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MATHEMATICS AND CIVILIZATION 

Sal Restivo and Randall Collins* 
 

KARL MANNHEIM AND OSWALD SPENGLER DEFEND diametrically opposed 

positions on the possibility of a sociology of mathematics. 

Mannheim argues that mathematics is exempt from sociological 

explanation; mathematics is not an ideology, and mathematical 

truths are not culturally relative. This view has been reinforced by  

Pythagoreans or Platonists who believe that mathematical  

truths are eternal objects that exist independently of the 

flux of historical experience. Most historians, philosophers, and 

sociologists of science have adopted a Mannheimian view 

mathematics. 

 Spengler, on the other hand, holds that mathematics is culturally 

relative; each culture has its own conception of number.  No 

other student of the social foundations of mathematics, has 

ventured to defend this extreme claim. Spengler's notion of the 

"soul” of a civilization cannot provide the basis for an adequate 

sociological analysis. However, we endorse Spengler's goal of 

explaining mathematics in terms of the particular social and 

historical forms in which it is produced. 

 Spengler’s argument is summarized in two statements: (1) 
“There is not, and cannot be, number as such." There are several; number- 

worlds as there are several cultures; and (2) "There is no 

mathematic but only mathematics." Spengler's objective in his 

analysis of "number" is: 

 
 to exemplify the way in which a soul seeks to actualize itself in the 

 picture of its outer world - to show, that is, in how far culture in 

 the "become" state can express or portray an idea of human existence - 

 I have chosen number, the primary element on which all mathematics 

 rests.  I have done so because mathematics, accessible in its full 

 depth only to the very few, holds a quite peculiar position amongst 

 the creations of the mind.¹ 
 

The "peculiar position" of mathematics rests on the fact that it 

is at once a "science" (like logic, only "fuller", "more comprehensive"), 

a "true art," and a "metaphysic." 

 Spengler draws two analogies in sketching the nature and 

origin of number. As "the symbol of causal necessity,” number, 

like God "contains the ultimate meaning of the world-as-nature." 

And like myth, number originated in the "naming 

process" through which humans sought "power over the world." 

Nature, the numerable, is contrasted with history, the aggregate  

of all things that have no relationship to number. 

 Spengler argues against treating earlier mathematical 

________________________________ 

*This article is a Word version of the original article with some minor corrections. Footnote 4 in the original article on p. 298 has been 

incorporated into the text. 

¹Quotations in this section are from Oswald Spengler, The Decline of the West 

(New York, 1926), pp. 56-70. 
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events as stages in the development of "mathematics”. This is 

consistent with his thesis on the incommensurability of Cultures 

and with his cyclical view of historical change. His general schema 

of Classical and Western styles and stages in "Culture," "number,"  

and "mind" is essentially an analysis of world views. It 

an attempt to articulate the nature and significance of the 

insight that numbers and their meanings are components of 

world views. This is reflected in Spengler's attempt to correlate  

mathematical and other sociocultural "styles": for example, " 

Gothic cathedrals and Doric temples are mathematics in stone." 

 Spengler is aware of the problem of the limits of a " 

“naturalistic" approach to number and pessimistic about a solution: 
 

 There are doubtless certain characters of very wide ranging 

 Validity which are (seemingly at any rate) independent of the Culture 

 and century to which the cognizing individual may belong, but along 

 with these there is a quite particular necessity of form. which underlies 

 all his thought as axiomatic and to which he IS subject by virtue of 

 belonging to his own Culture and no other. Here, then, we have 

 two very different kinds of a priori thought-content, and the definition 

 of a frontier between them, or even the demonstration that such 

 exists is a problem that lies beyond all possibilities of knowing and 

 will never be solved. 

  

Finally, we want to draw attention to two ideas Spengler 

discusses that merit consideration as "working hypotheses." 

The first is his claim that "the greatest mathematical thinkers, the 

creative artists of the realm of numbers, have been brought to 

the decisive mathematical discoveries of their several Cultures 

by a deep religious intuition." This follows from his central 

thesis that "the number-thought and the world idea of a Culture 

are related." Thus, number thought is not merely a matter of 

knowledge and experience, it is a "view of the universe." This 

reinforces our notion that Spengler sees number as infused with 

and imbedded in world views. 

 The second claim Spengler makes is that a "high mathematical 

endowment" may exist without any "mathematical science"; 

he cites, for example, the discovery of the boomerang, which 

can only be attributed, he argues, to people "having a sure feeling 

for numbers of a class that we should refer to the higher 
geometry." 

 Sociologists of mathematics have been bold enough about 

challenging the Platonic conception of number, but they have 

hesitated to follow Spengler. His ideas must seem mad to scholars and 

laypersons, and specialists and non-specialists alike, to whom 

the truth of number relations appears to be self-evident. 

And yet, the "necessary truth" of numbers has been challenged 

by mathematical insiders and outsiders. One of the outsiders is  

Dostoevsky: 
 

 …twice-two-makes-four is not life, gentlemen. It is the beginning 

 of death. 
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 Twice-two-makes-four is, in my humble opinion, nothing but a piece 

 of impudence ... a farcical, dressed up fellow who stands across your 

 path with arms akimbo and spits at you. Mind you, I quite agree that 

 twice-two-makes four is a most excellent thing; but if we are to give 

 everything its due, then twice-two-makes-five is sometimes a most 

 charming little thing too.² 
 

Dostoevsky's remarks are not merely a matter of literary privilege. 

