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Abstract: Initially recognized through microarray-based gene expression profiling, basal-

like breast cancer, for which we lack effective targeted therapies, is an aggressive form of 

carcinoma with a predilection for younger women. With some success, 

immunohistochemical studies have attempted to reproduce the expression profile 

classification of breast cancer through identification of subtype-specific biomarkers. This 

review aims to present an in depth summary and analysis of the current status of basal-like 

breast cancer biomarker research. While a number of biomarkers show promise for future 

clinical application, the next logical step is a comprehensive investigation of all biomarkers 

against a gene expression profile gold standard for breast cancer subtype assignment. 

Keywords: breast cancer; basal-like; biomarkers; intrinsic subtype; 

immunohistochemistry; triple-negative; basaloid; expression profile 

 

1. Introduction 

Gene expression profiling has enabled the classification of breast cancers into intrinsic molecular 

subtypes with diverse clinicopathologic features [1–3]. Representing ~15% of these biologically and 

clinically distinct forms of breast cancer [4–6], basal-like carcinomas are of particular interest to 

clinicians and researchers due to their characteristically poor prognosis and resistance to existing 

molecularly-targeted treatment modalities, such as endocrine therapy (e.g., tamoxifen and aromatase 

inhibitors) for hormone receptor-positive disease or trastuzumab for human epidermal growth factor 
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receptor-2 (HER2)-positive disease, leaving cytotoxic chemotherapy as the principal systemic 

treatment [7–10]. Furthermore, younger women have a greater tendency to be afflicted by this 

aggressive subtype [11–13]. These clinically defining attributes of most basal-like carcinomas 

illustrate that, while remarkable strides are being made in our understanding of both molecular and 

genetic mechanisms of breast cancer, characterization of the basal-like subtype is a critical focus for 

clinical translation as both new diagnostics and treatments are needed.  

Basal-like breast carcinomas exhibit a certain degree of heterogeneity in their expression profile, 

morphology, immunophenotype, prognosis and treatment response. Basal-like gene expression profiles 

and biomarker expression are seen not only in typical high grade infiltrating ductal carcinomas, but 

also in metaplastic [14], secretory [15], medullary [16] and prognostically favorable adenoid cystic 

carcinomas [17]. Nevertheless, Weigelt et al. [18] recently provided strong support for the concept of 

basal-like breast cancer by illustrating that it is the intrinsic subtype most consistently identifiable by 

gene expression profile analysis. Multiple studies using different platforms and methodologies have 

revealed that basal-like breast carcinomas are generally characterized by negative expression of 

hormone receptors and related genes, as well as positive expression of a set of genes typically 

associated with basal epithelial cells, such as basal cytokeratins, P-cadherin, β4 integrin and nestin, in 

addition to several genes involved in cellular proliferation [1,2,19]. Given such consistencies in gene 

expression patterns, Stingl and Caldas [20] proposed that molecular characterization of breast cancers 

may provide insight into their cellular origins. However, the histogenesis of basal-like breast 

carcinomas is a controversial topic with some researchers believing these cancers develop from a 

multi-potential early precursor cell and others supporting the theory that such breast carcinomas arise 

from partially-committed luminal progenitor cells [21–23]. Simple studies on the preferential 

expression of basal versus luminal cytokeratins have been unable to provide sufficient support for 

either hypothesis [24], leading to extensive research efforts currently underway to find an answer.  

As histology is not consistently distinctive, and large scale expression profiling is not readily 

applied in a clinical setting, the search for clinically-practical cancer biomarkers that act as surrogate 

measurements of disease states is rapidly expanding in support of the paradigm shift towards more 

personalized medicine in this post-genomic era [25]. From improving the accuracy of diagnosis or risk 

assessment (via prognostic biomarkers) to guiding selection of optimal therapeutic interventions (via 

predictive biomarkers) [8,26–28], the potential clinical applications of these biological indicators are 

widely recognized in breast cancer research as having the potential to revolutionize patient 

management. Biomarkers for basal-like breast cancer are a subject of active and intense investigation 

for accurate diagnosis and therapeutic targets. The aim of this review is to evaluate our current state of 

knowledge on basal-like biomarkers as well as provide a critical survey of candidate biomarkers of 

basal-like breast cancer drawn from literature, followed by recommendations for future research 

directions. Particular emphasis is placed on immunohistochemical biomarkers confirmed on clinical 

biopsy and excision samples, as opposed to breast cancer cell lines, explanted or animal models. 

2. Biomarker Panels for Basal-like Breast Cancer 

Tumor biomarkers can encompass a range of molecules from nucleic acids to metabolites. 

