son Obiective	NAFP 2005 Strand: Geometry
Verify and use properties of	Topic: Relationships Among Geometric Figures
trapezoids and kites	Local Standards:
	·
abulary and Key Concepts	
Tranozoida	
Theorem 6-15	
The base angles of an isoscales trans	oid ara
The base angles of an isosceles trapezo	
Theorem 6-16	
The of an isosceles trapezoid are congruent.	

/	Kites Theorem 6-17	
	The diagonals of a kite are	
< l>		

A

C

В

- Z

Examples

Finding Angle Measures in Trapezoids WXYZ is an isosceles trapezoid, and $m \angle X = 156$. Find $m \angle Y$, $m \angle Z$, and $m \angle W$.

2 Using Isosceles Trapezoids Half of a spider's web is shown at the right, formed by layers of congruent isosceles trapezoids. Find the measures of the angles in *ABDC*.

Trapezoid *ABDC* is part of an isosceles triangle whose vertex is at the center of the web. Because there are 6 adjacent congruent

vertex angles at the center of the web, together forming a

angle, each vertex angle measures $\frac{180}{6}$, or _____.

By the Triangle Angle-Sum Theorem, $m \angle A + m \angle B + 30 =$

so $m \angle A + m \angle B =$ _____.

Because *ABDC* is part of an isosceles triangle, $m \angle A = m \angle B$,

so
$$2(m \angle A) =$$
 and $m \angle A = m \angle B =$

Another way to find the measure of each acute angle is to divide the

difference between 180 and the measure of the vertex angle by 2: 180 - 20

 $\frac{180 - 30}{2} =$

Because the bases of a trapezoid are parallel, the two angles that share a leg

are so
$$m \angle C = m \angle D = 180 - 75 =$$

Quick Check

1. In the isosceles trapezoid, $m \angle S = 70$. Find $m \angle P, m \angle Q$, and $m \angle R$.

121

Class

Example

6 Finding Angle Measures in Kites Find $m \angle 1$, $m \angle 2$, and $m \angle 3$ in the kite.

Quick Check

2. The middle ring of the piece of ceiling shown is made from congruent isosceles trapezoids. Imagine a circular glass ceiling made from the ceiling pieces with 18 angles meeting at the center. What are the measures of the two sets of base angles of the trapezoids in the middle ring?

3. Find $m \angle 1$, $m \angle 2$, and $m \angle 3$ in the kite.

122

Daily Notetaking Guide