

A Genetic Algorithm for the

Resource Constrained Multi-Project Scheduling Problem

José Fernando Gonçalves

Faculdade de Economia da Universidade do Porto

Rua Dr. Roberto Frias

4200-464 Porto, Portugal

jfgoncal@fep.up.pt

Jorge José de Magalhães Mendes

Instituto Superior de Engenharia do Porto

Depto. de Engenharia Informática

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto, Portugal

jjm@isep.ipp.pt

Maurício G. C. Resende

Internet and Network Systems Research Center

AT&T Labs Research, Florham

Park, NJ 07932 USA

mgcr@research.att.com

Abstract

This paper presents a genetic algorithm for the Resource Constrained Multi-Project

Scheduling Problem (RCMPSP). The chromosome representation of the problem is

based on random keys. The schedules are constructed using a heuristic that builds

parameterized active schedules based on priorities, delay times, and release dates

defined by the genetic algorithm. The approach is tested on a set of randomly generated

problems. The computational results validate the effectiveness of the proposed

algorithm.

Keywords: Project management, meta-heuristics, genetic algorithm, scheduling.

AT&T Labs Technical Report TD-668LM4, October 29, 2004.

1. Introduction

Project management is a complex decision making process involving the unrelenting

pressures of time and cost. A project management problem typically consists of

planning and scheduling decisions.

The planning decision is essentially a strategic process wherein planning for

requirements of several resource types in every time period of the planning horizon is

carried out. Usually, a Gantt chart of projects is developed to generate resource profiles

and perform the required leveling of resources by hiring, firing, subcontracting, and

allocating overtime resources.

Scheduling involves the allocation of the given resources to projects to determine the

start and completion times of the detailed activities. There may be multiple projects

contending for limited resources, which makes the solution process more complex. The

allocation of scarce resources then becomes a major objective of the problem and

several compromises have to be made to solve the problem to the desired level of

optimality.

Tools to aid in project scheduling, once activity durations, precedence relationships,

and the levels of each resource are known, have existed for some time. Such tools

include Gantt charts and the networking tools, such as Critical Path Method (CPM) and

the Program Evaluation and Review Technique (PERT). These tools are so well

understood that they are incorporated in most, if not all, popular project scheduling

software packages.

As valuable as these tools are, they have serious limitations for project activity

scheduling in practice. Their use assumes unlimited resources for assignment to project

activities exactly when required. Furthermore, they are applied to only one project at a

time. In many practical environments where project scheduling is an important activity,

resources are constrained in number and more than one project is active at any one time.

2. Problem Description and Conceptual Model

The problem and the conceptual model will be described using Figure 1.The problem

consists of a set of I projects, where each project i is composed of activities j ={Ni-1

+1, ..., Ni}, where activities Ni-1+1 and Ni are dummy and represent the initial and final

activities of the project i. There exists a set of renewable resources types K = {1, ..., k}.

The activities are interrelated by two kinds of constraints. First, the precedence

constraints, which force each activity to be scheduled after all predecessor

activities, P

j J∈

j J∈

1(1) 0
i iN Nd d
− + = =

j, are completed. Second, processing of the activities is subject to the

availability of resources with limited capacities. While being processed, activity

requires rj,k units of resource type k ∈ K during every time instant of its non-

preemptable duration dj. Resource type k has a limited capacity of Rk at any point in

time. The parameters dj, rj,k and Rk are assumed to be non-negative and deterministic;

for the project start and end activities we have and

10/29/2004 - 12:00 2

1 1,N kr r
− + , 0 ()

i iN k k K= = ∈ . Activities 0 and N+1 are dummy activities, have no

duration and correspond to the start and end of all projects (see Figure 1).

Project 11
1

N1

N1

0
0

N i - 1 + 1
N i - 1 + 1

N I - 1 + 1
N I - 1 + 1

N i

N i

NI

NI

N + 1
N + 1

Project I

Project i

Figure 1 – Project network example.

The Resource Constrained Multi-Project Scheduling Problem (RCMPSP) consists in

finding a schedule of the activities (i.e. to determine the start and completion times of

the detailed activities) taking into account resource availabilities, precedence

constraints, while minimizing the performance measure. Let Fj represent the finish time

of activity j. A schedule can be represented by a vector of finish times (F1,…Fm, ... ,

Fn+1). Let A(t) be the set of activities being processed at time instant t.