Mathematicians and historians of mathematics have also 

challenged the conventional wisdom on number. Morris Kline, 

for example, has pointed out that (1) "Ordinary arithmetic 

does not apply to all physical situations"; and (2) "we can only 

know this through experience with these situations." There is, 

in brief, a rationale for pursuing the Spenglerian program for 

a sociology of mathematics based on the views of at least some 

mathematicians, historians of mathematics, and observers of 

numbers such as Dostoevsky. Our work is an exploration of the 

potentials and limits of Spengler's sociology of mathematics. 

 Our objective in this essay is to present briefly and with a 

minimum of technical detail some of the tentative results of our 

examination of the comparative history of mathematics from a 

sociological perspective. In the larger study on which this essay 

is based we are (1) examining the development of different 

forms of mathematics at different times and places; (2) identifying  

the noted mathematicians, the social positions they held 

and how they were related to one another; and (3) looking at 

the social conditions within and outside of mathematical  

communities as they go through phases of progress, stagnation, and 

decline. The degree of "community" among mathematcians, 

the level of specialization, the extent of institutionalization  

and the relative autonomy of the social activity of mathematics. 

it should be stressed, are variable across time and space. 

 In general, we find both a long-term "logic of development” 

in the history of mathematics, and also a number of variations 

among the types of mathematics produced in different 

cultures. The latter "horizontal" variations are prima .facie 

evidence for the Spengler thesis. But what about the long-term 

trends? These too are socially determined, and in two 

different senses. 

 First, and in a weaker sense, the "longitudinal" 

development of mathematics does not occur without interruptions, nor 

does it unfold in a single cultural context. We are, therefore, 

interested in these questions: (1) what factors cause mathematicians 

to move along a certain sequence at some times and not 

others? (This is tantamount to asking: what is truth in 

mathematics at any particular point in time?) (2) Why does a 

sequence stop for two hundred, or a thousand years and then start up  

again? (3) Why do particular mathematicians at particular times and  

___________________________- 

²F. Dostoevsky, "Notes From the Underground," pp. 107-240 in The Best Short Stories  

of Dostoevsky (New York, n.d.). 
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places make the major advances and not others.  We believe it is  

possible to identify social factors that affect the variations,  

interruptions, progressions, and retrogressions characteristic 

of the longitudinal development of mathematics. 

 There is a stronger sense in which the longitudinal development 

of mathematics towards more "advanced" forms is socially determined. 

The longitudinal development of mathematics reveals the social 

aspects of mathematical work. Much of mathematics is created  

in response to stimuli from within the mathematical community, 

especially as mathematicians go about playing competitive 

games with one another. The development of higher and 

higher levels of abstraction, for example, reflects the increasing 

self-consciousness of mathematicians about their own operations. 

This in turn reflects higher levels of specialization and 

institutional autonomy among mathematicians. Our argument 

suggests that the Spengler thesis is true in a very strong form: 

“number”, and all that It stands for metaphorically, is a socially 

created activity. 

 We begin our essay by reviewing variations in the development 

of mathematics across civilizations. We then briefly discuss the 

influence of practical interests, competition, and social 

organization on the development of mathematics. The following 

discussion is not intended to offer direct and unequivocal sup- 

for. the Spenglerian program. Our goal is more modest: to 

identify some of the main social patterns in the history of 

mathematics that substantiate Spengler's general hypothesis 

about the cultural nature of number. 

 

  II Mathematics and Civilization 

 

  The world history of mathematics has not unfolded in a  

unilinear, unidirectional manner. The Greeks, for example, took a 

step backward from the Babylonian achievements in notation; 

different types of mathematical systems have developed in different 

parts of the world; and rival forms of mathematics have 

sometimes developed within societies. Hindu mathematics,  

especially in the period before the influx of Greek astronomy (ca. 

400) placed unique emphasis upon large numbers. Geometry, 

arithmetic, number theory, and algebra were ignored in favor 

of the use of numbers in "sociological" schemes. The Upanishads 

(ca. -700 to -500) are full of numerical description: of 

the 72,000 arteries; the 36,360, or 36,000 syllables; the 33, 303, 

or 3306 gods; the 5, 6, or 12 basic elements out of which the 

world is composed. The wisdom of the Buddha is illustrated by 

the gigantic numbers he can count out (on the order of 8 times 

23 series of 10
7
), and his magnificence is shown by the huge 

number of Bodhisattvas and other celestial beings who gather 

to set the scenes for his various sutras. The Hindu cosmology 

includes a cyclical view of time that enumerates great blocks 

of years called yugas. There are four yugas ranging from 432,000 

to 1,728,000 years, all of which together make up one thousandth 
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of a kalpa or 4,320,000,000 years. . 

 This emphasis upon immense, cosmological numbers, gives 

A distinctively Hindu view of the near-infinite stretches of being 

that surround the empirical world. It seems almost inevitable 

that the Hindus should have invented zero or sunya (emptiness) 

in Sanskrit. The concept sunya, developed about 100, was the 

central concept in Madhyamika Buddhist mysticism, and pre- 

ceded the invention of the mathematical zero about 600. Classical 

Indian world views are permeated with mathematics, but 

of a special kind. It is a mathematics for transcending experience 

but not in the direction of rationalistic abstraction. Instead. 

numbers are used for purposes of mystification or impressiveness; 

they are symbols in a mathematical rhetoric to awe 

listener into a religious posture. In general, numbers were 

for numerological rather than mathematical purposes. The 

social roots of this distinctive mathematical system lie in the 

particularly exalted status of Indian religious specialists. The  

concrete as opposed to abstract nature of Hindu large numbers may 

also have been suggested by a social reality: the great variety of 

ethnic groups making up Indian society, institutionalized in the 

ramifications of the caste system. 

