√

1

T

∫ T

0

I 2
m cos2 ωt dt

=

√

I 2
m

T

∫ T

0

1

2
(1 + cos 2ωt) dt =

Im√
2

(11.28)



Similarly, for v(t) = Vm cosωt ,

Vrms =
Vm√

2
(11.29)

Keep in mind that Eqs. (11.28) and (11.29) are only valid for sinusoidal
signals.

The average power in Eq. (11.8) can be written in terms of the rms
values.

P =
1

2
VmIm cos(θv − θi) =

Vm√
2

Im√
2

cos(θv − θi)

= VrmsIrms cos(θv − θi)
(11.30)

Similarly, the average power absorbed by a resistor R in Eq. (11.11) can
be written as

P = I 2
rmsR =

V 2
rms

R
(11.31)

When a sinusoidal voltage or current is specified, it is often in terms
of its maximum (or peak) value or its rms value, since its average value
is zero. The power industries specify phasor magnitudes in terms of their
rms values rather than peak values. For instance, the 110 V available at
every household is the rms value of the voltage from the power company.
It is convenient in power analysis to express voltage and current in their
rms values. Also, analog voltmeters and ammeters are designed to read
directly the rms value of voltage and current, respectively.

E X A M P L E 1 1 . 7

Determine the rms value of the current waveform in Fig. 11.14. If the
current is passed through a 2-� resistor, find the average power absorbed
by the resistor.

0
t

10

−10

i(t)

2 4 6 8 10

Figure 11.14 For Example 11.7.

Solution:

The period of the waveform is T = 4. Over a period, we can write the
current waveform as

i(t) =
{

5t, 0 < t < 2
−10, 2 < t < 4

The rms value is

Irms =

√

1

T

∫ T

0

i2 dt =

√

1

4

[∫ 2

0

(5t)2 dt +
∫ 4

2

(−10)2 dt

]

=

√

√

√

√

1

4

[

25
t3

3

∣

∣

∣

∣

2

0

+ 100t

∣

∣

∣

∣

4

2

]

=

√

1

4

(

200

3
+ 200

)

= 8.165 A

The power absorbed by a 2-� resistor is

P = I 2
rmsR = (8.165)2(2) = 133.3 W



P R A C T I C E P R O B L E M 1 1 . 7

Find the rms value of the current waveform of Fig. 11.15. If the current
flows through a 9-� resistor, calculate the average power absorbed by the
resistor.

2 310 4 5 6 t

4

i(t)

Figure 11.15 For Practice Prob. 11.7.

Answer: 2.309 A, 48 W.

E X A M P L E 1 1 . 8

The waveform shown in Fig. 11.16 is a half-wave rectified sine wave.
Find the rms value and the amount of average power dissipated in a 10-�
resistor.

0 t

10

v(t)

p 2p 3p

Figure 11.16 For Example 11.8.

Solution:

The period of the voltage waveform is T = 2π, and

v(t) =
{

10 sin t, 0 < t < π
0, π < t < 2π

The rms value is obtained as

V 2
rms =

1

T

∫ T

0

v2(t) dt =
1

2π

[∫ π

0

(10 sin t)2 dt +
∫ 2π

π

02 dt

]

But sin2 t = 1
2
(1 − cos 2t). Hence

V 2
rms =

1

2π

∫ π

0

100

2
(1 − cos 2t) dt =

50

2π

(

t −
sin 2t

2

)∣

∣

∣

∣

π

0

=
50

2π

(

π −
1

2
sin 2π − 0

)

= 25, Vrms = 5 V

The average power absorbed is

P =
V 2

rms

R
=

52

10
= 2.5 W

P R A C T I C E P R O B L E M 1 1 . 8

Find the rms value of the full-wave rectified sine wave in Fig. 11.17. Cal-
culate the average power dissipated in a 6-� resistor.

0 t

8

v(t)

p 2p 3p

Figure 11.17 For Practice Prob. 11.8.

Answer: 5.657 V, 5.334 W.



11.5 APPARENT POWER AND POWER FACTOR

In Section 11.2 we see that if the voltage and current at the terminals of
a circuit are

v(t) = Vm cos(ωt + θv) and i(t) = Im cos(ωt + θi) (11.32)

or, in phasor form, V = Vm θv and I = Im θi , the average power is

P =
1

2
VmIm cos(θv − θi) (11.33)

In Section 11.4, we saw that

P = VrmsIrms cos(θv − θi) = S cos(θv − θi) (11.34)

We have added a new term to the equation:

S = VrmsIrms (11.35)

The average power is a product of two terms. The product VrmsIrms is
known as the apparent power S. The factor cos(θv − θi) is called the
power factor (pf).

The apparent power (in VA) is the product of the rms values of voltage and current.

The apparent power is so called because it seems apparent that the power
should be the voltage-current product, by analogy with dc resistive cir-
cuits. It is measured in volt-amperes or VA to distinguish it from the
average or real power, which is measured in watts. The power factor is
dimensionless, since it is the ratio of the average power to the apparent
power,

pf =
P

S
= cos(θv − θi) (11.36)

The angle θv − θi is called the power factor angle, since it is the
angle whose cosine is the power factor. The power factor angle is equal
to the angle of the load impedance if V is the voltage across the load and
I is the current through it. This is evident from the fact that

Z =
V

I
=
Vm θv

Im θi

=
Vm

Im
θv − θi (11.37)

Alternatively, since

Vrms =
V
√

2
= Vrms θv (11.38a)

and

Irms =
I

√
2

= Irms θi (11.38b)

the impedance is

Z =
V

I
=

Vrms

Irms
=
Vrms

Irms
θv − θi (11.39)



The power factor is the cosine of the phase difference between voltage and current.
It is also the cosine of the angle of the load impedance.