 The conceptual model of the RCMPSP can be described as follows:

(Minimize , 1,...,)jPerformance Measure F j N=

..., 1 ;+ ∈ j

 (1)

Subject to:

1,≤ − =l j jF F d j N l P

; 0k K t∈ ≥

 (2)

()
,j k k

j A t

r R
∈

≤∑ (3)

0≥jF 1,..., 1= +j N (4)

The objective function (1) seeks to minimize the performance measure. Constraints (2)

impose the precedence relations between activities and constraints (3) limit the resource

demand imposed by the activities being processed at time t to the capacity available.

Finally, constraints (4) force the finish times to be non-negative.

10/29/2004 - 12:00 3

3. Literature Review

The RCMPSP is a generalization of the resource constrained project scheduling

problem, RCPSP. The RCPSP has been treated by multiple approaches. In contrast, for

the RCMPSP problem there are only few studies involving the scheduling of several

projects.

It has been shown by Blazewicz et al. (1983) that the RCPSP, as a generalization of

the classical job shop scheduling problem, belongs to the class of NP-hard

optimization problems. The RCMPSP problem, as a generalization of the RCPSP, is

therefore also NP-hard.

Exact methods to solve the RCMPSP are proposed in the literature. Currently, the

most competitive exact algorithms seem to be ones of Pritsker et al. (1969), Mohanty

and Siddiq (1989), Drexl (1991), Deckro et al. (1991) and Vercellis (1994).

Most of the heuristics methods used for solving resource constrained multi-project

scheduling problems belong to the class of priority rule based methods. Several

approaches of this class have been proposed in the literature, e.g., Fendley (1968),

Kurtulus and Davis (1982), Kurtulus and Narula (1985), Dumond and Mabert (1988),

Tsubakitani and Deckro (1990), Lawrence and Morton (1993), Wiley et al. (1998), Ash

(1999), Lova et al. (2000), Shankar and Nagi (1996), and Mendes (2003).

For the RCPSP, the dominant objective is to minimize the total duration of the

project, i.e. the makespan, while for the RCMPSP, papers minimizing the average or

sum of delays are dominant.

In the next sections, we present our approach to solve the resource constrained multi-

project scheduling problem.

4. New Approach

The new approach combines a new measure of performance, a genetic algorithm

based on random keys, and a new schedule generation procedure that creates

parameterized active schedules (Gonçalves and Beirão (1999) and Gonçalves et al.

(2004)). In general terms, the approach innovates in the following two fundamentals

areas:

• The Model: a new measure of performance is developed. It tries to capture

reality by integrating due dates, work in process, and stocks. Constraints

enforcing the release date concept are also introduced.

• Solution Method: considering the difficult to solve real-world problems by

exact methods, a new solution approach is developed that combines a genetic

algorithm with a schedule generation procedure that creates parameterized active

schedules.

10/29/2004 - 12:00 4

The genetic algorithm is responsible for evolving the chromosomes which represent

priorities of the activities, delay times, and release dates. For each chromosome, the

following two phases are applied:

• Decoding of priorities, delay times, and release dates. This phase is responsible

for transforming the chromosome supplied by the genetic algorithm into the

priorities of the activities, delay times, and release dates.

• Schedule Generation. This phase makes use of the priorities and the delay times

defined in the first phase and constructs parameterized active schedules.

After a schedule is obtained, the corresponding quality (performance measure) is fed

back to the genetic algorithm. Figure 3 illustrates the sequence of steps applied to each

chromosome generated by the genetic algorithm.

Determ

Genera

ining Schedule

tion Parameters
Decoding of Priorities, Delays and Dates

Construction of a
Parametrized Active Schedule

Schedule Generation

Phase

Feedback of Quality of Chromosome

Chromosome

E
v

o
lu

ti
o

n
a

ry
P

ro
c

e
s

s
o

f
th

e
G

e
n

e
ti

c
A

lg
o

ri
th

m

Figure 3 – Architecture of the new approach.

The next sections present the details of the approach.

5. The Model

 The conceptual model presented in Section 2 is refined in two ways. A new

measure of performance and constraints enforcing the release date concept are

introduced. The following sub-sections describe the details of the refinement of the

model.

5.1. Measure of Performance

Project management is actually a complex decision making process involving the

pressures of due dates (tardiness), stocks (earliness), and work in process (flow time).

10/29/2004 - 12:00 5

The new performance measure incorporates simultaneously three criteria: tardiness,

earliness and flow time. The following notation will be used:

Di - Ideal duration for project i.

DDi - Due date for project i.