 Chinese mathematics, on the other hand, also has a 

cosmological significance, but on an entirely different scale. Its 

bias is ideographic. Numbers, and higher mathematical expressions, 

are written as concrete pictures. The system of hexagrams 

that make up the I Ching, the ancient book of divination, was 

continuously reinterpreted in successive Chinese cosmologies as 

the basic form of the changing universe. Chinese arithmetic and 

algebra were always worked out in positional notation. Different 

algebraic unknowns, for example, could be represented by 

counting sticks laid out in different directions from a central 

point. Chinese algebra, at its height around 1300, could be used 

to represent fairly complex equations, and included some notion 

of determinants (i.e., the pattern of coefficients). But it could 

not be developed in the direction of abstract rules. The ideographs 

(and the social conditions of their use) helped preserve 

the concreteness of mathematics. 

 Why did Chinese mathematics take this form? No doubt for 

some of the same reasons that account for the maintenance of 

ideographic writing among the Chinese intellectuals. Both gave 

a concrete aesthetic emphasis to Chinese culture. The ideographic 

form had technical limitations that a more abstract form 

- an alphabet, a more mechanical mathematical symbolism would 

have overcome. Ideographs are hard to learn; they require a 

great deal of memorization. But these limitations may in fact 

have been the reason why Chinese intellectuals preferred to retain 

them. For a difficult notation is a social advantage to a 

group attempting to monopolize intellectual positions. This may 

be contrasted with the algorithmic imperative characteristic of 

periods of rapid commercial expansion. 

 Writing and mathematics were highly esoteric skills in the 
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ancient civilizations when they were first developed. Those who 

possessed these skills were almost exclusively state or religious 

dignitaries. Hence it should not be surprising that writing and 

mathematical notation were conservatively retained in forms 

that were very difficult to read and interpret, except by those 

could spend a long time in acquiring familiarity with them. 

Sanskrit, for example, was written without vowels and without 

Spaces between the words. Egyptian writing was similarly  

conservative. Chinese writing and mathematics are notable because 

archaic styles lasted much longer than anywhere else. The 

development of ideographs and mathematical notation in China 

was in the direction of greater aggregative complexity and  

aesthetic elaboration, not of simplification and abstraction. The 

Chinese literati thus managed to make their tools progressively more  

difficult to acquire.  This is in keeping with the unusually high position  

that Chinese intellectuals maintained in the state institutionalized 

through the examination system used to select officials in many 

dynasties. 

 Historians of mathematics often comment that the lack of a  

“good” notation was the reason why mathematics did not progress 

further at some particular time and place.  But this begs the question. 

Why wasn’t a more appropriate symbolism invented then?  Instead, 

we should envision a struggle between monopolizing and  

democratizing forces over access to writing and mathematics. 

Monopolistic groups were strong in highly centralized administrations,  

such as ancient Egypt, the Mesopotamian states, and China.  

Democratizing forces won the upper hand in decentralized situations, 

and/or under social conditions where there was a great deal of private 

business activity – as in ancient (especially Ionian) Greece, and periods 

in ancient and medieval India.  The predominance of these forces, 

of course, does not mean there were no counter-forces.  Greek 

mathematics also had some conservative elements, especially in the  

Alexandrian period when difficult rhetorical form of exposition 

limited the development of algebra.  The specific character of  

mathematics in given world cultures is due to the differential 

incidence of such conditions. 

 Greek mathematics is distinguished by its emphasis on 

geometry, generalized puzzles, and formal logical proofs.  This 

is the intellectual lineage of modern Western mathematics.  But 

the history of Greek and European mathematics also shows a  

divergent type that rose to prominence following the establishment 

of the classical form.  During the Alexandrian period, another form of 

arithmetic was developed that was used neither for practical 

calculations nor for abstract puzzle-contests.  This was a type of  

numerology that used the real relations among numbers to reveal a 

mystical cosmology.  The system was connected with verbal symbolism 

through a set of correspondences between numbers and letters of  

the Hebrew or Greek alphabets.  Any word could be transformed into 

a related number that in turn would reveal mathematical relations to  

other words. 

 The social conditions involved in the creation and development 
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of this alternative mathematics are connected with religious movements. 

Numerology is related to Hebrew Cabbalism, to Christian Gnosticism,  

and to the Neo-Pythagorean revival of the time (especially by Philo of  

Alexandria, ca. 50).  The most prominent expositor of this new  

mathematics was Nichomachus (ca.100).  Like Philo, he was a  

Hellenistic Jew (living in Syria) – in short, part of the Jewish-Greek 

intellectual milieu of the Levant in which the major religious 

movements of the time were organized. 

 Finally, it is worth noting that there are variants even in modern 

European mathematics.  There are conflicts between alternative 

notational systems in the 1500s and 1600s; and a century-long 

battle between the followers of Newton and those of Leibniz over the 

calculus.  In the nineteenth century, a major dispute arose between 

Riemann, Dedekind, Cantor, Klein, and Hilbert and critics such as 

Kronecker and Brouwer.  This split has continued and widened in the 

twentieth century into schools of formalists, intuitionists, and now yet 

others in conflict over the foundations of mathematics.  Without  

following up the matter here, we suggest that these splits can be explained 

by social factors both outside and within the mathematical community. 