From Eq. (11.36), the power factor may also be
regarded as the ratio of the real power dissipated
in the load to the apparent power of the load.

From Eq. (11.36), the power factor may be seen as that factor by which the
apparent power must be multiplied to obtain the real or average power.
The value of pf ranges between zero and unity. For a purely resistive
load, the voltage and current are in phase, so that θv − θi = 0 and pf
= 1. This implies that the apparent power is equal to the average power.
For a purely reactive load, θv − θi = ±90◦ and pf = 0. In this case the
average power is zero. In between these two extreme cases, pf is said
to be leading or lagging. Leading power factor means that current leads
voltage, which implies a capacitive load. Lagging power factor means
that current lags voltage, implying an inductive load. Power factor affects
the electric bills consumers pay the electric utility companies, as we will
see in Section 11.9.2.

E X A M P L E 1 1 . 9

A series-connected load draws a current i(t) = 4 cos(100πt + 10◦) A
when the applied voltage is v(t) = 120 cos(100πt − 20◦) V. Find the
apparent power and the power factor of the load. Determine the element
values that form the series-connected load.

Solution:

The apparent power is

S = VrmsIrms =
120
√

2

4
√

2
= 240 VA

The power factor is

pf = cos(θv − θi) = cos(−20◦ − 10◦) = 0.866 (leading)

The pf is leading because the current leads the voltage. The pf may also
be obtained from the load impedance.

Z =
V

I
=

120 − 20◦

4 10◦
= 30 − 30◦ = 25.98 − j15 �

pf = cos(−30◦) = 0.866 (leading)

The load impedance Z can be modeled by a 25.98-� resistor in series
with a capacitor with

XC = −15 = −
1

ωC
or

C =
1

15ω
=

1

15 × 100π
= 212.2 µF

P R A C T I C E P R O B L E M 1 1 . 9

Obtain the power factor and the apparent power of a load whose imped-
ance is Z = 60 + j40 � when the applied voltage is v(t) =
150 cos(377t + 10◦) V.

Answer: 0.832 lagging, 156 VA.



E X A M P L E 1 1 . 1 0

Determine the power factor of the entire circuit of Fig. 11.18 as seen by
the source. Calculate the average power delivered by the source.

6 Ω

4 Ω+
−30   0° V rms −j2 Ω

Figure 11.18 For Example 11.10.

Solution:

The total impedance is

Z = 6 + 4 ‖ (−j2) = 6 +
−j2 × 4

4 − j2
= 6.8 − j1.6 = 7 − 13.24 �

The power factor is

pf = cos(−13.24) = 0.9734 (leading)

since the impedance is capacitive. The rms value of the current is

Irms =
Vrms

Z
=

30 0◦

7 − 13.24◦
= 4.286 13.24◦ A

The average power supplied by the source is

P = VrmsIrms pf = (30)(4.286)0.9734 = 125 W

or

P = I 2
rmsR = (4.286)2(6.8) = 125 W

where R is the resistive part of Z.

P R A C T I C E P R O B L E M 1 1 . 1 0

Calculate the power factor of the entire circuit of Fig. 11.19 as seen by
the source. What is the average power supplied by the source?

10 Ω

+
−

8 Ω

j4 Ω −j6 Ω40   0° V rms

Figure 11.19 For Practice Prob. 11.10.

Answer: 0.936 lagging, 118 W.

11.6 COMPLEX POWER

Considerable effort has been expended over the years to express power
relations as simply as possible. Power engineers have coined the term
complex power, which they use to find the total effect of parallel loads.
Complex power is important in power analysis because it contains all the
information pertaining to the power absorbed by a given load.

V

I

+

−

Load

Z

Figure 11.20 The
voltage and current
phasors associated
with a load.

Consider the ac load in Fig. 11.20. Given the phasor form V =
Vm θv and I = Im θi of voltage v(t) and current i(t), the complex

power S absorbed by the ac load is the product of the voltage and the
complex conjugate of the current, or

S =
1

2
VI∗

(11.40)

assuming the passive sign convention (see Fig. 11.20). In terms of the
rms values,

S = VrmsI
∗
rms (11.41)



where

Vrms =
V
√

2
= Vrms θv (11.42)

and

Irms =
I

√
2

= Irms θi (11.43)

Thus we may write Eq. (11.41) as

S = VrmsIrms θv − θi
= VrmsIrms cos(θv − θi)+ jVrmsIrms sin(θv − θi)

(11.44)

This equation can also be obtained from Eq. (11.9). We notice from Eq.
(11.44) that the magnitude of the complex power is the apparent power;
hence, the complex power is measured in volt-amperes (VA). Also, we
notice that the angle of the complex power is the power factor angle.

When working with the rms values of currents
or voltages, we may drop the subscript rms if no
confusion will be caused by doing so.

The complex power may be expressed in terms of the load impedance
Z. From Eq. (11.37), the load impedance Z may be written as

Z =
V

I
=

Vrms

Irms
=
Vrms

Irms
θv − θi (11.45)

Thus, Vrms = ZIrms. Substituting this into Eq. (11.41) gives

S = I 2
rmsZ =

V 2
rms

Z∗ (11.46)

Since Z = R + jX, Eq. (11.46) becomes

S = I 2
rms(R + jX) = P + jQ (11.47)

where P and Q are the real and imaginary parts of the complex power;
that is,

P = Re(S) = I 2
rmsR (11.48)

Q = Im(S) = I 2
rmsX (11.49)

P is the average or real power and it depends on the load’s resistance
R. Q depends on the load’s reactance X and is called the reactive (or
quadrature) power.