CDi - Conclusion date for project i in generated schedule.

BDi - Beginning date for project i in generated schedule.

Ti - Tardiness of project i = ma . (), 0i iCD DD−

(), 0i iDD CD−

(), 0i i iBD D− −

3 2 2
i i i

i

cT E FD+ + ∑

2

x

Ei - Earliness of project i = . max

FDi - Flow time deviation for project i = ma .x CD

CPDi - Critical Path Duration of project i

The new performance measure is defined as follows:

i i

a b∑ ∑ (5)

where a, b, and c are parameters defined by the decision maker.

In a real-world situation, the ideal duration for a project it is not known. To overcome

this, we replace

∑ i

i

c FD

()

by
2

−
∑ i i

i i

CD BD

CPD

1,...,

c .

5.2. Release Dates

In the conceptual model presented in Section 2, the constraints for the resources are

expressed by condition (3). However, there are others types of constraints related with

the start of a project which cannot be modeled by condition (3). To be able to model this

kind of constraint, we add the following type of constraints to the model

1 1iN iF MDL
− +

i I≥ =

1,...,iL i I=

where MDLi represents earliest release date for project i. This constraint is enforced in

the model implicitly by assigning a duration DLi to the initial activity of each project

which is larger than MDLi , i.e.,

1 1iN id DL MD
− + = ≥

.

10/29/2004 - 12:00 6

6. Schedule Generation Procedure

The schedule generation procedure constructs active schedules. However, the set of

active schedules is usually very large and contains many schedules with relatively large

delay times, having therefore poor quality in terms of the performance measure. To

reduce the solution space, we used the concept of parameterized active schedules

introduced by Gonçalves and Beirão (1999) and Gonçalves et al. (2004).

The basic idea of parameterized active schedules consists in controlling the delay

times that each activity is allowed. By controlling the maximum delay time allowed,

one can reduce or increase the solution space. A maximum delay time equal to zero is

equivalent to restricting the solution space to non-delay schedules and a maximum delay

time equal to infinity is equivalent to allowing active schedules.

Figure 2 illustrates where the set of parameterized active schedules is located

relative to the class of semi-active, active, and non-delay schedules.

Semi-Actives

Actives

Non-Delay

Delay Time 1 De

Se

Parametrized Actives

lay Time 2

mi-Actives

Actives

Non-Delay

Delay Time 2 > Delay Time 1

Figure 2 – Parameterized active schedules.

The procedure used to construct parameterized active schedules is based on a

scheduling generation scheme that does time incrementing. For each iteration g, there is

a scheduling time tg. The active set comprises all activities which are active at tg, i.e.

{ }|g jA j J= ∈ j g jF d t F− ≤ <

() ,

g

j k

j A

r
∈

= −

. The remaining resource capacity of resource k at instant

time tg is given by () ∑k gRD t k gR t . Sg comprises all activities which have

been scheduled up to iteration g, and Fg comprises the finish times of the activities in

Sg. Let Delayg be the delay time associated with iteration g, and let Eg comprise all

activities which are precedence feasible in the interval [tg , tg + Delayg], i.e.

{ }1\ |g g i ()g g jE j J S F t−= ∈ ≤ Delay i P+ ∈ .

The algorithmic description of the scheduling generation scheme used to create

parameterized active schedules is given by the pseudo-code shown in Figure 4.

10/29/2004 - 12:00 7

Initialization: { } { } { } ()0 ()= ∈kD R k K1 0 01, 0, 0 , 0 , 0 ,= = = Γ = =o kg t A S R

2< +gS n repeat while

{

gE Update

 while Eg ≠ {} repeat

{

 Select activity with highest priority

{ }* argmax
gj E

j
∈

= jPRIORITY

Calculate earliest finish time (in terms of precedence only)

{ }* *
ji P imax

j j
EF F d

∈
= +

}

*

* * *

,
() ,τ≤

⎡ ⎤+ +⎣ ⎦

g kj k

j j

r RD

d d

Calculate the earliest finish time (in terms of precedence and capacity)

{* * *

,

min , |

| 0 , ,τ

⎡ ⎤= ∈ − ∞ ∩ Γ⎣ ⎦

∈ > ∈

j j j

j k

F t FMC d

k K r t t

Update { }*

1g gS S j−= ∪ , { }*Γ = Γ ∪g g-1 j
F

Iteration increment: g = g+1

Update * * *, , () | ,g g k j j j
A E RD t t F d F⎡ ⎤∈ −⎣ ⎦ * ,

, | 0
j k

k K r∈ >

}

Determine the time associated with activity g

{ }1 1|
− −

= ∈ Γ >
g g g

t tmint t

 }

Figure 4 - Pseudo-code to construct parameterized active schedules.