 

             III. The Social Roots of Mathematics 

 

The social activities of everyday life in all the ancient civilizations gave  

rise to arithmetic and geometry, the two major modes of mathematical 

work. Each of these modes is associated with specific types of social  

activity.  The development of arithmetic is stimulated by problems in 

accounting, taxation, stock-piling, and commerce; and by religious, 

magical, and artistic concerns in astronomy, in the construction of  

altars and temples, in the design of musical instruments, and in 

divination.  Geometry is the product of problems that arise in 

measurement, land surveying and construction and engineering in  

general.  Arithmetic and geometrical systems appear, in conjunction 

with the emergence of literacy, in all the earliest civilizations – China, 

India, Mesopotamia, Egypt, and Greece.  These mathematical systems 

are, to varying degrees in the different civilizations, products of 

independent invention and diffusion. . 

 The discipline of mathematics emerged when sets of arithmetic 

and geometrical problems were assembled for purposes of 

codification and teaching, and to facilitate mathematical studies. 

Assembling problems was an important step toward unifying 

mathematics and stimulating abstraction. An even more Important  

step was the effort to state general rules for solving all 

problems of a given type. A further step could be taken once 

problems were arranged so that they could be treated in more 

general and abstract terms. Problems that had arisen in practical 

settings could now be transformed into purely hypothetical puzzles, 

and problems could be invented without explicit reference 

to practical issues. The three famous puzzles proposed by Greek 

geometers of the -5th and -4th centuries are among the earliest 

examples of such puzzles: to double the volume of a cube (duplication 

of the cube), to construct a square with the. Same area as 
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a given circle (quadrature of the circle), and to divide a given 

angle into three equal parts (trisection of the angle). Such problems 

may have been related to the non-mathematical riddles 

religious oracles commonly posed for one another. One account 

of the origin of the problem of duplicating the cube, for example, 

is that the oracle at Delos, in reply to an appeal from the 

Athenians concerning the plague of -430, recommended doubling 

the size of the altar of Apollo. The altar was a cube.  The 

early Hindu literature already refers to problems about the size 

and shape of altars, and these may have been transmitted to 

Greece by the Pythagoreans, a secret religio-political society. 

The problem is also a translation into spatial geometric algebra 

of the Babylonian cubic equation x
3
 =  v. 

  The duplication, quadrature, and trisection problems were 

popular with the Sophists, who made a specialty out of debates 

of all kinds. A generation or two later, Plato introduced the constraint 

that the only valid solutions to these problems were those 

in which only an unmarked straightedge and a compass were 

used. This meant that special mechanical devices for 

geometrical forms cou1d not be used in mathematical competitions. 

The goal was apparently to stiffen and control the competitive process  

by stressing intellectual means and "purely gentlemanly" 

norms. This development was related to social factors 

in the Platonist era. Plato's Academy was organized to help an 

elite group of intellectuals gain political power; and it represented 

the opposition of an aristocracy to democratization and 

commercialization. It is not surprising that this elite group of 

intellectuals developed an ideology of extreme intellectual purity, 

glorifying the extreme separation of hand and brain in the 

slave economy of classical Greece.
3
 

 The three famous Greek puzzles and other problems became 

the basis of a mathematical game of challenge-and-response. Various 

forms of this game are important throughout most of the 

subsequent history of Western mathematics. Prior to the nineteenth 

and twentieth centuries, however, the challenge and response 

competitions were often initiated, endorsed, or rewarded 

by patrons, scientific academies, and governments. Prizes were 

sometimes offered for solutions to practical problems. Economic 

concerns as well as governmental prestige were often mixed in 

with the struggles for intellectual preeminence. 

 At about the same time that they initiated mathematical contests, 

the Greek mathematicians took two further steps that led 

to new mathematical forms. They stipulated that a formal, logical 

mode of argument must be used in solving problems; this 

represented a further development of earlier methods of proof. 

And by extending this idea they created systems of interrelated 

__________________________ 
3

These developments are discussed in more detail in S. Restivo, The Social Relations of Physics, 

Mysticism, and Mathematics, Kluwer Academic Publishers, Dordrecht 1983: 239-252.  This note 

corrects and updates the original note. 
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proofs. This culminated in the Elements of Euclid shortly after 

-300. In addition to a collection of problems, Euclid presented 

an explicit body of abstractions in the form of definitions, postulates, 

and axioms. Euclid, like Aristotle, did not use the term 

"axiom" but something closer to "common notion." They both 

self-consciously worked at codifying past human experiences. 

The process of "systematization-and-abstraction" is one of the 

two major paths to new mathematical forms. The other major 

path is an "empirical" one. 

 The empirical path to new mathematical forms involves  

applying existing mathematical concepts and methods to new areas of  

experience.  Most of the early Greek geometrical puzzles, for example, 

concerned flat figures.  But the methods of plane geometry could be easily 

extended to solid geometry, and then to the properties of spheres or of  

conic sections; the work on conic sections eventually led to work on  

curves of various shapes.  The intermittent periods of creativity in  

Alexandrian mathematics (especially from -300 to -200 and 150-200)  

were largely devoted to these extensions.  No new level of abstraction 

(with the exception of trigonometry, considered below) was 

Reached, but a number of new specialties appeared. 

 Looking back, now, at the development of the other branch  

of mathematics, arithmetic, we find some of the same processes 

noted for geometry.  The effort to find general rules for solving 

numerical problems led gradually to what we call algebra.  Here 

again we see mathematicians developing the practice of posing problems 

primarily to challenge other mathematicians.  For example, there is the 

famous problem, attributed to Archimedes (-287 to -212): find the number 

of bulls and cows of various colors in a herd, if the number of white 

cows is one third plus one quarter of the total number of black cattle; the  

number of black bulls is one quarter plus one fifth the number of the 

spotted bulls in excess of the number of brown bulls, etc.  Such 

problems, involving unknown quantities, led over a very long period 

to the introduction of various kinds of notations and symbolisms.   