Comparing Eq. (11.44) with Eq. (11.47), we notice that

P = VrmsIrms cos(θv − θi), Q = VrmsIrms sin(θv − θi) (11.50)

The real power P is the average power in watts delivered to a load; it
is the only useful power. It is the actual power dissipated by the load.
The reactive power Q is a measure of the energy exchange between the
source and the reactive part of the load. The unit ofQ is the volt-ampere

reactive (VAR) to distinguish it from the real power, whose unit is the watt.
We know from Chapter 6 that energy storage elements neither dissipate
nor supply power, but exchange power back and forth with the rest of
the network. In the same way, the reactive power is being transferred
back and forth between the load and the source. It represents a lossless
interchange between the load and the source. Notice that:



1. Q = 0 for resistive loads (unity pf).

2. Q < 0 for capacitive loads (leading pf).

3. Q > 0 for inductive loads (lagging pf).

Thus,

Complex power (in VA) is the product of the rms voltage phasor and the
complex conjugate of the rms current phasor. As a complex quantity, its

real part is real power P and its imaginary part is reactive power Q.

Introducing the complex power enables us to obtain the real and reactive
powers directly from voltage and current phasors.

Complex Power = S = P + jQ =
1

2
VI∗

= VrmsIrms θv − θi
Apparent Power = S = |S| = VrmsIrms =

√

P 2 +Q2

Real Power = P = Re(S) = S cos(θv − θi)
Reactive Power = Q = Im(S) = S sin(θv − θi)

Power Factor =
P

S
= cos(θv − θi)

(11.51)

This shows how the complex power contains all the relevant power in-
formation in a given load. S contains all power information of a load. The

real part of S is the real power P; its imaginary
part is the reactive power Q; its magnitude is the
apparent power S; and the cosine of its phase
angle is the power factor pf.

It is a standard practice to represent S, P , and Q in the form of
a triangle, known as the power triangle, shown in Fig. 11.21(a). This
is similar to the impedance triangle showing the relationship between
Z, R, and X, illustrated in Fig. 11.21(b). The power triangle has four
items—the apparent/complex power, real power, reactive power, and the
power factor angle. Given two of these items, the other two can easily
be obtained from the triangle. As shown in Fig. 11.22, when S lies in the
first quadrant, we have an inductive load and a lagging pf. When S lies
in the fourth quadrant, the load is capacitive and the pf is leading. It is
also possible for the complex power to lie in the second or third quadrant.
This requires that the load impedance have a negative resistance, which
is possible with active circuits.

P Re

Im

S

S

+Q (lagging pf)

−Q (leading pf)

u
v
 − ui

u
v
 − ui

Figure 11.22 Power triangle.

S Q

P

u

(a)

|Z | X

R

u

(b)

Figure 11.21 (a) Power triangle,
(b) impedance triangle.
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The voltage across a load is v(t) = 60 cos(ωt − 10◦) V and the cur-
rent through the element in the direction of the voltage drop is i(t) =
1.5 cos(ωt + 50◦) A. Find: (a) the complex and apparent powers, (b) the
real and reactive powers, and (c) the power factor and the load impedance.

Solution:

(a) For the rms values of the voltage and current, we write

Vrms =
60
√

2
− 10◦, Irms =

1.5
√

2
+ 50◦

The complex power is

S = VrmsI
∗
rms =

(

60
√

2
− 10◦

) (

1.5
√

2
− 50◦

)

= 45 − 60◦ VA

The apparent power is

S = |S| = 45 VA

(b) We can express the complex power in rectangular form as

S = 45 − 60◦ = 45[cos(−60◦)+ j sin(−60◦)] = 22.5 − j38.97

Since S = P + jQ, the real power is

P = 22.5 W

while the reactive power is

Q = −38.97 VAR

(c) The power factor is

pf = cos(−60◦) = 0.5 (leading)

It is leading, because the reactive power is negative. The load impedance
is

Z =
V

I
=

60 − 10◦

1.5 + 50◦
= 40 − 60◦ �

which is a capacitive impedance.

P R A C T I C E P R O B L E M 1 1 . 1 1

For a load, Vrms = 110 85◦ V, Irms = 0.4 15◦ A. Determine: (a) the
complex and apparent powers, (b) the real and reactive powers, and (c)
the power factor and the load impedance.

Answer: (a) 44 70◦ VA, 44 VA, (b) 15.05 W, 41.35 VAR,
(c) 0.342 lagging, 94.06 + j258.4 �.

E X A M P L E 1 1 . 1 2

A load Z draws 12 kVA at a power factor of 0.856 lagging from a 120-V
rms sinusoidal source. Calculate: (a) the average and reactive powers
delivered to the load, (b) the peak current, and (c) the load impedance.



Solution:

(a) Given that pf = cos θ = 0.856, we obtain the power angle as θ =
cos−1 0.856 = 31.13◦. If the apparent power is S = 12,000 VA, then the
average or real power is

P = S cos θ = 12,000 × 0.856 = 10.272 kW

while the reactive power is

Q = S sin θ = 12,000 × 0.517 = 6.204 kVA

(b) Since the pf is lagging, the complex power is

S = P + jQ = 10.272 + j6.204 kVA

From S = VrmsI
∗
rms, we obtain

I∗
rms =

S

Vrms
=

10,272 + j6204

120 0◦
= 85.6 + j51.7 A = 100 31.13◦ A

Thus Irms = 100 − 31.13◦ and the peak current is

Im =
√

2Irms =
√

2(100) = 141.4 A

(c) The load impedance

Z =
Vrms

Irms
=

120 0◦

100 − 31.13◦
= 1.2 31.13◦ �

which is an inductive impedance.