However, protein biomarkers convert most readily into targeted therapies (as most pharmaceuticals 

tend to target proteins) and clinical diagnostic assays using standard existing platforms [28,29]. For 
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instance, practical and clinically-accessible immunohistochemical techniques used routinely for breast 

cancer patient management are predominantly applicable to protein biomarkers. Despite semi-

quantitative results and susceptibility to both inter-observer and technical variation—short comings 

which can be remedied to some extent through sufficient training and implementation of stringent 

protocols—immunohistochemistry is suited for application on formalin-fixed paraffin-embedded 

samples and also provides the unique advantage of simultaneous morphological analysis. In fact, few 

published reports on basal-like breast cancer have used a gene expression profile gold standard, opting 

instead to use immunohistochemistry-based methodologies while investigating this subtype primarily 

due to cost, but also to avoid the complex sample preparation and data analysis processes [5,30].  

Further establishing immunohistochemistry as a cornerstone in breast cancer research, tissue 

microarrays enable highly efficient processing of hundreds to thousands of archival tumor specimens 

at one time with even more significant cost savings [31,32]. Facilitated by this relatively new 

technology, biomarker development has excelled to the point where prospectively-designed  

re-analyses of existing material (such as samples from completed clinical trials with extensive  

follow-up), sometimes termed ‗retrospective-prospective studies‘, are beginning to generate clinically 
meaningful data about predictive biomarkers, and have the potential to change medical practice more 

quickly than new clinical trials [31,33–35]. Even so, finding a single biomarker that fulfills all 

requirements necessary to be deemed applicable in routine analysis has proven to be extremely 

difficult for basal-like carcinomas. More realistically, panels of breast cancer biomarkers can be 

designed in anticipation of phenotypic heterogeneity, and some have emerged with sufficient 

sensitivity and specificity for use in prognostication or prediction of treatment response in the  

clinical setting. 

2.1. Current Examples: Immunohistochemical Definitions of Basal-like Breast Cancer 

Immunohistochemical analysis of HER2 as well as estrogen and progesterone receptors (ER and 

PR, respectively) is used for predictive purposes in routine breast cancer patient management. Lack of 

expression of all three of these biomarkers predicts non-response to available endocrine (tamoxifen, 

aromatase inhibitors) and anti-HER2 (trastuzumab) targeted therapies, and has become known as a 

triple-negative phenotype (TNP). With approximately 70–90% of triple-negatives revealed to be  

basal-like breast carcinomas [36,37], TNP has been frequently used as a surrogate for the basal-like 

subtype. However, despite considerable overlap in behavioral/biological characteristics, several studies 

have shown that triple-negative and basal-like breast tumors are not synonymous, differing in 

prognosis and possibly in chemotherapeutic sensitivity [12,38–41]. Furthermore, an all-negative 

definition has a high propensity to mis-assign tumor classifications when biomarkers are negative for 

technical reasons. This and similar lines of evidence have prompted most researchers to acknowledge a 

distinction between TNP and basal-like tumors, leading to scrutiny of the validity of the triple-negative 

definition for basal-like breast cancer [12,38,42,43]. The primary reason for the continued use of a 

TNP category of breast cancers is its simplicity and convenience (based solely on information that can 

be readily extracted from a patient‘s chart), and its identification of a specific group of breast cancers 
for which current targeted therapies are not expected to provide benefit.  

Another approach used to identify basal-like breast carcinomas is based on positive expression of 

basal cytokeratins (CKs) 5, 14 and 17 [6,13,44–46]. Prior to the discovery of the breast cancer intrinsic 
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molecular subtypes, a number of studies had confirmed an association between poor prognosis and 

basal cytokeratin expression [1,47–51]. Subsequent research undertaken in light of the molecular 

identification of the basal-like subtype has greatly extended our knowledge of the clinical features 

associated with expression of basal cytokeratins in breast cancer [6,13,46], and these biomarkers have 

been used alone or incorporated into several immunohistochemical panels for identifying basal-like 

breast carcinomas. For instance, by comparing gene expression profiles to immunohistochemical 

results obtained using technically well-established antibodies, Nielsen et al. [5] defined basal-like 

breast cancer as any staining with CK5/6 or epidermal growth factor receptor (EGFR) antibodies in the 

context of HER2 and ER negativity (Figure 1). With a reported 76% sensitivity and 100% specificity 

for the basal-like subtype this definition has been widely used, and it has since been modified to 

incorporate PR-negativity to form a 5-marker immunopanel with greater prognostic value than the 

TNP definition for basal-like breast cancer [12]. Similarly, Livasy et al. [52] reported that negative 

expression of ER and HER2 with positive expression of EGFR, CK5/6, CK8/18 and vimentin was the 

most consistent immunophenotype of basal-like breast tumors. Also, yet another surrogate 

immunopanel with 78% sensitivity and 100% specificity against a gene expression profile gold standard 

was recently reported by Thike and colleagues [53], consisting of CK14, EGFR and a mixture of high 

molecular weight basal cytokeratins (using the pan-basal cytokeratin monoclonal antibody 34βE12). 