These took quite different directions in ancient and medieval China 

and India, the Arab world, and later in medieval and Renaissance  

Europe.  The creation of a highly abstract symbolism which could be 

mechanically manipulated to find solutions did not appear until the late 

1500s and 1600s in Europe. 

 Over this period, and to different degrees in different parts of  

the world, algebra underwent an empirical extension.  Problems were 

deliberately created to increase the number of unknowns, and to raise 

them to successively higher powers.  Equations of the form ax + b = c 

gave way to those on the order of ax⁴ + by³ + cz² = g.  The complexity  

of these, of course, could be extended indefinitely (Vieta in the 

1580s, for example, was challenged to solve an equation involving 

x⁴⁵); but the extensions also gave rise to efforts to find general  

rules for solving higher order equations (i.e., empirical  

extensions tended to promote abstract extensions). 
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 At the same time, arithmetic was developing in other  

directions.  What we would call elementary arithmetic (solving  

numerical problems in, for example, addition, subtraction,  

multiplication, and division) continued to stimulate efforts to  

find general rules for solving particular problems.   There was  

tremendous variation from one system of numerical symbols and 

calculating rules to another in terms of the ease or difficulty with  

which they could be applied to solving practical problems.  Most  

of the ancient forms of notation made working with large numbers,  

fractions, or complex operations like division or the extraction of  

roots difficult; the exposition of problems was usually rhetorical.   

That is, problems were express in words.  A great deal of  

mathematical creativity went into the development of notational  

systems that could be readily manipulated.  Among the most 

important of these innovations were the invention of decimal  

place notation and the zero sign in India; the standardization of  

positional methods for writing multiplication and division  

(in Europe ca. 1600); and the invention of logarithms by the  

Scotsman Napier in 1614, for use in astronomy, navigation, 

and commerce. 

 A different development in arithmetic led to what we now  

call “number theory.”  This focused on the properties of numbers  

themselves.  As early as Eratosthenes (ca. -230), efforts were made  

to find prime numbers and to produce a general formula for doing  

so.  There were also various propositions about how numbers  

are composed of other numbers (e.g., the Pythagorean work on  

“triangular” and “square” numbers, an anticipation of the work  
that led up to the seventeenth century mathematician Fermat’s  
famous theorem that every prime number of the form 4n+1 is a  

sum of two squares).  Number theory was particularly popular 

in the Alexandrian period in an occultist, cabalistic form.  In its  

more standard puzzle-solving form, it has remained popular 

among mathematicians from the Renaissance through the  

twentieth century. 
 One more branch of mathematics, based on a combination of 

arithmetic and geometry, developed in the Alexandrian period. 

Measurements of angles and lines, and the calculation of their 

ratios, led to the creation of trigonometry (especially by Hipparchus, 

ca. -140 and Menelaus, ca.-lOO). Trigonometry spread 

to medieval India and the Arab world, and in Renaissance 

Europe provided the basis for Napier's development of logarithms. 

 The overall picture so far, then, shows mathematics arising 

from practical geometry and arithmetic. The development .of 

abstract mathematical puzzles and the extension of mathematics 

to new areas leads to the emergence of new fields. Geometry 

becomes systematic, and is progressively applied to plane and 

solid figures, to conics, and eventually to trigonometry. Arithmetic 

gives rise to algebra in successfully more complex forms 
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(based on practical calculating systems), and to number theory. 

 The creation of new fields continued in modern Europe. 

They grew out of the processes of abstraction, the extension of 

results to new empirical areas, and the combination of existing 

mathematical fields into hybrid fields. 

 The combination of algebra with a new coordinate representation 

in geometry by Descartes and Fermat produced analytic 

geometry. Consideration of the problems of motion and 

the study of curves gave rise to the calculus in the 1600s. Calculus 

was then applied to successively more complex functions 

(empirical extension); and eventually (in the 1800s) it was generalized 

into an abstract theory concerning such things as the 

rules for solving equations, and the general properties of all 

functions (abstract extension). It should be noted that the drive 

towards creating new fields by abstraction and extension seems 

to be characteristic of highly competitive periods. 

 Geometry itself experienced a rapid series of branchings 

around 1800 and thereafter, the best known being the non- 

Euclidean geometries. But there was also the creation of descriptive 

geometry by Monge, projective geometry by Poncelet, higher analytical  

geometry by Plucker, modern synthetic geometry 

by Steiner and Von Staudt, and topology by Mobius, Klein, and 

Poincare. In the late nineteenth and early twentieth centuries 

systems unifying these different geometries were formulated by 

Klein, Hilbert, and Cartan.  

 In algebra, there was a parallel set of developments after 1800. 

The effort to find a general solution for the quintic and other 

higher-order equations led to the creation of the theory of groups 

by Abel, Galois, Cauchy, and others. This theory focused on an 

abstract pattern among the coefficients of equations, and opened 

up a new area of inquiry in abstract mathematics. Abstract 

algebras were created by Boole, Cayley, Sylvester, Hamilton, and 

Grassman. All of these new tools were applied to other branches 

of mathematics. Dedekind applied set theory to the calculus, 

Cantor applied it to the concept of infinity, and others applied 

it to topology, number theory, and geometry. These developments 

led to the creation of yet another even more abstract 

field toward the end of the nineteenth century. This was the 

field of "foundations," concerned with the nature of mathematical 

objects themselves and with the rules by which mathematics 

should be carried out. Foundations research has been the focus 

of a number of opposing schools, and has led to what are probably 

the most intense controversies in the history of mathematics. 