P R A C T I C E P R O B L E M 1 1 . 1 2

A sinusoidal source supplies 10 kVA reactive power to load Z =
250 − 75◦ �. Determine: (a) the power factor, (b) the apparent power
delivered to the load, and (c) the peak voltage.

Answer: (a) 0.2588 leading, (b) −10.35 kVAR, (c) 2.275 kV.

†11.7 CONSERVATION OF AC POWER

In fact, we already saw in Examples 11.3 and 11.4
that average power is conserved in ac circuits.

The principle of conservation of power applies to ac circuits as well as to
dc circuits (see Section 1.5).

To see this, consider the circuit in Fig. 11.23(a), where two load
impedances Z1 and Z2 are connected in parallel across an ac source V.
KCL gives

I = I1 + I2 (11.52)

The complex power supplied by the source is

S =
1

2
VI∗ =

1

2
V(I∗

1 + I∗
2) =

1

2
VI∗

1 +
1

2
VI∗

2 = S1 + S2 (11.53)

where S1 and S2 denote the complex powers delivered to loads Z1 and
Z2, respectively.



(a) (b)

I

V Z2Z1

Z2Z1

+
−

I1 I2

I

V +
−

+ −V1
+ −V2

Figure 11.23 An ac voltage source supplied loads connected in:
(a) parallel, (b) series.

If the loads are connected in series with the voltage source, as shown
in Fig. 11.23(b), KVL yields

V = V1 + V2 (11.54)

The complex power supplied by the source is

S =
1

2
VI∗ =

1

2
(V1 + V2)I

∗ =
1

2
V1I∗ +

1

2
V2I∗ = S1 + S2 (11.55)

where S1 and S2 denote the complex powers delivered to loads Z1 and
Z2, respectively.

We conclude from Eqs. (11.53) and (11.55) that whether the loads
are connected in series or in parallel (or in general), the total power
supplied by the source equals the total power delivered to the load. Thus,
in general, for a source connected to N loads,

S = S1 + S1 + · · · + SN (11.56)

This means that the total complex power in a network is the sum of the
complex powers of the individual components. (This is also true of real
power and reactive power, but not true of apparent power.) This expresses
the principle of conservation of ac power:In fact, all forms of ac power are conserved: in-

stantaneous, real, reactive, and complex.

The complex, real, and reactive powers of the sources equal the respective sums
of the complex, real, and reactive powers of the individual loads.

From this we imply that the real (or reactive) power flow from sources in
a network equals the real (or reactive) power flow into the other elements
in the network.

E X A M P L E 1 1 . 1 3

Figure 11.24 shows a load being fed by a voltage source through a trans-
mission line. The impedance of the line is represented by the (4 + j2) �
impedance and a return path. Find the real power and reactive power
absorbed by: (a) the source, (b) the line, and (c) the load.



4 Ω

+
−

j2 Ω

220   0° V rms

−j10 Ω

15 Ω

I

Source Line Load

Figure 11.24 For Example 11.13.

Solution:

The total impedance is

Z = (4 + j2)+ (15 − j10) = 19 − j8 = 20.62 − 22.83◦ �

The current through the circuit is

I =
Vs

Z
=

220 0◦

20.62 − 22.83◦
= 10.67 22.83◦ A rms

(a) For the source, the complex power is

Ss = VsI
∗ = (220 0◦)(10.67 − 22.83◦)

= 2347.4 − 22.83◦ = (2163.5 − j910.8) VA

From this, we obtain the real power as 2163.5 W and the reactive power
as 910.8 VAR (leading).
(b) For the line, the voltage is

Vline = (4 + j2)I = (4.472 26.57◦)(10.67 22.83◦)

= 47.72 49.4◦ V rms

The complex power absorbed by the line is

Sline = VlineI∗ = (47.72 49.4◦)(10.67 − 22.83◦)

= 509.2 26.57◦ = 455.4 + j227.7 VA

or

Sline = |I|2Zline = (10.67)2(4 + j2) = 455.4 + j227.7 VA

That is, the real power is 455.4 W and the reactive power is 227.76 VAR
(lagging).
(c) For the load, the voltage is

VL = (15 − j10)I = (18.03 − 33.7◦)(10.67 22.83◦)

= 192.38 − 10.87◦ V rms

The complex power absorbed by the load is

SL = VLI∗ = (192.38 − 10.87◦)(10.67 − 22.83◦)

= 2053 − 33.7◦ = (1708 − j1139) VA



The real power is 1708 W and the reactive power is 1139 VAR (leading).
Note that Ss = Sline + SL, as expected. We have used the rms values of
voltages and currents.

P R A C T I C E P R O B L E M 1 1 . 1 3

In the circuit in Fig. 11.25, the 60-� resistor absorbs an average power
of 240 W. Find V and the complex power of each branch of the circuit.
What is the overall complex power of the circuit?

20 Ω

30 Ω
+
−

−j10 Ω

j20 Ω

V 

60 Ω

Figure 11.25 For Practice Prob. 11.13.

Answer: 240.67 21.45◦ V (rms); the 20-� resistor: 656 VA; the
(30 − j10) � impedance: 480 − j160 VA; the (60 + j20) � impedance:
240 + j80 VA; overall: 1376 − j80 VA.