Figure 1. Immunohistochemical staining of a representative basal-like breast cancer using 

the definition of Nielsen et al. [5]. The case illustrated is ER negative, HER2 negative, 

EGFR strong positive and CK5/6 weak positive. 

 

2.2. Lack of a Consensus 

The seminal paper by Perou and colleagues [1] that first elucidated the molecular portrait of breast 

cancer is largely responsible for inspiring interest in the basal-like subtype, catalyzing biomarker 

research for the purpose of recapitulating the gene expression classification as well as characterizing 

the biological and clinical features of this form of breast cancer. Although expression profiling can be 
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considered a gold standard for identification of basal-like breast cancer, whether performed using 

microarrays or newer sequencing-based approaches such as the PAM50 qRT-PCR assay [54], it is 

currently not a feasible approach for large-scale application on routine formalin-fixed paraffin-

embedded clinical samples (required for both retrospective application on large sample cohorts with 

long term follow-up and prospective application in standard hospital pathology laboratories). For this 

reason, immunohistochemical surrogates have become an important alternative. Major definitions are 

negative (i.e., ER/HER2 double- or triple-negative incorporating PR), positive (e.g., purely based on 

basal cytokeratin expression), or a combination. Unfortunately, variable immunohistochemical 

definitions have impeded consistency in the interpretation of retrospective studies and confounded 

proposals for prospective implementation. In general, incorporating additional biomarkers into a panel 

can increase specificity, at the potential cost of sensitivity. Many biomarkers have been associated with 

the basal-like phenotype, and those with high sensitivity and/or specificity could improve the 

performance of immunohistochemical surrogate panels. 

3. Biomarkers Associated with a Basal-like Breast Cancer Phenotype 

In effort to develop clinical tests that more reliably diagnose this aggressive subtype of breast 

cancer and/or best define an entity that may have predictive value for treatment selection, many studies 

have been published over the last decade describing additional biomarkers that correlate with a clinical 

triple-negative phenotype, established immunohistochemical surrogates for basal-like breast cancer, or 

in some cases a microarray gold standard definition. Ranging from structural proteins to those involved 

in cellular processes, such as signal transduction and apoptosis, the proposed biomarkers for the  

basal-like subtype are diverse in class and function. 

3.1. Structural 

Structural proteins reported to have increased expression in basal-like breast carcinomas include 

basal cytokeratins (CK5/6, CK14 and CK17) [1,13,44,46,47,55], vimentin [52,56–58], fascin [58–60], 

nestin [61–63] and moesin [64,65]. Such cytoskeletal components are favorable antigens for 

immunohistochemical detection because of their stable and abundant cellular expression. Specificity 

can be an issue as these proteins are expressed in many cell types including benign breast epithelial 

and stromal elements, and so generally must be interpreted in their morphological context by an 

experienced pathologist. Most are still under investigation and have yet to provide actual clinical utility 

beyond that initially reported in the original publications, with the exception of basal cytokeratins 

which are perhaps the oldest and most clinically characterized biomarkers of basal-like breast 

carcinomas. For instance, Kusinska et al. [66] recently sought to address whether the inclusion of 

vimentin in an immunopanel consisting of ER, PR, HER2, and basal cytokeratins (CKs 5/6, 14 and 17) 

would better delineate their basal-like breast cancer definition (i.e., TNP combined with basal 

cytokeratin positivity) using overall survival as the primary endpoint. In their analysis, it was 

determined that vimentin did not contribute prognostically to the immunopanel, which somewhat 

contradicts the results of Livasy et al. [52] mentioned previously while discussing current 

immunohistochemical definitions of basal-like breast cancer [66].  
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Playing a different type of structural role within the cell, claudins are protein components of tight 

junctions responsible for maintaining cell polarity and establishing a paracellular barrier that controls 

the ionic permeability of epithelial tissues [67]. Preferential expression of claudins 1 and 4 has been 

associated with poor prognosis and basal-like breast cancer [68–70]. Of a related nature (as structural 

components of plasma membrane caveolae), increased expression of both caveolin 1 and 2 has also 

been linked to the basal-like subtype [71–74]. A clear resolution of the role of the caveolins as basal-

like biomarkers is hindered by controversy regarding their cellular distribution in invasive breast 

cancer, as well as recent evidence indicating a potentially stronger prognostic role for stromal rather 

than tumor cell expression of caveolin 1 [75,76]. 

