
 

 

 

A Genetic Algorithm for the  

Resource Constrained Multi-Project Scheduling Problem 
 

 

 

José Fernando Gonçalves 

Faculdade de Economia da Universidade do Porto 

Rua Dr. Roberto Frias 

4200-464 Porto, Portugal 

jfgoncal@fep.up.pt 

 

Jorge José de Magalhães Mendes 

Instituto Superior de Engenharia do Porto 

Depto. de Engenharia Informática 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto, Portugal 

jjm@isep.ipp.pt 

 

Maurício G. C. Resende 

Internet and Network Systems Research Center 

AT&T Labs Research, Florham 

Park, NJ 07932 USA 

mgcr@research.att.com 

 

 

 

Abstract 
 
 

This paper presents a genetic algorithm for the Resource Constrained Multi-Project 

Scheduling Problem (RCMPSP). The chromosome representation of the problem is 

based on random keys. The schedules are constructed using a heuristic that builds 

parameterized active schedules based on priorities, delay times, and release dates 

defined by the genetic algorithm. The approach is tested on a set of randomly generated 

problems. The computational results validate the effectiveness of the proposed 

algorithm. 
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1. Introduction 

 

Project management is a complex decision making process involving the unrelenting 

pressures of time and cost. A project management problem typically consists of 

planning and scheduling decisions.  

 

The planning decision is essentially a strategic process wherein planning for 

requirements of several resource types in every time period of the planning horizon is 

carried out. Usually, a Gantt chart of projects is developed to generate resource profiles 

and perform the required leveling of resources by hiring, firing, subcontracting, and 

allocating overtime resources. 

 

Scheduling involves the allocation of the given resources to projects to determine the 

start and completion times of the detailed activities. There may be multiple projects 

contending for limited resources, which makes the solution process more complex. The 

allocation of scarce resources then becomes a major objective of the problem and 

several compromises have to be made to solve the problem to the desired level of 

optimality. 

 

Tools to aid in project scheduling, once activity durations, precedence relationships, 

and the levels of each resource are known, have existed for some time. Such tools 

include Gantt charts and the networking tools, such as Critical Path Method (CPM) and 

the Program Evaluation and Review Technique (PERT). These tools are so well 

understood that they are incorporated in most, if not all, popular project scheduling 

software packages. 

 

As valuable as these tools are, they have serious limitations for project activity 

scheduling in practice. Their use assumes unlimited resources for assignment to project 

activities exactly when required. Furthermore, they are applied to only one project at a 

time. In many practical environments where project scheduling is an important activity, 

resources are constrained in number and more than one project is active at any one time. 

 

 

2. Problem Description and Conceptual Model 

 

The problem and the conceptual model will be described using Figure 1.The problem 

consists of a set of I projects, where each project i is composed of activities   j ={Ni-1 

+1,  ..., Ni}, where activities Ni-1+1 and Ni are dummy and represent the initial and final 

activities of the project i.  There exists a set of renewable resources types K = {1, ..., k}. 

The activities are interrelated by two kinds of constraints. First, the precedence 

constraints, which force each activity  to be scheduled after all predecessor 

activities, P

j J∈

j J∈

1( 1) 0
i iN Nd d
− + = =

j, are completed. Second, processing of the activities is subject to the 

availability of resources with limited capacities. While being processed, activity  

requires rj,k units of resource type k ∈ K during every time instant of its non-

preemptable duration dj. Resource type k has a limited capacity of Rk at any point in 

time. The parameters dj, rj,k and Rk are assumed to be non-negative and deterministic; 

for the project start and end activities we have and 
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1 1,N kr r
− + , 0 ( )

i iN k k K= = ∈ . Activities 0 and N+1 are dummy activities, have no 

duration and correspond to the start and end of all projects (see Figure 1). 
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Figure 1 – Project network example. 