The basic idea of parameterized active schedules is incorporated in the selection step of

the procedure,

{ }* argmax
gj E

j
∈

= jPRIORITY .

The set Eg is responsible for forcing the selection to be made only amongst activities

which will have a delay smaller or equal to the maximum allowed delay. Figure 5

illustrates the selection step.

10/29/2004 - 12:00 8

ResourceResource

Non-delay

Delay = t + Maximum Delay Allowed

Active

Eligible activities for the selection step at time t

Parameterized Active

Figure 5 - Eligible activities for different types of schedules.

The parameters PRIORITYj and Delayg (priority of activity j and delays used at

each g) are supplied by the genetic algorithm. The next section describes the genetic

algorithm and shows how it generates the above parameters.

7. Genetic Algorithm

Genetic algorithms are adaptive methods, which may be used to solve search and

optimization problems (Beasley et al. (1993)). They are based on the genetic process of

biological organisms. Over many generations, natural populations evolve according to

the principles of natural selection, i.e. survival of the fittest, first clearly stated by

Charles Darwin in The Origin of Species. By mimicking this process, genetic algorithms

are able to evolve solutions to real world problems, if they have been suitably encoded.

Before a genetic algorithm can be run, a suitable encoding (or representation) for the

problem must be devised. A fitness function is also required, which assigns a figure of

merit to each encoded solution. During the run, parents are selected for reproduction,

and recombined to generate offspring (see Figure 6).

It is assumed that a potential solution to a problem may be represented as a set of

parameters. These parameters (known as genes) are joined together to form a string of

values (chromosome). In genetic terminology, the set of parameters represented by a

particular chromosome is referred to as an individual. The fitness of an individual

depends on its chromosome and is evaluated by the fitness function.

During the reproductive phase, the individuals are selected from the population and

recombined, producing offspring, which comprise the next generation. Parents are

randomly selected from the population using a scheme, which favors fitter individuals.

Having selected two parents, their chromosomes are recombined, typically using

mechanisms of crossover and mutation. Mutation is usually applied to some individuals,

to guarantee population diversity.

10/29/2004 - 12:00 9

__

Genetic Algorithm

{

Generate initial population Pt

Evaluate population Pt

While stopping criteria not satisfied Repeat

{

Select some elements from Pt to copy into Pt+l

Crossover some elements of Pt and put into Pt+l

Mutate some elements of Pt and put into Pt+l

Evaluate new population Pt+l

Pt = Pt+l

}

}

Figure 6 - A standard genetic algorithm.

7.1. Chromosome Representation

The genetic algorithm described in this paper uses a random key alphabet U(0,1)

similar to the one proposed by Bean (1994). The important feature of random keys is

that all offspring formed by crossover are feasible solutions. This is accomplished by

moving much of the feasibility issue into the objective function evaluation. If any

random key vector can be interpreted as a feasible solution, then any crossover vector is

also feasible. Through the dynamics of the genetic algorithm, the system learns the

relationship between random key vectors and solutions with good objective function

values.

A chromosome represents a solution to the problem and is encoded as a vector of

random keys (random numbers).

Each solution chromosome is made of 2n+m genes where n are the number of

activities and m the number of projects.

Prioriti es Delays Times

Chromosom e = (gene1, … , genen , genen+1, … , gene2n , gene2n+1, … , gene2n+m)

Rel ease Dates

The first n genes are used to determine the priorities of each activity. The genes

between n+1 and 2n are used to determine the delay time used at each of the n iterations

of scheduling procedure. The last m genes are used to determine the release dates of

each of the m projects.

10/29/2004 - 12:00 10

7.2. Decoding

In this section, we describe how the chromosomes supplied by the genetic algorithm

are decoded (transformed) into activity priorities, delays, and release dates. In our

approach, we consider the following three solution alternatives:

GaBasic - a basic decoding procedure;

GaSlackNd - a decoding procedure where the priorities of the activities

are static (i.e., the activities priorities are not evolved by the

genetic algorithm) and the schedules are non-delay;

GaSlackMod - a more sophisticated decoding procedure in which problem

specific information is included.

The next sub-section presents the decoding procedures for the activity priorities,

delays, and release dates for each of the above solution alternatives.