3.2. Extracellular Interactions & Signal Transduction 

Cell-cell and cell-extracellular matrix contacts mediate signaling cascades that culminate in diverse 

molecular responses pivotal to cancer, including angiogenesis, cell division, apoptosis, invasion and 

metastasis [77]. Some reported basal-like biomarkers are proteins normally secreted into the 

extracellular matrix, such as osteonectin (also known as SPARC) and osteopontin. These bone matrix-

associated factors do not have well-defined primary roles in breast structure [58,78–80]. Osteopontin is 

a phosphorylated glycoprotein found in all body fluids, but its overexpression in the tumor cells of 

breast and other cancers has led to its investigation as a potential biomarker and anti-metastatic 

therapeutic target [81,82]. A study by Wang et al. [37] in which mean osteopontin levels were found to 

be significantly higher in triple-negative relative to non-triple-negative breast carcinomas provides 

preliminary evidence of a possible association with basal-like breast cancer.  

The laminin family of extracellular matrix glycoproteins involved in cellular adhesion has been 

associated with the basal-like subtype [57]. Specifically, high expression of laminin 5 (more recently 

referred to as laminin 332) has been observed in a variety of tumors including basal-like breast 

carcinomas [83,84]. A cell surface interacting partner for most laminins is α6β4 integrin, which is 
known to modulate signaling pathways involved in proliferation and survival [85,86]. Interestingly,  

Lu et al. [86] reported that the β4 integrin subunit is preferentially expressed in basal-like breast cancer 

compared to non-basal-like. Other cell surface molecules that are reported to exhibit increased 

expression in the basal-like subtype include nerve growth factor receptor (NGFR) [87], CD109 [88], 

placental cadherin (P-cadherin; P-CD) [4,89–91], CD44 [92,93], CD280 (also known as 

Endo180) [43,94], c-Met [64,95,96] and CD146 (also known as melanoma cell adhesion 

molecule) [95,97]. Illustrating the necessity for standardization of the methods and approaches used for 

biomarker analysis, contradictory evidence suggesting a breast tumor inhibitory role for CD146 has 

also been reported [98,99]. As noted by Ouhtit and co-workers [98], one of the original 

immunohistochemical studies that correlated CD146 overexpression with the basal-like subtype of 

breast cancer considered normal CD146 endothelial cell staining alone within tumor tissue as a 

CD146-positive tumor, which undoubtedly influenced the findings of the paper. In spite of this, a 

recent study by Zabouo et al. [97] confirmed a statistically significant association between CD146 and 

basal-like versus non-basal-like breast cancer as defined by a gene expression profile gold standard. 

A select number of players involved in signal transduction have shown enough promise in both 

breast and other types of cancer to warrant major efforts in rational drug design. EGFR [5,100–103],  

c-Kit (also known as CD117) [5,17,102] and vascular endothelial growth factor (VEGF) [104,105] are 
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candidate biomarkers of basal-like breast cancer with targeted therapies in development. Examples of 

possible biology-based therapeutic options available for treatment of basal-like breast cancer include 

anti-EGFR monoclonal antibodies (cetuximab and panitumumab), EGFR tyrosine kinase inhibitors 

(gefitinib, erlotinib and lapatinib), imatinib for c-Kit kinase inhibition and bevacizumab for VEGF 

inhibition [106–110]. Initial trials in breast cancer have been somewhat disappointing with only 

moderate clinical efficacy; the described biomarkers may not be sufficiently robust to provide 

predictive value [111–115]. However, the relatively prevalent overexpression of EGFR, c-Kit and 

VEGF among basal-like and triple-negative breast cancers has maintained hope that current trials 

underway restricted to these tumor types will maximize the chance of identifying a responsive 

subgroup of breast cancer and offer more definitive data [104,105,116,117]. 