 

The Resource Constrained Multi-Project Scheduling Problem (RCMPSP) consists in 

finding a schedule of the activities (i.e. to determine the start and completion times of 

the detailed activities) taking into account resource availabilities, precedence 

constraints, while minimizing the performance measure. Let Fj represent the finish time 

of activity j. A schedule can be represented by a vector of finish times (F1,…Fm, ... , 

Fn+1). Let A(t) be the set of activities being processed at time instant t. 

 

 The conceptual model of the RCMPSP can be described as follows: 

 

(Minimize , 1,..., )jPerformance Measure F j N=

..., 1 ;+ ∈ j

  (1) 
 

Subject to: 
 

1,≤ − =l j jF F d j N l P

; 0k K t∈ ≥

  (2) 

 

( )
,j k k

j A t

r R
∈

≤∑  (3) 

 

0≥jF 1,..., 1= +j N  (4) 

 
The objective function (1) seeks to minimize the performance measure. Constraints (2) 

impose the precedence relations between activities and constraints (3) limit the resource 

demand imposed by the activities being processed at time t to the capacity available. 

Finally,  constraints (4) force the finish times to be non-negative. 
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3. Literature Review 

 

The RCMPSP is a generalization of the resource constrained project scheduling 

problem, RCPSP. The RCPSP has been treated by multiple approaches. In contrast, for 

the RCMPSP problem there are only few studies involving the scheduling of several 

projects. 

 

It has been shown by Blazewicz et al. (1983) that the RCPSP, as a generalization of 

the classical job shop scheduling problem, belongs to the class of NP-hard 

optimization problems. The RCMPSP problem, as a generalization of the RCPSP, is 

therefore also NP-hard. 

 

Exact methods to solve the RCMPSP are proposed in the literature. Currently, the 

most competitive exact algorithms seem to be ones of Pritsker et al. (1969), Mohanty 

and Siddiq (1989), Drexl (1991), Deckro et al. (1991) and Vercellis (1994). 

 

Most of the heuristics methods used for solving resource constrained multi-project 

scheduling problems belong to the class of priority rule based methods. Several 

approaches of this class have been proposed in the literature, e.g., Fendley (1968), 

Kurtulus and Davis (1982), Kurtulus and Narula (1985), Dumond and Mabert (1988), 

Tsubakitani and Deckro (1990), Lawrence and Morton (1993), Wiley et al. (1998), Ash 

(1999), Lova et al. (2000), Shankar and Nagi (1996), and Mendes (2003). 

 

For the RCPSP, the dominant objective is to minimize the total duration of the 

project, i.e. the makespan, while for the RCMPSP, papers minimizing the average or 

sum of delays are dominant. 

 

In the next sections, we present our approach to solve the resource constrained multi-

project scheduling problem.  

 

 

4. New Approach 

 

The new approach combines a new measure of performance, a genetic algorithm 

based on random keys, and a new schedule generation procedure that creates 

parameterized active schedules (Gonçalves and Beirão (1999) and Gonçalves et al. 

(2004)). In general terms, the approach innovates in the following two fundamentals 

areas: 

 

• The Model: a new measure of performance is developed. It tries to capture 

reality by integrating due dates, work in process, and stocks. Constraints 

enforcing the release date concept are also introduced.  

 

• Solution Method: considering the difficult to solve real-world problems by 

exact methods, a new solution approach is developed that combines a genetic 

algorithm with a schedule generation procedure that creates parameterized active 

schedules. 
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The genetic algorithm is responsible for evolving the chromosomes which represent 

priorities of the activities, delay times, and release dates. For each chromosome, the 

following two phases are applied: 

 

• Decoding of priorities, delay times, and release dates. This phase is responsible 

for transforming the chromosome supplied by the genetic algorithm into the 

priorities of the activities, delay times, and release dates. 

 

• Schedule Generation. This phase makes use of the priorities and the delay times 

defined in the first phase and constructs parameterized active schedules. 