7.2.1. Decoding of the Activity Priorities

 As mentioned in Section 7.1, the first n genes are used to obtain activity

priorities. Activity priorities are values between 0 and 1. The higher the value, the

higher the priority will be. Below, we present the decoding procedures for the activity

priorities according to each of the above proposed solution alternatives.

GaBasic

For this solution alternative, the priority of each activity j is given by the gene value, i.e.

Priorityj = Genej

GaSlackNd

For this solution alternative, the priority of each activity j is given by the normalized

slack calculated by the following expression:

j

j

Slack
ity

MaxSlack
=

| ∈i j iDD

Prior

where

 = Due date of the project i to which the activity j belongs.

jLLP = Longest length path from the beginning of the activity j

to the end of the project i to which activity j belongs.

jSlack =
| ∈ −i j i jDD LLP

MaxSlack = Maximum Slack for all activities amongst all projects.

10/29/2004 - 12:00 11

GaSlackMod

For this solution alternative, the priority of each activity j is given by an expression

which modifies the normalized slack to produce priority values that are between 70%

and 100% of the normalized slack. The priority values are obtained by the following

expression:

()0.30.7
j

j jGene+ ×

()i i = 1 , ... ,m

Slack
Priority

MaxSlack
= ×

7.2.2. Decoding of the Delays

The genes between n+1 and 2n are used to determine the delay times, Delayg , used

by each scheduling iteration g. Below we present the decoding procedures for the delay

times according to each of the above proposed solution alternatives.

GaBasic and GaSlackMod

For these solutions alternatives, the delay schedules generated are given by the

following decoding expression:

Delayg = geneg × 1.5 × MaxDur

where MaxDur is the maximum duration amongst all activity durations. The factor 1.5

was obtained after experimenting with values between 1.0 and 2.0 in increments of 0.1.

GaSlackNd

For this solution alternative, the delay schedules generated are non-delay therefore the

all delays are zero, i.e.

Delayg = 0

7.2.3. Decoding of the Release Dates

The last m genes of each the chromosome, 2n+1 to 2n+m , are used to determine the

release dates of each project i. All the above solution alternatives (GaBasic,

GaSlackNd, and GaSlackMod) use the following decoding expression to obtain the

release date of each project i:

i i 2n+i iDL = MDL + Gene × DE - MDL

10/29/2004 - 12:00 12

7.3. Evolutionary Strategy

To breed good solutions, the random key vector population is operated upon by a

genetic algorithm. There are many variations of genetic algorithms obtained by altering

the reproduction, crossover, and mutation operators. The reproduction and crossover

operators determine which parents will have offspring, and how genetic material is

exchanged between the parents to create those offspring. Mutation allows for random

alteration of genetic material. Reproduction and crossover operators tend to increase the

quality of the populations and force convergence. Mutation opposes convergence and

replaces genetic material lost during reproduction and crossover.

Reproduction is accomplished by first copying some of the best individuals from one

generation to the next, in what is called an elitist strategy (Goldberg (1989)). The

advantage of an elitist strategy over traditional probabilistic reproduction is that the best

solution is monotonically improving from one generation to the next. The potential

downside is population convergence to a local minimum. This can, however, be

overcome by high mutation rates as described below.

Parameterized uniform crossovers (Spears and DeJong (1991)) are employed in place

of the traditional one-point or two-point crossover. After two parents are chosen

randomly from the full, old population (including chromosomes copied to the next

generation in the elitist pass), at each gene we toss a biased coin to select which parent

will contribute the allele. Figure 7 presents an example of the crossover operator. It

assumes that a coin toss of heads selects the gene from the first parent, a tails chooses

the gene from the second parent, and that the probability of tossing a heads is for

example 0.7 (this value is determined empirically). Figure 7 shows one potential

crossover outcome:

Coin toss H H T H T

Parent 1 0.57 0.93 0.36 0.12 0.78

Parent 2 0.46 0.35 0.59 0.89 0.23

Offspring 0.57 0.93 0.59 0.12 0.23

Figure 7 - Example of Parameterized Uniform crossover.

Rather than the traditional gene-by-gene mutation with very small probability at each

generation, one or more new members of the population are randomly generated from

the same distribution as the original population. This process prevents premature

convergence of the population, like in a mutation operator, and leads to a simple

statement of convergence.

Figure 8 depicts the transitional process between two consecutive generations.