3.3. Transcription, Cell Cycle Regulation and DNA Damage Repair 

While the cell surface components that govern tumor interactions have gained extra attention 

because they are targeted by several new pharmaceuticals, common downstream signaling effects 

culminating in transcriptional activation and subsequent dysregulation of a multitude of cellular 

processes, represent more consistent driving forces of oncogenesis [78,118]. As might be expected, 

several transcription factors have been demonstrated to be preferentially expressed in basal-like breast 

cancer including c-Myc [43], Sox2 [56,119], FOXC1 [120,121], FOXC2 [122], E2F-5 [123],  

YB-1 [103,124,125], p-JNK [126], p63 [2,4,127] and p53 [2,11,128,128]. It is important to note that 

both overexpression and mutation of p53 are collectively seen in more than 85% of basal-like breast 

tumors [130–132]. Given that p53, as the ―guardian of the genome‖, is a critical tumor suppressor 
protein, its mutation or deletion is commonly observed in many aggressive cancer types [133,134]. 

With regards to refining the immunohistochemical classification of basal-like breast cancer, the 

clinical utility of p53 in routine analysis may be limited since the specific location and type of 

mutation in the protein was recently shown to influence clinical outcome in breast cancer 

patients [135]. Consequently, while p53 accumulation is considered a classic indicator of its mutation 

status, the best approach for p53 analysis is likely a more technically-demanding combination of 

immunohistochemistry and genetic screening techniques as recently illustrated by Manie et al. [129]. 

Being key players involved in regulation of the cell cycle, biologically plausible reports of p16, 

Skp2 and cyclin E overexpression in basal-like breast cancer have been made [45,130,136–141]. 

Interestingly, a tissue microarray study by Voduc and colleagues [138] that investigated the 

combinatorial overexpression of Skp2 and cyclin E in breast cancer was able to confirm the association 

with the basal-like subtype and prognostic significance in univariable but not multivariable analysis 

(taking into account standard clinicopathologic variables, such as patient age, tumor size, tumor grade 

and nodal status). Such results, possibly attributable to a lack of statistical power, may simply suggest 

that the combination of Skp2 and cyclin E would be more useful as part of a larger 

immunopanel [138]. Similarly, Ki67 (involved in rRNA synthesis and other unidentified cellular 

functions) is an established marker of proliferation associated with the basal-like subtype and poor 

prognosis [59,142,143]. However, the high Ki67 index characteristic of high grade and ER negative 

tumors renders it prognostically insignificant within the basal-like subtype of breast cancer [144,145]. 

Although of controversial value as an immunohistochemical biomarker, the relationship between 

BRCA1 status and basal-like breast cancer could potentially lead to great progress in the field. 
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Deficiency of normal BRCA1-mediated double-stranded DNA repair function predisposes female 

carriers to early development of ovarian cancer and, more commonly, to a highly aggressive form of 

breast carcinoma [146]. Relating back to the earlier discussion of p53, a strong correlation between 

BRCA1-related hereditary breast cancer and the basal-like subtype was initially made based on 

preferential overexpression of p53 and other phenotypic similarities [19,147]. Furthermore, studies 

have demonstrated disruption of BRCA1 through epigenetic and other regulatory mechanisms, which 

may occur in sporadic cases of basal-like or triple-negative breast cancer [148–150]. Several 

immunohistochemical and gene expression profiling studies have shown that BRCA1-deficient tumors 

possess many biological and molecular characteristics of basal-like breast cancer [3,19,79,130,151,152]. 

Correspondingly, the manifestation of a basal-like phenotype by BRCA1 inactivation has been shown 

in breast cancer cells [153,154] and corroborated in animal studies by multiple groups, providing 

further support for the association between BRCA1 pathway disruption and basal-like breast 

carcinomas [155,156]. Exploitation of this relationship, provides the rationale to target basal-like 

breast tumors using inhibitors of poly [ADP-ribose] polymerase 1 (PARP1; involved in single-stranded 

DNA break repair), since it is postulated that pharmaceutical inhibition of PARP1 in combination with 

the pre-existing DNA repair dysfunction from BRCA1 deficiency underlies a situation of synthetic 

lethality for tumor cells, yet minimal toxicity to normal cells [146]. Clinical trials of PARP1 inhibitors 

in BRCA1-related and/or triple-negative breast cancers are currently underway to address this 

hypothesis [157–159], and preliminary results in ovarian cancer have been promising [160,161]. 