 

After a schedule is obtained, the corresponding quality (performance measure) is fed 

back to the genetic algorithm. Figure 3 illustrates the sequence of steps applied to each 

chromosome generated by the genetic algorithm. 
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Figure 3 – Architecture of the new approach. 

 

 

The next sections present the details of the approach.  

 

 

5. The Model 

 

 The conceptual model presented in Section 2 is refined in two ways. A new 

measure of performance and constraints enforcing the release date concept are 

introduced. The following sub-sections describe the details of the refinement of the 

model. 

 

5.1. Measure of Performance 

 

Project management is actually a complex decision making process involving the 

pressures of due dates (tardiness), stocks (earliness), and work in process (flow time). 
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The new performance measure incorporates simultaneously three criteria: tardiness, 

earliness and flow time. The following notation will be used: 

 

Di - Ideal duration for project i. 

DDi - Due date for project i. 

CDi - Conclusion date for project i in generated schedule.  

BDi - Beginning date for project i in generated schedule. 

Ti - Tardiness of project i = ma . ( ), 0i iCD DD−

( ), 0i iDD CD−

( ), 0i i iBD D− −

3 2 2
i i i

i

cT E FD+ + ∑

2

x

Ei - Earliness of project i = . max

FDi - Flow time deviation for project i = ma .x CD

CPDi - Critical Path Duration of project i 

 

The new performance measure is defined as follows: 

 

i i

a b∑ ∑     (5) 

 

where  a, b, and c  are parameters defined by the decision maker. 

 

In a real-world situation, the ideal duration for a project it is not known.  To overcome 

this, we replace  

∑ i

i

c FD

( )

 

by 
2

−
∑ i i

i i

CD BD

CPD

1,...,

c . 

 

 

5.2. Release Dates 

 

In the conceptual model presented in Section 2, the constraints for the resources are 

expressed by condition (3). However, there are others types of constraints related with 

the start of a project which cannot be modeled by condition (3). To be able to model this 

kind of constraint, we add the following type of constraints to the model 

 

1 1iN iF MDL
− +

i I≥ =

1,...,iL i I=

 
 

where MDLi  represents earliest release date for project i. This constraint is enforced in 

the model implicitly by assigning a duration DLi to the initial activity of each project 

which is larger than MDLi  , i.e.,  

 

1 1iN id DL MD
− + = ≥

. 
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6. Schedule Generation Procedure 

 

The schedule generation procedure constructs active schedules. However, the set of 

active schedules is usually very large and contains many schedules with relatively large 

delay times, having therefore poor quality in terms of the performance measure. To 

reduce the solution space, we used the concept of parameterized active schedules 

introduced by Gonçalves and Beirão (1999) and Gonçalves et al. (2004). 

 

The basic idea of parameterized active schedules consists in controlling the delay 

times that each activity is allowed. By controlling the maximum delay time allowed, 

one can reduce or increase the solution space. A maximum delay time equal to zero is 

equivalent to restricting the solution space to non-delay schedules and a maximum delay 

time equal to infinity is equivalent to allowing active schedules. 

 

Figure 2 illustrates where the set of parameterized active schedules is located 

relative to the class of semi-active, active, and non-delay schedules. 

 

Semi-Actives

Actives

Non-Delay

Delay Time 1 De

Se

Parametrized Actives

lay Time 2 

mi-Actives

Actives

Non-Delay

Delay Time 2 > Delay Time 1 

 
Figure 2 – Parameterized active schedules. 

 

 

The procedure used to construct parameterized active schedules is based on a 

scheduling generation scheme that does time incrementing. For each iteration g, there is 

a scheduling time tg. The active set comprises all activities which are active at tg, i.e. 

{ }|g jA j J= ∈ j g jF d t F− ≤ <

( ) ,

g

j k

j A

r
∈

= −

. The remaining resource capacity of resource k at instant 

time tg is given by ( ) ∑k gRD t k gR t .  Sg  comprises all activities which have 

been scheduled up to iteration g, and Fg comprises the finish times of the activities in 

Sg. Let Delayg  be the delay time associated with iteration g, and let Eg comprise all 

activities which are precedence feasible in the interval [tg , tg  + Delayg  ],  i.e. 