The basic forms of mathematics, arithmetic and geometry, 

arise from practical problems in construction, taxation, administration, 

astronomy, and commerce. Moreover, the stimulus of 

practical concerns does not simply disappear once mathematics 

is launched. For example, the basic forms of arithmetic, including 

the number system, developed over a very long period, during 

which virtually the sole interest in improvement was to 

facilitate practical calculations. The same can be said for the 
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invention of logarithms, and much of the development of trigonometry. 

Other advanced forms of mathematics were also stimulated 

by efforts to solve practical problems. The development of 

the calculus was linked to problems in ballistics and navigational 

astronomy. Descriptive geometry and Fourier's analysis 

answered problems in the production of new machinery in the 

industrial revolution. Practical concerns do not tell the whole 

story of mathematics, but they are one component that continuously 

shapes its history. This suggests a general principle: an increase  

in the amount, type, intensity, or scope of practical concerns  

in a society will stimulate mathematical activity. The relationship 

between economic concerns and mathematics is especially 

strong; commercial growth tends to be very stimulating 

for mathematics. Mathematical innovations will also tend to 

occur when there is a shift to new productive technologies (and 

perhaps IV hen there are shifts to new technologies of warfare 

and transportation, and shifts to more intensive administrative 

modes of organization). This implies a link between the development 

of modern European mathematics and the development 

of capitalism. Since this is one factor among several, it does not 

imply that mathematics must come to an end in non-capitalist 

societies. It does, however, suggest that the form and content of 

mathematics (within the constraints noted by Spengler) as we 

know it today is a product of specific lines of cultural development. 

 The roots of mathematics in practical concerns are more apparent 

in some cases than in others. For example, the history of 

Chinese mathematics from Yü the Great Engineer's discovery 

of a magic square on the back of a Lo River tortoise (a myth 

probably created during the Warring States period around -500) 

to the highest achievements of the late Sung and early Yuan 

dynasties (for example, Chu Shih-Chieh's "Precious Mirror of 

the Four Elements," written in 1313, at the end of the "Golden 

Age" of Chinese mathematics) is primarily a history of an inductive 

"mathematics of survival." Chinese mathematics never ventured 

far from problems of everyday life such as taxation, barter, 

canal and dike construction, surveying, warfare, and property 

matters. Chinese mathematicians could not organize an autonomous 

mathematical community, and consequently failed to establish 

the level of generational continuity that is a necessary 

condition for long-term mathematical development. This helps 

to explain why the Chinese did not develop the more abstract 

forms of higher mathematics. 

 Conditions in ancient Greece were more favorable for abstract 

mathematics. The commercial expansion in Greece in the -600s 

stimulated mathematical growth. Learned merchants practiced 

and taught mathematical arts, and master-student relationships 

across generations fostered mathematical progress. Political and 

economic changes in Greek civilization led to the development 

of an increasingly elitist and self-perpetuating intellectual community, 

culminating in the oligarchic conditions and intellectual 

elitism of Plato's time. 
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 The achievements of the "thinking Greeks" depended on a 

division of labor that divorced hand and brain. The "thinkers" 

had the "leisure" to reflect on and elaborate mathematics. The 

class structure of the slave-based society that developed in the 

post-Ionian period conditioned the development of classical 

mathematics. Arithmetic was left to the slaves who carried out 

most commercial transactions, and householders for whom simple 

calculations were a part of everyday life. The elite intellectual 

class, by contrast, courted geometry which was considered 

democratic and more readily adapted to the interests of the 

ruling classes than arithmetic. What we know as "Greek mathematics" 

is a product of the classical period. 

 The development of specialties within the division of labor, 

left unchecked, tends to foster virtuosity. Such specialization 

tends to increase the specialists' distance from the order and spectra 

of everyday phenomena and to increase the importance of 

human-created phenomena, especially symbols. The result is an 

increase in the level of abstraction and the development of ideologies 

of purity. This is essentially what occurred in classical 

Greece. Hand and brain slowly reunited following Plato's death; 

there is already evidence of an increased interest in linking 

mathematical and practical concerns in Aristotle. In the Alexandrian 

period, hand and brain were more or less united, but 

the ideology of purity retained some vitality. This is notably 

illustrated by Archimedes, whose work clearly exhibited a unity 

of hand and brain but whose philosophy echoed Platonist 

purity. 

 The decline of Greek commercial culture was accompanied 

By the decline of Greek mathematical culture. The achievements 

of Archimedes, which brought Greek mathematics to the threshold 

of the calculus, mark the high point of Greek mathematics. 

When mathematics was revived in the European commercial 

revolution (beginning haltingly as early as the twelfth century 

A.D.), many aspects of the Greek case were recapitulated. European  

mathematics moved on in the. direction of the calculus, 

rooted in problems of motion. It picked up, in other words, 

essentially where Archimedes had left off, and under the influence 

of the Archimedean (and more generally, Greek) corpus 

as it was recovered and translated. By 1676, Newton was writing 

about mathematical quantities "described by continual motion." 