3.4. Biomarkers of Miscellaneous Function 

A summary of reported biomarkers of basal-like breast cancer can be found in Table 1, which also 

includes several proposed biomarkers that did not clearly fall into the above categories. While less 

well-defined, increased expression of insulin-like growth factor mRNA binding protein 3 

(IMP3) [162], aldehyde dehydrogenase 1 (ALDH1) [163,164], aquaporin 1 (AQP1) [165], 

basal/myoepithelial markers belonging to the S100 family of proteins (A2, A8 and 

A9) [80,83,86,166,167], organic anion transporting polypeptide 2 (OATP2) [10], phosphohistone 

H3 [168] and the multidrug-resistance pump P-glycoprotein [169] have each been associated with 

basal-like and/or triple-negative breast cancers. In addition, the recently observed overexpression of 

carbonic anhydrase IX (CAIX; CA9) in basal-like carcinomas supports what has long been suspected, 

that tumors of this subtype activate a hypoxic response to survive under conditions of rapid and 

aggressive growth [40,170]. As noted by Lancashire et al. [170], the focal expression of CAIX (and 

any marker with a similar expression pattern) requires immunohistochemical assessment on whole 

tissue sections as opposed to tissue microarray cores for optimal detection. Finally, fatty acid binding 

protein 7 (FABP7) [10,43,171] and αB-crystallin [172,173] have preferentially higher expression in 

the basal-like subtype at both the protein and DNA level making them prime candidates for further 

investigation as biomarkers of basal-like breast cancer [1,2,19].  
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Table 1. Candidate immunohistochemical biomarkers of basal-like breast cancer. 

Biomarker 
Experiment 

Format 

Basal-like 

Definition 

Frequency Among 

Basal-like (%) 

Frequency Among 

Non-basal-like (%) 

Literature 

References 

Vimentin TMA Combined 21/27 (78) 30/194 (16)  [57] 

Fascin TMA Combined 14/26 (54) 43/198 (22)  [59] 

Nestin Whole sections TNP 12/21 (57) 12/129 (9)  [61] 

 Whole sections TNP 14/16 (88) 0/32 (0)  [62] 

 TMA Combined 15/22 (68) 3/143 (2)  [63] 

Moesin* TMA Combined 23/28 (82) 14/64 (22)  [65] 

Claudin 1 TMA Combined 11/18 (61) ND  [68] 

Claudin 4 TMA Combined 34/38 (90) 42/66 (64)  [69] 

Caveolin 1 TMA Combined 17/53 (32) 25/314 (8)  [71] 

 TMA Combined 11/53 (21) 10/435 (2)  [72] 

 Whole sections Combined 21/30 (70) 1/202 (0)  [73] 

Caveolin 2* TMA Combined 10/50 (20) 5/270 (2)  [71] 

 TMA Combined 11/28 (39) 1/173 (0)  [74] 

Osteopontin* Whole sections TNP ND ND  [37] 

Laminin TMA Combined 11/26 (42) 28/193 (15)  [57] 

β4 Integrin Whole TNP 15/27 (56) 18/71 (25)  [86] 

NGFR** TMA Combined 10/33 (30) 1/190 (0)  [87] 

CD109 Whole sections TNP 18/30 (60) 0/53 (0)  [88] 

P-cadherin TMA Combined 10/12 (83) 34/128 (27)  [4] 

 Whole sections Combined 6/8 (75) 13/68 (19)  [90] 

CD44 (high) TMA Combined 20/23 (87) 61/141 (43)  [93] 

OATP2 TMA Basal CK 23/161 (14) 20/394 (5)  [10] 

CD280* TMA Combined 6/28 (21) 2/175 (3)  [94] 

 TMA Combined 9/66 (14) 11/302 (4)  [94] 

CD146 TMA TNP 25/76 (33) 13/425 (0)  [97] 

EGFR* TMA GEP 41/93 (44) 41/521 (8)  [5] 

 Whole sections TNP 163/284 (57) ND  [101] 

c-Kit TMA Basal CK 32/102 (31) 67/605 (11)  [5] 

VEGF Whole sections Basal CK 15/54 (28) 4/46 (9)  [105] 

Sox2 TMA Combined 13/30 (43) 16/147 (11)  [119] 

FOXC1 TMA Combined ND ND  [120,121] 

FOXC2 TMA NS 8/18 (44) 4/99 (4)  [122] 

E2F-5 Whole sections TNP 14/27 (52) 5/30 (17)  [123] 

 Whole sections Combined 14/25 (56) 5/32 (16)  [123] 

YB-1 TMA TNP 27/37 (73) ND  [103] 

p-JNK Whole sections Combined 16/25 (64) 59/134 (44)  [126] 

p63 TMA Combined 6/11 (56) 24/137 (18)  [4] 

 Whole sections Basal CK 13/19 (68) 3/83 (4)  [127] 

p53 Whole sections Basal CK 7/19 (37) 28/83 (34)  [127] 

 TMA TNP 13/32 (41) 44/103 (43)  [128] 

 Whole sections Basal CK 32/95 (34) 27/151 (18)  [130] 

 Whole sections Basal CK 25/49 (51) 100/278 (36)  [169] 
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Table 1. Cont. 