 

 

{ }1\ |g g i ( )g g jE j J S F t−= ∈ ≤ Delay i P+ ∈ . 

 

 

The algorithmic description of the scheduling generation scheme used to create 

parameterized active schedules is given by the pseudo-code shown in Figure 4. 
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Initialization: { } { } { } ( )0 ( )= ∈kD R k K1 0 01, 0, 0 , 0 , 0 ,= = = Γ = =o kg t A S R  

 

2< +gS n   repeat while 

{ 

gE  Update 

 while Eg ≠ {} repeat 

{ 

             Select activity with highest priority 

{ }* argmax
gj E

j
∈

= jPRIORITY  

Calculate earliest finish time (in terms of precedence only) 

{ }* *
ji P imax

j j
EF F d

∈
= +

}

*

* * *

,
( ) ,τ≤

⎡ ⎤+ +⎣ ⎦

g kj k

j j

r RD

d d

 

Calculate the earliest finish time (in terms of precedence and capacity) 

{* * *

,

min , |

| 0 , ,τ

⎡ ⎤= ∈ − ∞ ∩ Γ⎣ ⎦

∈ > ∈

j j j

j k

F t FMC d

k K r t t
 

Update { }*

1g gS S j−= ∪   ,  { }*Γ = Γ ∪g g-1 j
F   

Iteration increment: g = g+1 

Update  * * *, , ( ) | ,g g k j j j
A E RD t t F d F⎡ ⎤∈ −⎣ ⎦ * ,

, | 0
j k

k K r∈ >

} 

Determine the time associated with activity g  

{ }1 1|
− −

= ∈ Γ >
g g g

t tmint t  

        } 

 

Figure 4 - Pseudo-code to construct parameterized active schedules. 

 

 

The basic idea of parameterized active schedules is incorporated in the selection step of 

the procedure,  
 

{ }* argmax
gj E

j
∈

= jPRIORITY . 

 

The set Eg is responsible for forcing the selection to be made only amongst activities 

which will have a delay smaller or equal to the maximum allowed delay. Figure 5 

illustrates the selection step. 
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Figure 5 - Eligible activities for different types of schedules. 

 

 

The parameters PRIORITYj and Delayg  (priority of activity j and delays used at 

each g) are supplied by the genetic algorithm. The next section describes the genetic 

algorithm and shows how it generates the above parameters. 

 

 

7.  Genetic Algorithm 

 

Genetic algorithms are adaptive methods, which may be used to solve search and 

optimization problems (Beasley et al. (1993)). They are based on the genetic process of 

biological organisms. Over many generations, natural populations evolve according to 

the principles of natural selection, i.e. survival of the fittest, first clearly stated by 

Charles Darwin in The Origin of Species. By mimicking this process, genetic algorithms 

are able to evolve solutions to real world problems, if they have been suitably encoded. 

 

Before a genetic algorithm can be run, a suitable encoding (or representation) for the 

problem must be devised. A fitness function is also required, which assigns a figure of 

merit to each encoded solution. During the run, parents are selected for reproduction, 

and recombined to generate offspring (see Figure 6). 

 

It is assumed that a potential solution to a problem may be represented as a set of 

parameters. These parameters (known as genes) are joined together to form a string of 

values (chromosome). In genetic terminology, the set of parameters represented by a 

particular chromosome is referred to as an individual. The fitness of an individual 

depends on its chromosome and is evaluated by the fitness function. 

During the reproductive phase, the individuals are selected from the population and 

recombined, producing offspring, which comprise the next generation. Parents are 

randomly selected from the population using a scheme, which favors fitter individuals. 