10/29/2004 - 12:00 13

Crossover

Randomly generate

Current Population

Copy best

d

Next Population

Best

Worst

TOP

BOT

Figure 8- Transitional process between consecutive generations.

In the next section, we describe the problem generator used to produce test problems

for the computational experiments.

8. Problem Instance Generator

In the literature we could not find any standard problem instances for the RCMPSP.

To overcome this we used the problem generator developed in Mendes (2003). The

remainder of this section describes the problem generator.

The problem generator creates problem instances which have as optimal value for the

measure of performance described in Section 5.1 the value zero (i.e. tardiness=0,

earliness=0, and flow deviation =0).

The problem generator has the following inputs parameters:

• Number of problems to generate;

• Number of projects to include in each problem;

• Average projects number to be simultaneously in execution.

Each multi-project problem instance is generated using the following rules:

1. Each single-project instance to be included in the multi-project instance

problem is chosen at random from the 600 single-project instances of type

J120 given in Kolisch et al. (1998);

2. The ideal duration of each single-project instance is equal to the best known

makespan value obtained from the PSPLIB library;

3. The average number of projects to be simultaneously in execution is imposed

indirectly by forcing all the single-project instances included in the multi-

10/29/2004 - 12:00 14

project instance to have a due date randomly chosen in the interval given by

its critical path duration and the value given by the due date upper bound

obtained by the following expression

Sum of ideal duration of each single-project instance

Number of single-projects to be simultaneously in execution

4. The beginning date of each project is randomly generated in the interval [0 ,

problem due date – ideal duration].

5. The resource capacity in the interval [0 , due date upper bound] is

calculated by the adding the resource capacities of each single-project

instance from its beginning date up until its due date computed in Rule 3.

Note that this procedure assigns resource capacities that make it possible to

complete each single-project with tardiness=0, earliness=0, and flowtime

deviation=0, i.e. it guaranties that the optimal value of measure performance

defined in Section 5.1 is zero.

9. Computational experiments

To illustrate the effectiveness of the algorithms described in this paper, we used

multi-project instances generated by the problem instance generator described in the

previous section.

 Four types of multi-project instances where generated, respectively, with 10, 20, 30,

and 50 single-project instances. For each problem type, we generated 20 instances.

Since each single-project instance has 120 activities, we have that each multi-project

instance has 1200, 2400, 3600, and 6000 activities, respectively. Each activity can use

up to 4 resources. The average number of projects simultaneously in execution is 3, 6, 9,

and 15, respectively, for the problems with 10, 20, 30, and 50 single-projects.

9.1. GA Configuration

The present state-of-the-art theory and practice of genetic algorithms does not provide

information on how to configure them. In our past experience with genetic algorithms

based on the same evolutionary strategy, see Gonçalves and Almeida (2002), Gonçalves

et al. (2004a), and Gonçalves and Resende (2004b), we obtained good results with

values of TOP, BOT, and Crossover Probability (CProb) in the following intervals:

Parameter Interval

TOP 0.10 – 0.20

BOT 0.15 – 0.30

Crossover Probability (CProb) 0.70 – 0.80

10/29/2004 - 12:00 15

For the population size we obtained good results by indexing it to the size of the

problem, i.e., use small size populations for small problems and larger populations for

larger problems. Having this past experience in mind and in order to obtain a reasonable

configuration, we conducted a small pilot study by experimenting the combinations of

the following values TOP=(0.10, 0.15, 0.20) , BOT=(0.15, 0.20, 0.25, 0.30), and

CProb=(0.70, 0.75, 0.80). We tried population sizes with 0.1 to 2.0 (in intervals of 0.1)

times the number of activities in the multi-project problem instance.

For the pilot study, the best results were obtained with the following configuration:

Population Size: Min (0.2 × Number of Activities in the Multi-Project, 250)

Crossover Probability: 0.7

Selection:
The top 10% from the previous population chromosomes are

copied to the next generation.

Mutation:
The bottom 20% of the population chromosomes are replaced

with randomly generated chromosomes.

Fitness: See Equation (5)

Stopping Criterion: 50 Generations

The above configuration was held constant for all experiments and all problem

instances. The following experimental results demonstrate that this configuration

provides excellent results in terms of solution quality and that it is very robust.