E X A M P L E 1 1 . 1 4

In the circuit of Fig. 11.26, Z1 = 60 − 30◦ � and Z2 = 40 45◦ �.
Calculate the total: (a) apparent power, (b) real power, (c) reactive power,
and (d) pf.

It

Z2Z1
+
−

I1 I2

120   10° V rms

Figure 11.26 For Example 11.14.

Solution:

The current through Z1 is

I1 =
V

Z1
=

120 10◦

60 − 30◦
= 2 40◦ A rms

while the current through Z2 is

I2 =
V

Z2
=

120 10◦

40 45◦
= 3 − 35◦ A rms

The complex powers absorbed by the impedances are

S1 =
V 2

rms

Z∗
1

=
(120)2

60 30◦
= 240 − 30◦ = 207.85 − j120 VA

S2 =
V 2

rms

Z∗
2

=
(120)2

40 − 45◦
= 360 45◦ = 254.6 + j254.6 VA

The total complex power is

St = S1 + S2 = 462.4 + j134.6 VA

(a) The total apparent power is

|St | =
√

462.42 + 134.62 = 481.6 VA.
(b) The total real power is
Pt = Re(St ) = 462.4 W or Pt = P1 + P2.

(c) The total reactive power is
Qt = Im(St ) = 134.6 VAR orQt = Q1 +Q2.

(d) The pf = Pt/|St | = 462.4/481.6 = 0.96 (lagging).



We may cross check the result by finding the complex power Ss supplied
by the source.

It = I1 + I2 = (1.532 + j1.286)+ (2.457 − j1.721)

= 4 − j0.435 = 4.024 − 6.21◦ A rms

Ss = VI∗
t = (120 10◦)(4.024 6.21◦)

= 482.88 16.21◦ = 463 + j135 VA

which is the same as before.

P R A C T I C E P R O B L E M 1 1 . 1 4

Two loads connected in parallel are respectively 2 kW at a pf of 0.75 lead-
ing and 4 kW at a pf of 0.95 lagging. Calculate the pf of the two loads.
Find the complex power supplied by the source.

Answer: 0.9972 (leading), 6 − j0.4495 kVA.

11.8 POWER FACTOR CORRECTION

Most domestic loads (such as washing machines, air conditioners, and
refrigerators) and industrial loads (such as induction motors) are inductive
and operate at a low lagging power factor. Although the inductive nature
of the load cannot be changed, we can increase its power factor.

The process of increasing the power factor without altering the voltage or current
to the original load is known as power factor correction.

Alternatively, power factor correction may be
viewed as the addition of a reactive element (usu-
ally a capacitor) in parallel with the load in order
to make the power factor closer to unity.

An inductive load is modeled as a series combi-
nation of an inductor and a resistor.

Since most loads are inductive, as shown in Fig. 11.27(a), a load’s
power factor is improved or corrected by deliberately installing a capacitor
in parallel with the load, as shown in Fig. 11.27(b). The effect of adding
the capacitor can be illustrated using either the power triangle or the
phasor diagram of the currents involved. Figure 11.28 shows the latter,
where it is assumed that the circuit in Fig. 11.27(a) has a power factor of
cos θ1, while the one in Fig. 11.27(b) has a power factor of cos θ2. It is

V

+

−

(a)

IL

Inductive

load
V

+

−

(b)

IL IC

Inductive

load
C

I

Figure 11.27 Power factor correction: (a) original inductive load,
(b) inductive load with improved power factor.

V

IC

IC

IL

I

u1

u2

Figure 11.28 Phasor diagram showing the
effect of adding a capacitor in parallel with
the inductive load.



evident from Fig. 11.28 that adding the capacitor has caused the phase
angle between the supplied voltage and current to reduce from θ1 to θ2,
thereby increasing the power factor. We also notice from the magnitudes
of the vectors in Fig. 11.28 that with the same supplied voltage, the circuit
in Fig. 11.27(a) draws larger current IL than the current I drawn by the
circuit in Fig. 11.27(b). Power companies charge more for larger currents,
because they result in increased power losses (by a squared factor, since
P = I 2

LR). Therefore, it is beneficial to both the power company and the
consumer that every effort is made to minimize current level or keep the
power factor as close to unity as possible. By choosing a suitable size for
the capacitor, the current can be made to be completely in phase with the
voltage, implying unity power factor.

S1

S2

QC

Q2

Q1

u1
u2

P

Figure 11.29 Power triangle illustrating power
factor correction.

We can look at the power factor correction from another perspective.
Consider the power triangle in Fig. 11.29. If the original inductive load
has apparent power S1, then

P = S1 cos θ1, Q1 = S1 sin θ1 = P tan θ1 (11.57)

If we desire to increase the power factor from cos θ1 to cos θ2 without
altering the real power (i.e., P = S2 cos θ2), then the new reactive power
is

Q2 = P tan θ2 (11.58)

The reduction in the reactive power is caused by the shunt capacitor, that
is,

QC = Q1 −Q2 = P(tan θ1 − tan θ2) (11.59)

But from Eq. (11.49), QC = V 2
rms/XC = ωCV 2

rms. The value of the
required shunt capacitance C is determined as

C =
QC

ωV 2
rms

=
P(tan θ1 − tan θ2)

ωV 2
rms

(11.60)

Note that the real power P dissipated by the load is not affected by the
power factor correction because the average power due to the capacitance
is zero.