Having selected two parents, their chromosomes are recombined, typically using 

mechanisms of crossover and mutation. Mutation is usually applied to some individuals, 

to guarantee population diversity. 
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____________________________________________________________________ 

Genetic Algorithm 

{ 

Generate initial population Pt

Evaluate population Pt

While stopping criteria not satisfied Repeat  

{ 

Select some elements from Pt to copy into Pt+l

Crossover some elements of Pt and put into Pt+l

Mutate some elements of Pt and put into Pt+l

Evaluate new population Pt+l

Pt = Pt+l

} 

} 

_____________________________________________________________________ 
 

Figure 6 - A standard genetic algorithm. 

 

 

7.1. Chromosome Representation 

 

The genetic algorithm described in this paper uses a random key alphabet U(0,1) 

similar to the one proposed by Bean (1994). The important feature of random keys is 

that all offspring formed by crossover are feasible solutions. This is accomplished by 

moving much of the feasibility issue into the objective function evaluation. If any 

random key vector can be interpreted as a feasible solution, then any crossover vector is 

also feasible. Through the dynamics of the genetic algorithm, the system learns the 

relationship between random key vectors and solutions with good objective function 

values. 

 

A chromosome represents a solution to the problem and is encoded as a vector of 

random keys (random numbers).  

 

Each solution chromosome is made of 2n+m genes where n are the number of 

activities and m the number of projects.  

Prioriti es Delays Times

Chromosom e = ( gene1, … ,  genen   ,   genen+1,  … , gene2n  ,  gene2n+1,  … , gene2n+m )

Rel ease Dates

 
The first n genes are used to determine the priorities of each activity. The genes 

between n+1 and 2n are used to determine the delay time used at each of the n iterations 

of scheduling procedure. The last m genes are used to determine the release dates of 

each of the m projects. 
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7.2. Decoding  

 

In this section, we describe how the chromosomes supplied by the genetic algorithm 

are decoded (transformed) into activity priorities, delays, and release dates. In our 

approach, we consider the following three solution alternatives: 

 

GaBasic  -  a basic decoding procedure; 

 

GaSlackNd  -  a decoding procedure where the priorities of the activities 

are static (i.e., the activities priorities are not evolved by the 

genetic algorithm) and the schedules are non-delay; 

 

GaSlackMod  -  a more sophisticated decoding procedure in which problem 

specific information is included. 

 

The next sub-section presents the decoding procedures for the activity priorities, 

delays, and release dates for each of the above solution alternatives. 

 

 

7.2.1. Decoding of the Activity Priorities 

 

 As mentioned in Section 7.1, the first n genes are used to obtain activity 

priorities. Activity priorities are values between 0 and 1. The higher the value, the 

higher the priority will be. Below, we present the decoding procedures for the activity 

priorities according to each of the above proposed solution alternatives. 

 

GaBasic  

 

For this solution alternative, the priority of each activity j is given by the gene value, i.e. 

 

Priorityj = Genej

 

 

GaSlackNd  

 

For this solution alternative, the priority of each activity j is given by the normalized 

slack calculated by the following expression: 

j

j

Slack
ity

MaxSlack
=

| ∈i j iDD

Prior  

where 

 = Due date of the project i to which the activity j belongs. 

 

jLLP  = Longest length path from the beginning of the activity j  

to the end of the project i to which activity j belongs.  

 

jSlack  = 
| ∈ −i j i jDD LLP  

MaxSlack = Maximum Slack for all activities amongst all projects.  
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GaSlackMod 

 

For this solution alternative, the priority of each activity j is given by an expression 

which modifies the normalized slack to produce priority values that are between 70% 

and 100% of the normalized slack. The priority values are obtained by the following 

expression: 
 

( )0.30.7
j

j jGene+ ×

( )i i = 1 , ... ,m

Slack
Priority

MaxSlack
= ×  

 

 

 

7.2.2. Decoding of the Delays 

 

The genes between n+1 and 2n are used to determine the delay times, Delayg , used 

by each scheduling iteration g. Below we present the decoding procedures for the delay 

times according to each of the above proposed solution alternatives. 