Table 1 summarizes the experimental results. It lists the fitness, earliness, tardiness,

and flow deviation. The columns Avg
1
 and SD

1
, Avg

2
 and SD

2
, Avg

3
 and SD

3
, and

Avg
4
 and SD

4
represent the average and standard deviation obtained for each of the 20

instances, respectively, for following expressions:

3 2

1 1= = =

+ +∑ ∑ ∑
N N N

i i

i i i

a T b E FD

N

2

1

ic

 , 1=

∑
N

i

i

E

N

1=

∑
N

i

i

T

N

1=

∑
N

i

i

FD

N
 , , and ,

where N represents the number of projects in each problem.

Algorithm GaSlackMod is the best in all aspects relative to the other two. In

absolute terms, algorithm GaSlackMod obtained, for all instances, earliness, tardiness,

and flow deviation close to the optimum value (i.e. zero).

10/29/2004 - 12:00 16

Table 1 – Experimental results.

 Fitness Earliness Tardiness Flow Deviation
Nº Projects Algorithm Avg

1
SD

1
Avg

2
SD

2
Avg

3
SD

3
Avg

4
SD

4

 GaSlackMod 15.55 29.04 0.00 0.00 1.17 1.44 0.22 0.43

10 GaSlackND 20.74 21.08 0.00 0.00 2.25 1.35 0.29 0.35

 GaBasic 996.57 1332.56 0.14 0.30 10.15 6.27 5.05 3.22

 GaSlackMod 4.26 10.99 0.00 0.00 0.59 0.35 0.11 0.30

20 GaSlackND 42.94 124.61 0.00 0.01 1.47 1.67 0.33 0.74

 GaBasic 707.30 653.73 0.09 0.11 7.46 5.21 0.49 0.46

 GaSlackMod 6.59 26.42 0.00 0.00 0.64 0.75 0.04 0.08

30 GaSlackSA 11.32 36.23 0.00 0.01 0.87 0.93 0.08 0.15

 GaGen 265.18 253.86 0.01 0.02 4.50 3.65 0.28 0.35

 GaSlackMod 0.56 0.23 0.00 0.00 0.49 0.05 0.01 0.04

50 GaSlackSA 1.36 2.24 0.00 0.00 0.54 0.12 0.03 0.02

 GaGen 268.25 354.95 0.01 0.03 2.91 2.09 0.08 0.10

Table 2 presents the results obtained by algorithm GaSlackMod with the performance

measure (5), where 2∑ i

()
2

−
∑ i i

i i

CD BD
c

CPD
D is replaced by .

i

F

Table 2 – Experimental results for the algorithm GaSlackMod.

Nº Projects Fitness Tardiness Earliness Flow Time

 1) 2) 1) 2) 1) 2) 1) 2)

10 15.55 53.45 0.00 0.00 1.17 1.11 100.15 99.12

20 4.26 84.11 0.00 0.00 0.59 0.53 95.37 95.28

30 6.59 42.07 0.00 0.00 0.64 0.56 94.90 94.98

50 0.56 38.94 0.00 0.00 0.49 0.49 94.79 94.79

2∑ i

i

FD
()

2
−

∑ i i

i i

CD BD

CPD
c , 2)) Average obtained using 1) Average obtained using

The algorithm was implemented in Visual Basic 6.0 and the tests were run on a PC with

a 1.33 GHz AMD Thunderbird CPU on the MS Windows Me operating system. The

average computational times, in seconds, for each problem instance and for 50

generations are presented in Table 3.

Table 3 – CPU time for 50 generations.

Classes of instances 10 20 30 50

Average CPU time for 50 generations 178 s 449 s 840 s 1860 s

10/29/2004 - 12:00 17

10. Conclusions

This paper presents a genetic algorithm for the resource constrained multi-project

scheduling problem RCMPSP. The chromosome representation of the problem is based

on random keys. The schedules are constructed using a heuristic that generates

parameterized active schedules based on priorities, delay times, and release dates

defined by the genetic algorithm.

The approach was tested on a set problem with 10, 20, 30, and 50 projects (1200,

2400, 3600, and 6000 activities, respectively). The algorithm GaSlackMod has better

results than any of the other two approaches and obtained values very close to the

optimum value (zero) therefore validating the effectiveness of the proposed approach.

References

Ash, R., (1999). Activity Scheduling in the Dynamic, Multi-Project setting: Choosing Heuristics Through

Deterministic Simulation. Proceedings of the 1999 Winter Simulation Conference, pp. 937-941,

Pheoenix, USA.

Bean, J.C. (1994). Genetics and Random Keys for Sequencing and Optimization, ORSA Journal on

Computing 6, pp. 154-160.