Biomarker 
Experiment 

Format 

Basal-like 

Definition 

Frequency Among 

Basal-like (%)*,** 

Frequency Among 

Non-basal-like (%) 

Literature 

References 

p16 (strong) Whole sections GEP 22/33 (69) 10/86 (12)  [140] 

Cyclin E* Whole sections Basal CK 41/92 (45) 22/150 (15)  [130] 

Ki67 TMA Combined 6/11 (55) 27/125 (22)  [4] 

 Whole sections Basal CK 15/19 (79) 32/83 (39)  [127] 

 Whole sections Basal CK 39/49 (80) 81/278 (29)  [169] 

IMP3* Whole sections TNP 25/32 (78) 20/106 (19)  [162] 

ALDH1 Combined Combined 9/23 (39) 24/160 (15)  [164] 

AQP1* TMA TNP 10/45 (22) 1/157 (0)  [165] 

PPH3* Whole sections Combined 19/21 (90) 65/219 (30)  [168] 

P-glycoprotein Whole sections Basal CK 29/49 (59) 85/278 (31)  [169] 

CAIX* Whole sections Combined 16/62 (26) 43/394 (11)  [40] 

FABP7** TMA Basal CK 43/155 (28) 40/393 (10)  [10] 

 Whole sections Combined 10/11 (91) 14/77 (18)  [171] 

αB-crystallin*,** TMA Combined 18/40 (45) 17/288 (6)  [172] 

 Whole sections Combined 26/32 (81) 0/21 (0)  [173] 

* Biomarker shown to be an independent prognostic factor. 

** Distinguishes between good and poor prognostic groups within the set of basal-like tumors. 

TMA = Tissue microarray; Basal CK = defined by basal cytokeratin(s) positivity; TNP = Triple negative phenotype; 

Combined = defined as TNP plus a positive basal-like biomarker including, but not limited to, basal CKs;  

GEP = Gene expression profile; ND = No data; NS = Not specified 

4. What Is Next in Basal-like Breast Cancer Biomarker Research? 

For many biomarkers of basal-like breast cancer, validation studies (ideally from independent 

groups) are required, as sensitivity and specificity issues arising due to the use of multiple different 

cut-offs are unavoidable without the establishment of technical standards. Even the commonly-used 

triple negative definition suffers from these inconsistencies, as both 1% and 10% cut-offs for ER and 

PR are widespread. Consequently, the detection of basal-like breast cancers using the TNP definition 

yields variable results with a higher cut-off (e.g., 10%) increasing the sensitivity of the definition at the 

expense of specificity. Basal cytokeratins, nestin, caveolins 1 and 2, P-cadherin, EGFR and αB- 

crystallin are some of the better characterized basal-like biomarkers, yet most must still be considered 

to remain in a developmental phase, in which the data-driven cutpoint optimization used in a majority 

of the original studies requires validation. In turn, considerably more research is necessary before any 

single biomarker is ready for clinical application.  

Even where technical issues are worked out and clinical application is practical, clinical utility 

typically requires predictive, rather than merely prognostic value. Further adding to the lengthy 

introductory process of biomarkers into routine analysis, prospective randomized clinical trials are the 

usual route that must be taken to achieve practice-changing, Level 1 evidence, and such trials are few 

and very rarely conducted for predictive biomarkers. Existing breast cancer trials with completed long 

term follow-up were mostly designed prior to the recognition of the basal-like subtype. Nevertheless, 
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using archived tissue specimens from completed clinical trials, the criteria to obtain Level 1 evidence 

to facilitate implementation of a biomarker into clinical practice was recently published by  

Simon et al. [34], in which a rigorous definition of assay methodology and interpretation, including an 

entirely pre-specified plan for statistical analysis, is mandatory. Initial work in this regard has 

suggested, for example, an association of the basal-like phenotype with benefits from adjuvant taxanes 

but not anthracyclines [35]. In addition, Cheang et al. [41] recently presented data suggesting that 

basal-like breast cancers derive superior benefit from cyclophosphomide-methotrexate-fluorouracil 

(CMF) over a more widely-employed anthracycline-based treatment regimen (cyclophosphomide-

epirubicin-fluorouracil; CEF). In both these studies, use of a broader triple negative definition resulted 

in a loss of statistical significance, emphasizing how use of better biomarker panels and more precise 

definitions may be required to identify the best treatment for women with basal-like breast cancers. For 

example, an equal or superior response of basal-like breast carcinomas to non-anthracycline 

chemotherapies has implications for the delivery of optimal care for patients, since anthracycline-

containing regimens (a standard therapy) have the potential for specific side effects, such as 

cardiotoxicity [174]. 