 

GaBasic and GaSlackMod 

For these solutions alternatives, the delay schedules generated are given by the 

following decoding expression: 

 

Delayg = geneg  × 1.5 × MaxDur 

 

where MaxDur is the maximum duration amongst all activity durations. The factor 1.5 

was obtained after experimenting with values between 1.0 and 2.0 in increments of 0.1.  

 

 

GaSlackNd  

 

For this solution alternative, the delay schedules generated are non-delay therefore the 

all delays are zero, i.e. 

Delayg = 0  

 

 

7.2.3. Decoding of the Release Dates 

 

 

The last m genes of each the chromosome, 2n+1 to 2n+m , are used to determine the 

release dates of each project i. All the above solution alternatives (GaBasic, 

GaSlackNd, and GaSlackMod) use the following decoding expression to obtain the 

release date of each project i: 

 

i i 2n+i iDL = MDL + Gene × DE - MDL   
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7.3. Evolutionary Strategy 

 

To breed good solutions, the random key vector population is operated upon by a 

genetic algorithm. There are many variations of genetic algorithms obtained by altering 

the reproduction, crossover, and mutation operators. The reproduction and crossover 

operators determine which parents will have offspring, and how genetic material is 

exchanged between the parents to create those offspring. Mutation allows for random 

alteration of genetic material. Reproduction and crossover operators tend to increase the 

quality of the populations and force convergence. Mutation opposes convergence and 

replaces genetic material lost during reproduction and crossover. 

 

Reproduction is accomplished by first copying some of the best individuals from one 

generation to the next, in what is called an elitist strategy (Goldberg (1989)). The 

advantage of an elitist strategy over traditional probabilistic reproduction is that the best 

solution is monotonically improving from one generation to the next. The potential 

downside is population convergence to a local minimum. This can, however, be 

overcome by high mutation rates as described below. 

 

Parameterized uniform crossovers (Spears and DeJong (1991)) are employed in place 

of the traditional one-point or two-point crossover. After two parents are chosen 

randomly from the full, old population (including chromosomes copied to the next 

generation in the elitist pass), at each gene we toss a biased coin to select which parent 

will contribute the allele. Figure 7 presents an example of the crossover operator. It 

assumes that a coin toss of heads selects the gene from the first parent, a tails chooses 

the gene from the second parent, and that the probability of tossing a heads is for 

example 0.7 (this value is determined empirically). Figure 7 shows one potential 

crossover outcome: 

 

Coin toss H H T H T 

      

Parent 1 0.57 0.93 0.36 0.12 0.78 

      

Parent 2 0.46 0.35 0.59 0.89 0.23 

      

Offspring 0.57 0.93 0.59 0.12 0.23 
 

Figure 7 - Example of Parameterized Uniform crossover. 

 

Rather than the traditional gene-by-gene mutation with very small probability at each 

generation, one or more new members of the population are randomly generated from 

the same distribution as the original population. This process prevents premature 

convergence of the population, like in a mutation operator, and leads to a simple 

statement of convergence. 

 

Figure 8 depicts the transitional process between two consecutive generations. 

 

 

 

10/29/2004  -   12:00  13

   



 

Crossover

Randomly generate

Current  Population

Copy best

d

Next  Population

Best

Worst

TOP

BOT

 
Figure 8- Transitional process between consecutive generations. 

 

 

In the next section, we describe the problem generator used to produce test problems 

for the computational experiments. 

 

 

8. Problem Instance Generator 

 

In the literature we could not find any standard problem instances for the RCMPSP. 

To overcome this we used the problem generator developed in Mendes (2003). The 

remainder of this section describes the problem generator. 

 

The problem generator creates problem instances which have as optimal value for the 

measure of performance described in Section 5.1 the value zero (i.e. tardiness=0, 

earliness=0, and flow deviation =0). 

 

The problem generator has the following inputs parameters: 

 

• Number of problems to generate; 

• Number of projects to include in each problem; 

• Average projects number to be simultaneously in execution. 