Although the most common situation in practice is that of an in-
ductive load, it is also possible that the load is capacitive, that is, the load
is operating at a leading power factor. In this case, an inductor should
be connected across the load for power factor correction. The required
shunt inductance L can be calculated from

QL =
V 2

rms

XL
=
V 2

rms

ωL
	⇒ L =

V 2
rms

ωQL
(11.61)

where QL = Q1 −Q2, the difference between the new and old reactive
powers.

E X A M P L E 1 1 . 1 5

When connected to a 120-V (rms), 60-Hz power line, a load absorbs 4 kW
at a lagging power factor of 0.8. Find the value of capacitance necessary
to raise the pf to 0.95.



Solution:

If the pf = 0.8, then

cos θ1 = 0.8 	⇒ θ1 = 36.87◦

where θ1 is the phase difference between voltage and current. We obtain
the apparent power from the real power and the pf as

S1 =
P

cos θ1
=

4000

0.8
= 5000 VA

The reactive power is

Q1 = S1 sin θ = 5000 sin 36.87 = 3000 VAR

When the pf is raised to 0.95,

cos θ2 = 0.95 	⇒ θ2 = 18.19◦

The real power P has not changed. But the apparent power has changed;
its new value is

S2 =
P

cos θ2
=

4000

0.95
= 4210.5 VA

The new reactive power is

Q2 = S2 sin θ2 = 1314.4 VAR

The difference between the new and old reactive powers is due to the
parallel addition of the capacitor to the load. The reactive power due to
the capacitor is

QC = Q1 −Q2 = 3000 − 1314.4 = 1685.6 VAR

and

C =
QC

ωV 2
rms

=
1685.6

2π × 60 × 1202
= 310.5 µF
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Find the value of parallel capacitance needed to correct a load of
140 kVAR at 0.85 lagging pf to unity pf. Assume that the load is supplied
by a 110-V (rms), 60-Hz line.

Answer: 30.69 mF.

Reactive power is measured by an instrument
called the varmeter. The varmeter is often con-
nected to the load in the same way as the
wattmeter.

†11.9 APPLICATIONS

In this section, we consider two important application areas: how power
is measured and how electric utility companies determine the cost of
electricity consumption.

1 1 . 9 . 1 P o w e r M e a s u r e m e n t
The average power absorbed by a load is measured by an instrument
called the wattmeter.



The wattmeter is the instrument for measuring the average power.

Figure 11.30 shows a wattmeter that consists essentially of two
coils: the current coil and the voltage coil. A current coil with very
low impedance (ideally zero) is connected in series with the load (Fig.
11.31) and responds to the load current. The voltage coil with very high
impedance (ideally infinite) is connected in parallel with the load as shown
in Fig. 11.31 and responds to the load voltage. The current coil acts like
a short circuit because of its low impedance; the voltage coil behaves like
an open circuit because of its high impedance. As a result, the presence
of the wattmeter does not disturb the circuit or have an effect on the power
measurement.

Some wattmeters do not have coils; the watt-
meter considered here is the electromagnetic
type.

i

+

−
v

R

±

±

Figure 11.30 A wattmeter.

ii

+

−
v

Current coil

Voltage coil

±

±

ZL

Figure 11.31 The wattmeter connected to the load.

When the two coils are energized, the mechanical inertia of the
moving system produces a deflection angle that is proportional to the
average value of the product v(t)i(t). If the current and voltage of the
load are v(t) = Vm cos(ωt + θv) and i(t) = Im cos(ωt + θi), their corre-
sponding rms phasors are

Vrms =
Vm√

2
θv and Irms =

Im√
2
θi (11.62)

and the wattmeter measures the average power given by

P = |Vrms||Irms| cos(θv − θi) =
1

2
VmIm cos(θv − θi) (11.63)

As shown in Fig. 11.31, each wattmeter coil has two terminals
with one marked ±. To ensure upscale deflection, the ± terminal of the
current coil is toward the source, while the ± terminal of the voltage coil
is connected to the same line as the current coil. Reversing both coil
connections still results in upscale deflection. However, reversing one
coil and not the other results in downscale deflection and no wattmeter
reading.
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Find the wattmeter reading of the circuit in Fig. 11.32.

±

±

+
−

12 Ω

150   0° V rms

j10 Ω

−j6 Ω

8 Ω

Figure 11.32 For Example 11.16.

Solution:

In Fig. 11.32, the wattmeter reads the average power absorbed by the
(8 − j6) � impedance because the current coil is in series with the
impedance while the voltage coil is in parallel with it. The current through
the circuit is

I =
150 0◦

(12 + j10)+ (8 − j6)
=

150

20 + j4
A rms

The voltage across the (8 − j6) � impedance is

V = I(8 − j6) =
150(8 − j6)

20 + j4
V rms

The complex power is

S = VI∗ =
150(8 − j6)

20 + j4
·

150

20 − j4
=

1502(8 − j6)

202 + 42

= 423.7 − j324.6 VA

The wattmeter reads

P = Re(S) = 432.7 W
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For the circuit in Fig. 11.33, find the wattmeter reading.

±

±

+
−

4 Ω

120   30° V rms j9 Ω

−j2 Ω

12 Ω

Figure 11.33 For Practice Prob. 11.16.

Answer: 1437 W.



1 1 . 9 . 2 E l e c t r i c i t y C o n s u m p t i o n C o s t
In Section 1.7, we considered a simplified model of the way the cost of
electricity consumption is determined. But the concept of power factor
was not included in the calculations. Now we consider the importance of
power factor in electricity consumption cost.

Loads with low power factors are costly to serve because they re-
quire large currents, as explained in Section 11.8. The ideal situation
would be to draw minimum current from a supply so that S = P ,Q = 0,
and pf = 1. A load with nonzeroQmeans that energy flows forth and back
between the load and the source, giving rise to additional power losses.
In view of this, power companies often encourage their customers to have
power factors as close to unity as possible and penalize some customers
who do not improve their load power factors.

