Name: Date:

## Exit Ticket 90 - Triangle Congruence Shortcuts Part 2 - Section 8.04

## **CORE**

A. Determine whether each pair of triangles is congruent by looking at the sides and angles. If they are congruent, state the shortcut, and write a triangle congruence statement. If congruence cannot be determined, explain why not, and write CBD.

| Figure                                               | Congruence Shortcut or<br>Reason Why CBD | Congruence Statement or<br>Cannot Be Determined |
|------------------------------------------------------|------------------------------------------|-------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                          | ΔSTR ≅                                          |
| $\begin{array}{c} B \\ \\ A \end{array}$             |                                          | Δ <i>ABC</i> ≅                                  |
| 3. G H                                               |                                          | ΔDEF ≅                                          |
| 4.                                                   |                                          | ΔFGH ≅                                          |
| 5· M P Q                                             |                                          | ΔMON ≅                                          |

Name: Date:

- B. Mark each pair of triangles to make the statement true.
- 1.  $\triangle ABE \cong \triangle DBC$  by ASA triangle congruence shortcut.



3.  $\Delta MAN$  might be congruent to  $\Delta YBO$ . Two pairs of sides are congruent and a non-included pair of angles is congruent.



2.  $\triangle SOB \cong \triangle CRY$  by AAS triangle congruence shortcut.



4.  $\triangle ABC \ncong \triangle DBC$  because congruent parts are not corresponding.



## **EXTENSION**

C. Determine what additional information must be added in order to make each statement

 $1.\Delta ABC \cong \Delta DBC$  by AAS triangle congruence shortcut.



2.  $\Delta HGI \cong \Delta FGS$  by ASA triangle congruence shortcut.