 

Each multi-project problem instance is generated using the following rules: 

 

1. Each single-project instance to be included in the multi-project instance 

problem is chosen at random from the 600 single-project instances of type 

J120 given in Kolisch et al. (1998); 

 

2. The ideal duration of each single-project instance is equal to the best known 

makespan value obtained from the PSPLIB library; 

 

3. The average number of projects to be simultaneously in execution is imposed 

indirectly by forcing all the single-project instances included in the multi-
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project instance to have a due date randomly chosen in the interval given by 

its critical path duration and the value given by the due date upper bound 

obtained by the following expression 

 

Sum of ideal duration of each single-project instance 

Number of single-projects to be simultaneously in execution 

 

 

4. The beginning date of each project is randomly generated in the interval [0 , 

problem due date – ideal duration].  

 

5. The resource capacity in the interval [0 , due date upper bound] is 

calculated by the adding the resource capacities of each single-project 

instance from its beginning date up until its due date computed in Rule 3. 

Note that this procedure assigns resource capacities that make it possible to 

complete each single-project with tardiness=0, earliness=0, and flowtime 

deviation=0, i.e. it guaranties that the optimal value of measure performance 

defined in Section 5.1 is zero. 

 

 

9. Computational experiments 

 

To illustrate the effectiveness of the algorithms described in this paper, we used 

multi-project instances generated by the problem instance generator described in the 

previous section. 

 Four types of multi-project instances where generated, respectively, with 10, 20, 30, 

and 50 single-project instances. For each problem type, we generated 20 instances. 

Since each single-project instance has 120 activities, we have that each multi-project 

instance has 1200, 2400, 3600, and 6000 activities, respectively. Each activity can use 

up to 4 resources. The average number of projects simultaneously in execution is 3, 6, 9, 

and 15, respectively, for the problems with 10, 20, 30, and 50 single-projects. 

 

 

9.1. GA Configuration  

 

The present state-of-the-art theory and practice of genetic algorithms does not provide 

information on how to configure them. In our past experience with genetic algorithms 

based on the same evolutionary strategy, see Gonçalves and Almeida (2002), Gonçalves 

et al. (2004a), and Gonçalves and Resende (2004b), we obtained good results with 

values of TOP, BOT, and Crossover Probability (CProb) in the following intervals: 

 

 

Parameter Interval 

TOP 0.10 – 0.20 

BOT 0.15 – 0.30 

Crossover Probability (CProb) 0.70 – 0.80 
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For the population size we obtained good results by indexing it to the size of the 

problem, i.e., use small size populations for small problems and larger populations for 

larger problems. Having this past experience in mind and in order to obtain a reasonable 

configuration, we conducted a small pilot study by experimenting the combinations of 

the following values TOP=(0.10, 0.15, 0.20) , BOT=(0.15, 0.20, 0.25, 0.30), and 

CProb=(0.70, 0.75, 0.80). We tried population sizes with 0.1 to 2.0 (in intervals of 0.1) 

times the number of activities in the multi-project problem instance. 

 

 

For the pilot study, the best results were obtained with the following configuration:  

 

Population Size: Min ( 0.2  × Number of Activities in the Multi-Project, 250) 

Crossover Probability: 0.7 

Selection:
The top 10% from the previous population chromosomes are 

copied to the next generation.   

Mutation:
The bottom 20% of the population chromosomes are replaced 

with randomly generated chromosomes. 

Fitness: See Equation (5) 

Stopping Criterion: 50 Generations 

 

The above configuration was held constant for all experiments and all problem 

instances. The following experimental results demonstrate that this configuration 

provides excellent results in terms of solution quality and that it is very robust. 
 

Table 1 summarizes the experimental results. It lists the fitness, earliness, tardiness, 

and flow deviation. The columns Avg
1
 and SD

1
, Avg

2
 and SD

2
, Avg

3
 and SD

3
, and 

Avg
4
 and SD

4 
represent the average and standard deviation obtained for each of the 20 

instances, respectively, for following expressions: 
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where N represents the number of projects in each problem. 