Utility companies divide their customers into categories: as resi-
dential (domestic), commercial, and industrial, or as small power, medium
power, and large power. They have different rate structures for each
category. The amount of energy consumed in units of kilowatt-hours
(kWh) is measured using a kilowatt-hour meter installed at the customer’s
premises.

Although utility companies use different methods for charging cus-
tomers, the tariff or charge to a consumer is often two-part. The first part
is fixed and corresponds to the cost of generation, transmission, and dis-
tribution of electricity to meet the load requirements of the consumers.
This part of the tariff is generally expressed as a certain price per kW of
maximum demand. Or it may instead be based on kVA of maximum de-
mand, to account for the power factor (pf) of the consumer. A pf penalty
charge may be imposed on the consumer whereby a certain percentage of
kW or kVA maximum demand is charged for every 0.01 fall in pf below
a prescribed value, say 0.85 or 0.9. On the other hand, a pf credit may be
given for every 0.01 that the pf exceeds the prescribed value.

The second part is proportional to the energy consumed in kWh; it
may be in graded form, for example, the first 100 kWh at 16 cents/kWh,
the next 200 kWh at 10 cents/kWh and so forth. Thus, the bill is deter-
mined based on the following equation:

Total Cost = Fixed Cost + Cost of Energy (11.64)

E X A M P L E 1 1 . 1 7

A manufacturing industry consumes 200 MWh in one month. If the
maximum demand is 1600 kW, calculate the electricity bill based on the
following two-part rate:

Demand charge: $5.00 per month per kW of billing demand.

Energy charge: 8 cents per kWh for the first 50,000 kWh, 5 cents
per kWh for the remaining energy.

Solution:

The demand charge is

$5.00 × 1600 = $8000 (11.17.1)

The energy charge for the first 50,000 kWh is



$0.08 × 50,000 = $4000 (11.17.2)

The remaining energy is 200,000 kWh − 50,000 kWh = 150,000 kWh,
and the corresponding energy charge is

$0.05 × 150,000 = $7500 (11.17.3)

Adding Eqs. (11.17.1) to (11.17.3) gives

Total bill for the month = $8000 + $4000 + $7500 = $19,500

It may appear that the cost of electricity is too high. But this is often a
small fraction of the overall cost of production of the goods manufactured
or the selling price of the finished product.
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The monthly reading of a paper mill’s meter is as follows:

Maximum demand: 32,000 kW

Energy consumed: 500 MWh

Using the two-part rate in Example 11.17, calculate the monthly bill for
the paper mill.

Answer: $186,500.

E X A M P L E 1 1 . 1 8

A 300-kW load supplied at 13 kV (rms) operates 520 hours a month at
80 percent power factor. Calculate the average cost per month based on
this simplified tariff:

Energy charge: 6 cents per kWh

Power-factor penalty: 0.1 percent of energy charge for every 0.01
that pf falls below 0.85.

Power-factor credit: 0.1 percent of energy charge for every 0.01
that pf exceeds 0.85.

Solution:

The energy consumed is

W = 300 kW × 520 h = 156,000 kWh

The operating power factor pf = 80% = 0.8 is 5 × 0.01 below the
prescribed power factor of 0.85. Since there is 0.1 percent energy charge
for every 0.01, there is a power-factor penalty charge of 0.5 percent. This
amounts to an energy charge of

%W = 156,000 ×
5 × 0.1

100
= 780 kWh

The total energy is



Wt = W +%W = 156,000 + 780 = 156,780 kWh

The cost per month is given by

Cost = 6 cents ×Wt = $0.06 × 156,780 = $9406.80

P R A C T I C E P R O B L E M 1 1 . 1 8

An 800-kW induction furnace at 0.88 power factor operates 20 hours per
day for 26 days in a month. Determine the electricity bill per month based
on the tariff in Example 11.16.

Answer: $24,885.12.

11.10 SUMMARY

1. The instantaneous power absorbed by an element is the product of
the element’s terminal voltage and the current through the element:
p = vi.

2. Average or real power P (in watts) is the average of instantaneous
power p:

P =
1

T

∫ T

0

p dt

If v(t) = Vm cos(ωt + θv) and i(t) = Im cos(ωt + θi), then Vrms =
Vm/

√
2, Irms = Im/

√
2, and

P =
1

2
VmIm cos(θv − θi) = VrmsIrms cos(θv − θi)

Inductors and capacitors absorb no average power, while the aver-
age power absorbed by a resistor is 1/2 I 2

mR = I 2
rmsR.

3. Maximum average power is transferred to a load when the load
impedance is the complex conjugate of the Thevenin impedance as
seen from the load terminals, ZL = Z∗

Th.

4. The effective value of a periodic signal x(t) is its root-mean-square
(rms) value.

Xeff = Xrms =

√

1

T

∫ T

0

x2 dt

For a sinusoid, the effective or rms value is its amplitude divided by√
2.

5. The power factor is the cosine of the phase difference between volt-
age and current:

pf = cos(θv − θi)

It is also the cosine of the angle of the load impedance or the ratio
of real power to apparent power. The pf is lagging if the current
lags voltage (inductive load) and is leading when the current leads
voltage (capacitive load).



6. Apparent power S (in VA) is the product of the rms values of volt-
age and current:

S = VrmsIrms

It is also given by S = |S| =
√

P 2 +Q2, whereQ is reactive
power.