The concept of function, central to practically all seventeenth 

and eighteenth century mathematics, was derived from studies 

of motion. Newton and Leibniz helped to reduce the basic 

problems addressed in the development of the calculus - rates 

of change, tangents, maxima and minima, and summations - to 

differentiation and anti-differentiation. Infinitesimals nurtured 

earlier in the debates of theologians and scholastics, entered into 

the process of production. Abstract intellectual ideas of a Euclidean 

realm of the straight, the flat, and the uniform gave way to 

the ideas of an increasingly energetic world of guns and machinery  

characterized by skews, curves, and accelerations. 
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The search for algorithms, time-saving rules for solving problems, 

is evident in the writings of the inventors of the calculus 

(e.g. in Leibniz's "De geometria recondita et analysi indivisibilium 

atque infinitorium" of 1686). As the industrial “machine" 

of capitalist society was fashioned, so was the “machine 

of the calculus." Descartes' analytic geometry, the other great 

contribution to the development of pre-modern European mathematics, 

was also characterized by an algorithmic imperative. 

It was, in spite of the conflicts between Cartesians and Newtonians, 

from the very beginning in constant association with the development  

of the Newtonian-Leibnizian calculus. The historian of  

mathematics Boutroux has characterized Descartes’ 
analytic geometry as an industrial process; it transformed mathematical 

research into “manufacturing.” 

 The idea that the calculus is linked to the emergence of capitalism 

(or at least early industrialization) is further suggested by 

the Japanese case. When the Japanese established a monetary 

economy and experienced a commercial revolution in the seventeenth 

century, they also worked out a "native calculus." 

 

           IV Puzzles and Proofs 

 

Mathematicians, from the earliest times onward, and especially 

in the West, have posed puzzles for one another. This practice 

tends to make mathematics a competitive game. Some periods 

have been dominated by public challenges such as those that 

the Emperor Frederick's court mathematician posed to Leonardo 

Fibonacci (ca. 1200), those that Tartaglia and Cardano posed 

for one another in sixteenth century Italy, or those that gave 

Vieta such high acclaim at the French court in the 1570s. Such 

puzzle-contests have been important for several reasons. They 

often involved pushing mathematics into more abstract realms. 

Mathematicians would try to invent problems which were unknown 

in practical life in order to stump their opponents. And 

the search for general solutions to equations, such as those that 

Tartaglia found for cubic equations, and Vieta found for the 

reduction of equations from one form to another, was directly 

motivated by these contests. 

 The emphasis on proofs which has characterized various periods 

in the development of mathematics was partly due, in our 

view, to a heightening of the competitiveness in these contests. 

Greek mathematicians rationalized the concept and method of 

proof at a time when mathematics was popular among the elite 

class of philosophers and there was a lot of competition for 

power and attention in the intellectual arena. This was the 

same period during which the wandering Sophists challenged 

one another to debating contests and in doing so began to develop 

canons of logic. This is completely analogous to the development 

in mathematics, in terms of both cause and effect. The 

analogy turns into a virtual identity when we realize that many 

of the mathematicians of the time were Sophists, and that many 
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of the formal schools that were organized in the classical period 

(e.g., the Academy) used prowess in mathematics as a grounds 

for claiming superiority over competing institutions. Stressing 

proofs was a way of clarifying the rules of the game and escalating 

the intensity of competition. In general, competitive puzzle- 

contests are probably responsible for much of the inventiveness 

characteristic of Western mathematics. 

 This analysis should not obscure the economic stimulus to 

the initial development of proofs. Thales, the philosopher-merchant,  

is credited with carrying the idea of a proof to a more 

general level than the Babylonians and Egyptians. We can conclude 

that at least symbolically Thales personifies the need 

among the Ionians of his era to develop a comprehensive and 

organized understanding of physical reality and successful computational 

methods in the context of the increasingly well-organized 

economy that they were products and fashioners of. 

Thales' proofs were probably crude extensions of Babylonian 

or Egyptian "rules" for checking results. In any case, the process 

of constructing proofs was rationalized over the next three hundred 

years and eventually led to Euclidean-type proofs. 

 Concern for proof has varied a great deal in the history of 

mathematics. The Chinese and Hindu mathematicians ignored 

proofs almost entirely; indeed, they would often present problems 

without solutions, or with incorrect solutions. That these 

practices were the result of a relatively uncompetitive situation 

in mathematics in these societies is suggested by several facts. 

The social density of mathematicians in these societies was 

rather low; we rarely hear of more than a few mathematicians 

working at the same time, whereas in Greece and Europe the 

numbers in creative periods are quite high. Most of the Oriental 

mathematicians were government officials, and thus were insulated 

from outside competition, while most of the ancient Greek 

and modern mathematicians were private individuals or teachers 

in competitive itinerant or formal educational systems. 

 In the Islamic-Arabic world, there was a flurry of mathematical 

activity in the period 800-1000 (and later to some extent). 

There was some concern for proofs (in the works of Tahblt Ibn 

Qurra, for example), but this was much more limited than in 

classical Greece. The Greek works they translated stimulated 

an awareness of and interest in proofs among the Islamic-Arabic 

mathematicians. The limited emphasis on proofs reflects the fact 

that their "community" was not as densely populated as the 

Greek mathematical community, competition was not as intense, 

and master-student chains and schools were not as well 

organized. 

 In modern Europe, the emphasis on proofs has grown steadily. 

In the 1600s, Fermat presented his theorems without proofs, and 

in the 1700s, Euler offered proofs that were not very rigorous. 

The early 1800s saw a shift towards more rigorous standards of 

proof; earlier solutions were rejected, not because they were incorrect, 

but because the reasoning behind them was not sufficiently universal 
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and comprehensive. This went along with a massive increase 

in the number of people engaged in mathematics (which in turn  

was the result of the expansion of educational systems, especially  

in Germany and France, and other social changes). Both this shift  

towards rigor, and the earlier invention of proofs, had important effects  

upon the nature of mathematics.  For both pressed mathematics toward  

new levels of abstraction: proofs had to invoke more abstract elements  

than particular numerical examples, and rigorous proofs stimulated the 

systematic consideration of the nature of mathematics in the 

nineteenth century. 