 

Algorithm GaSlackMod is the best in all aspects relative to the other two. In 

absolute terms, algorithm GaSlackMod obtained, for all instances, earliness, tardiness, 

and flow deviation close to the optimum value (i.e. zero). 
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Table 1 – Experimental results. 

  Fitness Earliness Tardiness Flow Deviation 
Nº Projects Algorithm Avg

1
SD

1
Avg

2
SD

2
Avg

3
SD

3
Avg

4
SD

4

 GaSlackMod 15.55 29.04 0.00 0.00 1.17 1.44 0.22 0.43 

10 GaSlackND 20.74 21.08 0.00 0.00 2.25 1.35 0.29 0.35 

 GaBasic 996.57 1332.56 0.14 0.30 10.15 6.27 5.05 3.22 

 GaSlackMod 4.26 10.99 0.00 0.00 0.59 0.35 0.11 0.30 

20 GaSlackND 42.94 124.61 0.00 0.01 1.47 1.67 0.33 0.74 

 GaBasic 707.30 653.73 0.09 0.11 7.46 5.21 0.49 0.46 

 GaSlackMod 6.59 26.42 0.00 0.00 0.64 0.75 0.04 0.08 

30 GaSlackSA 11.32 36.23 0.00 0.01 0.87 0.93 0.08 0.15 

 GaGen 265.18 253.86 0.01 0.02 4.50 3.65 0.28 0.35 

 GaSlackMod 0.56 0.23 0.00 0.00 0.49 0.05 0.01 0.04 

50 GaSlackSA 1.36 2.24 0.00 0.00 0.54 0.12 0.03 0.02 

 GaGen 268.25 354.95 0.01 0.03 2.91 2.09 0.08 0.10 

 

 

Table 2 presents the results obtained by algorithm GaSlackMod with the performance 

measure (5), where 2∑ i

( )
2

−
∑ i i

i i

CD BD
c

CPD
D  is replaced by  . 

i

F

 

Table 2 – Experimental results for the algorithm GaSlackMod. 

Nº Projects Fitness Tardiness Earliness Flow Time 

 1) 2) 1) 2) 1) 2) 1) 2) 

10 15.55 53.45 0.00 0.00 1.17 1.11 100.15 99.12 

20 4.26 84.11 0.00 0.00 0.59 0.53 95.37 95.28 

30 6.59 42.07 0.00 0.00 0.64 0.56 94.90 94.98 

50 0.56 38.94 0.00 0.00 0.49 0.49 94.79 94.79 

 

2∑ i

i

FD
( )

2
−

∑ i i

i i

CD BD

CPD
c   ,  2) ) Average obtained using 1) Average obtained using 

 

 

The algorithm was implemented in Visual Basic 6.0 and the tests were run on a PC with 

a 1.33 GHz AMD Thunderbird CPU on the MS Windows Me operating system. The 

average computational times, in seconds, for each problem instance and for 50 

generations are presented in Table 3. 

 

 
Table 3 – CPU time for 50 generations. 

Classes of instances 10 20 30 50 

Average CPU time for 50 generations 178 s 449 s 840 s 1860 s 
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10. Conclusions 

 

This paper presents a genetic algorithm for the resource constrained multi-project 

scheduling problem RCMPSP. The chromosome representation of the problem is based 

on random keys. The schedules are constructed using a heuristic that generates 

parameterized active schedules based on priorities, delay times, and release dates 

defined by the genetic algorithm.  

 

The approach was tested on a set problem with 10, 20, 30, and 50 projects (1200, 

2400, 3600, and 6000 activities, respectively). The algorithm GaSlackMod has better 

results than any of the other two approaches and obtained values very close to the 

optimum value (zero) therefore validating the effectiveness of the proposed approach. 
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