Understandably, candidate biomarkers selected to undergo the rigorous testing and validation 

process for approval must be chosen wisely for the sake of time, cost and preservation of valuable 

resources. To meet these challenges, a logical next step in basal-like breast cancer biomarker research 

is to determine the immunohistochemical sensitivity and specificity of as many proposed biomarkers 

as possible relative to a gene expression profile gold standard. A multi-marker immunohistochemical 

panel consisting of the best biomarkers could then be assembled to maximize sensitivity and 

specificity for basal-like breast cancer. After further evaluation on well-characterized breast tumor 

specimens from independent cohorts and clinical trials, the final product would be a thoroughly 

validated, practical and clinically-accessible assay suitable for novel applications in the management of 

basal-like breast cancer patients.  

While the described process may seem straightforward in concept, its successful execution is 

dependent on several factors requiring special consideration. First, standard and commercially-

available immunohistochemistry-grade antibodies with demonstrated robustness and sensitivity should 

be used to ensure assay consistency. Moreover, staining protocols must be standardized and subject to 

quality control. A stringent approach is of great importance for an immunohistochemistry-based 

clinical assay since interpretation of results can be easily confounded seemingly due to minor 

procedural inconsistencies, such as using different antibody clones. In addition, monoclonal antibodies 

are preferred to polyclonals for their superior specificity and subsequently reduced background staining 

levels which, in turn, lead to decreased inter-observer and technical variation. This approach has been 

successful in lymphoma subtyping, for example [175]. Even so, it is possible that immunohistochemical 

approaches may not be up to the task, and gene expression measurements applicable to formalin-fixed 

paraffin-embedded specimens may provide the necessary means [54,176–178]. 

Second, access to a large collection of breast tumor specimens with extensive follow-up is a 

requirement for meaningful exploratory analyses, let alone for confirmation of the prognostic and 

predictive value of a biomarker panel. Unfortunately, despite abundance of formalin-fixed paraffin-

embedded breast cancer samples in hospital archives, comprehensive outcome data is restricted to a 

limited number of large research institutions and cancer cooperative groups. Given the considerable 
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sample size needed for sufficient statistical power, a tissue microarray platform is a useful technique to 

efficiently pursue such investigations. Once again, access to necessary resource tissues as well as the 

equipment and expertise for such tissue microarray research is limited. A third commonly 

underestimated factor in immunohistochemical assay development is the meticulous statistical 

evaluation and laborious model building that must be uniformly conducted with utmost care. 

Determining the best immunopanel will undoubtedly involve striking a balance between optimizing 

sensitivity/specificity and practical limits on the number of biomarkers in a panel [179]. 

Finally, other than a prospective clinical trial specifically designed to address the optimized 

immunopanel, the highest level of evidence that provides grounds for proposing a change in medical 

practice must be obtained from two or more consistent retrospective-prospective studies that illustrate 

the clinical utility of assessing combinatorial expression of the selected biomarkers that comprise the 

optimized immunopanel [34]. However, the value and scarcity of clinical trial specimens inherently 

leads to many restrictions on their use, and applications for tissue access can take months and even 

years to be approved. Nonetheless, these steps must be taken in order to identify the true value of 

basal-like breast cancer biomarkers and translate this into improved patient care, ultimately giving 

those afflicted by these aggressive carcinomas the best chance of a cure. 

5. Conclusions 

Basal-like breast cancer accounts for a disproportionately high number of breast cancer-related 

deaths [180], and due to limited treatment options and lack of targeted therapies will continue to 

present a significant clinical challenge until more effective interventions are discovered. However, 

before we can translate existing knowledge into medical diagnosis and treatment, a clinically-practical 

assay that can reliably identify basal-like carcinomas is necessary. Current immunohistochemical 

definitions for basal-like breast cancer have limited sensitivity and/or specificity, hindering 

implementation into routine analysis. This illustrates the need to refine the immunohistochemical 

classification or develop alternative approaches. Validated biomarkers with high sensitivity and/or 

specificity against a gene expression profile gold standard can then be used to either build a novel 

immunohistochemical classifier or improve the performance of existing definitions. The assembly of a 

definitive immunopanel that accurately identifies the basal-like subtype will enable research to be 

undertaken in a more significant and meaningful context with regards to basal-like breast carcinoma 

biology, prognosis and prediction of therapeutic response. This would allow optimal selection from 

current management options and facilitate efficient development of new targeted therapies. 
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