 

  V Abstraction and Self-consciousness 

 

Let us return to the "main line" development of Western puzzle-solving 

mathematics. That development has consisted of an increasing 

awareness that levels of abstraction have been created 

by the mathematicians themselves. Mathematicians moved beyond 

naïve realism when they gradually began to use negative 

numbers instead of dropping negative roots of equations, as 

Hindu, Arab, and medieval European mathematicians had 

done). Later they came to recognize that imaginary numbers 

could be used despite their apparent absurdity. Gauss established. 

a new basis for modern algebra by creating a representational  

system for complex numbers. Nineteenth century higher mathematics  

took off from this point. Mathematicians finally realized that they were  

not tied to common-sense representations of the world, but that  

mathematical concepts and systems could be deliberately created. The  

new, more abstract geometries (projective, non-Euclidean) popularized  

the point, and stimulated the creation of new algebras and more generalized 

forms of analysis.  The objects with which modern mathematics deals,  

however, are real in the following sense. They are not things, as was once 

naively believed; they are, rather, operations, activities that 

mathematicians carry out. The imaginary number i is a shorthand 

for a real activity, the operation of extracting a square root 

from a negative number. This operation. of course, cannot be carried  

out. But mathcmaticians had long been used to working backwards  

from solutions-not-yet-found, to the premises, by symbolizing 

the solution by an arbitrary designation (e.g., x).  This symbol  

represented the result of an imaginary operation. The imaginary  

number i, then, could be used as the basis for other mathematical  

operations, even though the operation of producing it could 

never actually be performed.  The ordinary arithmetic operations, 

the concepts of a function, the concept of a group - all of these 

are operations of different degrees of complexity. A natural 

whole number itself is not a thing but an operation - the operation of  

counting (and perhaps also other operations whose nature 

modern mathematicians are untangling). 

 Modern mathematics has proceeded by taking its operations 

as its units. These are crystallized into new symbols which can 

then be manipulated as if they were things. A process of reification 
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has gone on in conjunction with the emergence of the notion 

that abstractions are self-created by mathematicians. Thus 

mathematics has built upon itself hierarchically by treating operations 

as entities upon which other operations can be performed. 

The Western trend in symbolism, then, is not an "accidental" feature  

of Western mathematical uniqueness; the symbolism was created  

precisely because the mathematical community was pushing towards  

this degree of self-consciousness. 

 Mathematics, like other modern activities, has been affected 

by specialization on a level unknown in earlier historical periods. 

As a result, the "causal power" of mathematics itself in the 

relationships between mathematical and other social activities 

has steadily increased. Mathematical ideas have increasingly become 

the generative basis for new mathematical ideas. The work 

setting and institutional context of mathematical activity has 

become a social foundation of a higher order than the social 

foundation of subsistence productive activity. Mathematics continues 

to be socially rooted within the mathematical community; 

it is especially important to recognize the social nature of the 

symbols mathematicians create for communication within their 

own ranks. 

 The development of Western higher mathematics, then, is a 

social development. For the objects with which mathematicians 

deal are activities of mathematicians. In building upon the operations 

already in existence, and making them symbolic entities upon 

which further operations can be performed, mathematicians 

are self-consciously building upon previous activities in 

their intellectual community. Mathematics thus embodies its 

own social history, and uses it as the base upon which its current 

community activities are constructed. 

 Western mathematics thus depends upon a particular kind of 

long-term organization of the intellectual community. This is 

an organization in which strong links are maintained across generations,  

and in a highly self-conscious and competitive form. 

The new attempts to competitively consume the old.  We suggest 

that the important linkages of teachers and pupils typically 

found among European mathematicians, together with strong 

external competition among different mathematical "lineages," 

have been the social basis for this pattern. Once the pattern 

of competitive self-consciousness was established, subsequent 

rounds of competition could only escalate the degree of self-) 

reflection and inventiveness among mathematicians. Out of this 

situation arose the hyper-reflexive concerns of twentieth-century 

foundations research. 

 

        VI Conclusion 
 

  All thought, in its early stages, begins as action. 

  The actions which you [King Arthur] have been 

  wading through have been ideas, clumsy ones of 

  course, but they had to be established as a foundation 

  before we could begin to think in earnest. Merlyn the Magician 
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We are suggesting that the history of mathematics can be explained 

sociologically. This task requires a sociology both of the 

external conditions - economics, religious, political - of the 

societies within which mathematical activities are situated, and 

a sociology of the internal organization of the mathematical activities. 

We recognize that the notion of "internal and external 

factors" is an analytic device. The Spenglerian idea of mathematics  

as a world view is not, in the end, compatible with a strict 

adherence to internal-external analysis. Our conclusion is that 

the mathematics of any particular time embodies its own social 

history. This process becomes increasingly intense as and to the 

extent that mathematical activity becomes and  remains more 

clearly differentiated from other social activities and more autonomous. 

But "autonomy" simply means that mathematicians 

communicate more intensively with each other than with outsiders. 

It does not mean that mathematicians are more removed from social 

social determinants or that they have unimpeded access to  

"objective reality." Their activities remain at all times coupled 

to the social activities of insiders and outsiders, and thus unfold 

in an environment of multiple social and historical determinants. 

This is the rationale for our defense of a Spenglerian approach 

to the sociology of mathematics. 
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