7. Reactive power (in VAR) is:

Q =
1

2
VmIm sin(θv − θi) = VrmsIrms sin(θv − θi)

8. Complex power S (in VA) is the product of the rms voltage phasor
and the complex conjugate of the rms current phasor. It is also the
complex sum of real power P and reactive powerQ.

S = VrmsI
∗
rms = VrmsIrms θv − θi = P + jQ

Also,

S = I 2
rmsZ =

V 2
rms

Z∗

9. The total complex power in a network is the sum of the complex
powers of the individual components. Total real power and reactive
power are also, respectively, the sums of the individual real powers
and the reactive powers, but the total apparent power is not calcu-
lated by the process.

10. Power factor correction is necessary for economic reasons; it is the
process of improving the power factor of a load by reducing the
overall reactive power.

11. The wattmeter is the instrument for measuring the average power.
Energy consumed is measured with a kilowatt-hour meter.

R E V I E W Q U E S T I O N S

11.1 The average power absorbed by an inductor is zero.

(a) True (b) False

11.2 The Thevenin impedance of a network seen from the
load terminals is 80 + j55 �. For maximum power
transfer, the load impedance must be:

(a) −80 + j55 � (b) −80 − j55 �

(c) 80 − j55 � (d) 80 + j55 �

11.3 The amplitude of the voltage available in the 60-Hz,
120-V power outlet in your home is:

(a) 110 V (b) 120 V

(c) 170 V (d) 210 V

11.4 If the load impedance is 20 − j20, the power factor
is

(a) − 45◦ (b) 0 (c) 1

(d) 0.7071 (e) none of these

11.5 A quantity that contains all the power information in
a given load is the

(a) power factor (b) apparent power

(c) average power (d) reactive power

(e) complex power

11.6 Reactive power is measured in:

(a) watts (b) VA

(c) VAR (d) none of these

11.7 In the power triangle shown in Fig. 11.34(a), the
reactive power is:

(a) 1000 VAR leading (b) 1000 VAR lagging

(c) 866 VAR leading (d) 866 VAR lagging
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Problem #1 

A) If v(t) = 160 cos (50t) V and i(t) = −20 sin (50t − 30◦) A, calculate the instantaneous 

power and the average power. 

 

B) At t = 2 s, find the instantaneous power on each of the elements in the circuit of Fig. 1. 

 
Fig. 1, Problem 1-B 

 

C) Find the average power on each of the elements in the circuit of Fig. 2 and 3. 

  
                             Fig. 2, Problem 1-C                                 Fig. 3, Problem 1-C 

 

D) Compute the average power absorbed by the 4-� resistor in the circuit of Fig. 4. 

 
Fig. 4, Problem 1-D 

 



Problem #2 

A) For each of the circuits in Fig. 5, determine the value of load Z for maximum power 

transfer and the maximum average power transferred. 

  
Fig. 5, Problem 2-A 

B) For the circuit in Fig. 6, find: 

(a) the value of the load impedance that absorbs the maximum average power 

(b) the value of the maximum average power absorbed 

 
Fig. 6, Problem 2-B 

 

C) Calculate the value of ZL in the circuit of Fig. 7 in order for ZL to receive maximum

average power. What is the maximum average power received by ZL. 

 
Fig. 7, Problem 2-C 

D) The variable resistor R in the circuit of Fig. 8 is adjusted until it absorbs the maximum

average power. Find R and the maximum average power absorbed. 



 
Fig. 8, Problem 2-D 

 

Problem #3 

A) A relay coil is connected to a 210-V, 50-Hz supply. If it has a resistance of 30 � and an 

inductance of 0.5 H, calculate the apparent power and the power factor. 

 

B) For each circuit shown in Fig. 9, calculate: 

(a) the power factor,   (b) the average power delivered by the source, 

(c) the reactive power,   (d) the apparent power, 

(e) the complex power. 

  
Fig. 9, Problem 3-B 

C) Find the complex power absorbed by each of the five elements in the circuit of Fig. 10. 

 
Fig. 10, Problem 3-C 

D) Obtain the complex power delivered by the source in the circuit of Fig. 11. 

 
Fig. 11, Problem 3-D 



Problem #4 

A) Given the circuit in Fig. 12, find Io and the overall complex power supplied. 

 
Fig. 12, Problem 4-A. 

 

B) For the circuit in Fig. 13, find Vs . 

 
Fig. 13, Problem 4-B. 

 

C) For the circuit in Fig. 14, find Vo and the input power factor. 

 
Fig. 14, Problem 4-C. 

 

D) Given the circuit in Fig. 15, find Io and the overall complex power supplied. 

 
Fig. 15, Problem 4-D 

 

 



Problem #5 

A) Consider the power system shown in Fig. 16. Calculate: 

(a) the total complex power 

(b) the power factor 

(c) the capacitance necessary to establish a unity power factor 

 

 
Fig. 16, Problem 5-A. 

 

B) A 120-V rms 60-Hz source supplies two loads connected in parallel, as shown in Fig. 17. 

(a) Find the power factor of the parallel combination. 

(b) Calculate the value of the capacitance connected in parallel that will raise the 

power factor to unity. 

 
Fig. 17, Problem 5-B 

 

C) A 240-V rms 60-Hz supply serves a load that is 10 kW (resistive), 15 kVAR (capacitive), 

and 22 kVAR (inductive). Find: 

(a) the apparent power 

(b) the current drawn from the supply 

(c) the kVAR rating and capacitance required to improve the power factor to 0.96 

lagging 

(d) the current drawn from the supply under the new power-factor conditions 