Beasley, D., Bull, D.R. and Martin, R.R. (1993). An Overview of Genetic Algorithms: Part 1,

Fundamentals, University Computing, Vol. 15, No.2, pp. 58-69, Department of Computing Mathematics,

University of Cardiff, UK.

Blazewicz, J., Lenstra, J.K., Kan, A H.G. Rinnooy (1983). Scheduling subject to resource constraints :

Classification and Complexity. Discrete Applied Mathematics, 5, pp. 11-24.

Deckro, R.F., Winkofsky, E.P., Hebert, J.E., Gagnon, R., (1991). A Decomposition Approach to multi-

project scheduling. European Journal of Operational Reserach, Vol. 51, pp. 110-118.

Dumond, J. and Mabert, V.A. (1988). Evaluating Project Scheduling And Due Date Assignment

Procedures: An Experimental Analysis. Management Science. v. 34, n. 1, pp. 101-118.

Drexl, A., (1991). Scheduling of project networks by job assignment. Management Science, Vol. 37, No.

12, pp. 1590-1602.

Fendley, L.G., (1968). Towards the Development of a Complete Multiproject Scheduling System. Journal

of Industrial Engineering, pp. 505-515.

Goldberg, D.E., (1989). Genetic Algorithms in Search Optimization and Machine Learning, Addison-

Wesley.

Gonçalves, J.F. and Beirão, N.C., (1999). Um Algoritmo Genético Baseado em Chaves Aleatórias para

Sequenciamento de Operações. Revista Associação Portuguesa Investigação Operacional, Vol. 19, pp.

123-137 (In Portuguese).

Gonçalves, J.F., Mendes, J.M., Resende M.C.G. (2004). Ahybrid gnetic algorithm for the job shop

scheduling problem. European Journal of Operational Research. To appear.

Kolisch, R. Schwindt, Sprecher, A. (1998). Benchmark instances for scheduling problems. In J.Weglarz,

ed. Handbook on recent advances in project scheduling, Kluwer, Amsterdam, pp. 197-212.

10/29/2004 - 12:00 18

Kurtulus, I.S., and Davis, E.W., (1982). Multi-project scheduling: Categorization of heuristic rules

performance. Management Science 28 (2), pp. 161-172.

Kurtulus, I.S., Narula, S.C., (1985). Multi-project scheduling: Analysis of project performance. IIE

Transactions 17 (1), pp. 58-66.

Lawrence, S.R., and Morton, T.E., (1993). Resource-constrained multi-project scheduling with tardy

costs: Comparing myopic bottleneck and resource pricing heuristics. European Journal of Operational

Research Vol. 64, pp. 168-187.

Lova, A., Maroto, C., Tormos, P., (2000). A multicriteria heuristic method to improve resource allocation

in multiproject scheduling. European Journal of Operational Research, Vol. 127, pp. 408-424.

Mendes, J. J.M. (2003). “Sistema de Apoio à Decisão para Planeamento de Sistemas de Produção do Tipo

Projecto”. Ph. D. Thesis. Departamento de Engenharia Mecânica e Gestão Industrial, Faculdade de

Engenharia da Universidade do Porto, Portugal (In Portuguese).

Mohanthy, R.P. and Siddiq, M.K. (1989). Multiple Projects Multiple Resources-Constrained Scheduling:

Some Studies. International Journal of Production Research. Vol. 27, n. 2, pp. 261-280.

Shankar, V., and Nagi, R. (1996). A flexible optimization approach to multi-resource, multi-project

planning and scheduling. Proceedings of 5th Industrial Engineering Research Conference, Minneapolis,

May, USA.

Spears, W.M. and Dejong, K.A., (1991). On the Virtues of Parameterized Uniform Crossover, in

Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230-236.

Pritsker, A., Allan, B., Watters, L.J., Wolfe, P.M., (1969). Multiproject scheduling with limited resources:

A zero-one programming approach. Management Science, 16(1): pp. 93-108.

Tsubakitani, S. and Deckro, R.F. (1990). A Heuristic For Multi-Project Scheduling With Limited

Resources In The Housing Industry. European Journal of Operational Research. v. 49. pp. 80-91.

Vercellis, C. (1994). Constrained multi-Project planning problems: a Lagrangean decomposition

approach, European Journal of Operational Research 78, pp. 267-275.

Wiley, V.D., Deckro, R.F., Jackson, J.A, (1998). Optimization analysis for design and planning of multi-

project programs. European Journal of Operational Research, Vol. 107, pp. 492-506.

10/29/2004 - 12:00 19

