
IO Registers
A microcontroller has on-chip peripherals that

dramatically decrease the amount of external

components needed in a design. It may have

general purpose IO, serial IO,ADC and sometimes even

special purpose IO pins that support protocol such as

the I2C bus, all built into the chip itself. Typically these

peripherals present themselves as IO registers to the

CPU – for example, to generate a high signal on an

output pin, one usually only requires the CPU to write

a “1” to the corresponding IO register bits.

Some CPU architectures have a separate IO space for

these registers with special instructions to access

them. Since there is no such concept as IO space in

the C language per se, in these cases the C compiler

provides an extension allowing access to these IO

registers. For example, you may have seen something

like

unsigned char porta @port 0x3B;

The “@port <address>” is an extension that

presumably declares an IO port with name “porta” at

location 0x3B. Another popular way to declare some-

thing similar is:

ººSFR porta = 0x3B;

In this example, “SFR” (probably standing for Special

Function Register) is used to declare “porta” at the

same address. Since extensions are defined by the

compiler vendors, the syntax and semantics vary

among different compilers, even for the same

microcontroller target. As they are not part of Standard

C, certain behaviors may be not well defined. For

example, the compiler may or may not allow you to

declare a pointer to these objects (sometimes this is

disallowed because the target machine disallows

indirect accesses to the IO registers).

Since they are not standard C objects, the compiler

may also restrict which C operators you can use on

them, and tone should consult the compiler manual to

see whether a particular C operator is allowed.

Memory Pointers
Some CPU architectures put these IO registers in reg-

ular data space. Some, like the Atmel AVR, even allow

you to address the IO registers using either special IO

instructions or by treating them as data memory. In

this case, something like the following works well:

#define PORTA (*(volatile
unsigned char *)0x3B)
…
unsigned char i = PORTA; //
read
…
PORTA = i; // write

The #define expression casts location 0x3B as a

pointer to an unsigned char and then dereferences it,

allowing the expression to be used to both read and

write to the address. The “volatile” qualifier tells the

compiler that the object at this location may change,

so that compiler should always perform an actual

read or write to the location and not use any

previously cached values. If a CPU architecture allows

you to access the IO registers as memory addresses,

then you can treat them exactly like any other memo-

ry pointers. This allows you to perform the full range

of C operations on the objects.

Accessing Bits
One often needs to access individual bits of an IO reg-

ister. For example, PORT A may be an 8-bit

output register, and each bit of the IO register

corresponds to a hardware output pin of the PORT.

There are several methods of accessing bits in

C, with advantages and disadvantages to each

approach:

Bitwise Operations

Plain C is powerful enough to perform any needed bit

operations on IO registers (or any other integer

objects). (After all, one of the first major tasks for the

original C compiler was to rewrite the nascent Unix

operating system in C!) Note the following bitwise

operation example:

#define PORTA (*(volatile
unsigned char *)0x3B)

#define BIT(x) (1 << (x))
// bit position

…
PORTA |= BIT(0); //
turn on 0th bit

PORTA &= ~BIT(0); // turn off
0th bit

PORTA ^= BIT(0); //
toggle the 0th bit

TRADITIONALLY, MOST 8-BIT EMBEDDED

PROGRAMS HAVE BEEN WRITTEN IN

ASSEMBLY LANGUAGE. HOWEVER, DUE TO

A VARIETY OF REASONS, MOST NEW

MICROCONTROLLERS INCLUDING THE

8-BIT ONES ARE NOW EXPECTED TO HAVE

A C COMPILER AVAILABLE. COMPARED TO

AN EQUIVALENT ASSEMBLY PROGRAM, A

WELL-WRITTEN C PROGRAM IS TYPICALLY

MORE READABLE AND MAINTAINABLE.

PLUS, WITH SOME CARE AND SOME

AMOUNT OF CHANGES, THE C PROGRAM

MAY BE MOVED TO OTHER TARGETS.

WITH THE MATURITY OF C COMPILER

TECHNOLOGIES, AND NEWER CPU

ARCHITECTURES THAT ARE MORE

SUITABLE FOR HIGH LEVEL LANGUAGE

COMPILATION, THE QUALITY OF THE C

COMPILER GENERATED CODE FOR THESE

NEWER 8-BIT MICROCONTROLLERS CAN

BE COMPETITIVE WITH PROGRAMS

WRITTEN IN ASSEMBLY LANGUAGE.

HOWEVER, SOMETIMES ONE NEEDS TO

KNOW THE CHARACTERISTICS AND

QUIRKS OF THE ARCHITECTURE AND THE

COMPILER ONE IS USING TO ACHIEVE

GOOD TO EXCELLENT CODE OPTIMIZATION.

IN THIS PAPER, I WILL DESCRIBE SOME OF

THE AREAS THAT YOU MAY WANT TO PAY

ATTENTION TO REGARDING YOUR

SELECTED ARCHITECTURE AND COMPILER.

www.atmel.com page 13

How to Program an 8-bit Microcontroller
Using C language

By: Richard Mann, Imagecraft

J O U R N A LA T M E L A P P L I C A T I O N S

if (PORTA & BIT(0))// test to
see if 0th bit is set
…

This approach is probably the best overall: it works on

all compilers, it defines the bit position explicitly and

without ambiguity, and it will often result in

optimal code sequences from the compilers. A minor

inconvenience is that the usage seems more awk-

ward than using bitfield names (as described below),

but this can be alleviated by using C

preprocessor macros; for example:

#define SETBIT(p, b) (p)
|= BIT(b)

#define CLRBIT(p, b) (p)
&= ~BIT(b)
etc.

Bitfields in a C Struct

C allows you to declare bitfields within a structure,

such as:

typedef struct {

unsigned bit0 : 1,
bit1 : 1,
bit2 : 1,
bit3 : 1,
bit4 : 1,
bit5 : 1,
bit6 : 1,
bit7 : 1}

IOREG;
#define PORTA(*(IOREG *)0x3B)
…
int i = PORTA.bit0;// read
…
PORTA.bit0 = i; //
write

Again, we see that it is more convenient if the CPU

allows IO registers to be treated as data memory.

Casting the IO location (0x3B in this example) to the

appropriate structure type is no different from

casting it as a pointer to a byte. If you must use an

extension such as “@port” or “SFR”, as shown

earlier, you may or may not be able to declare

bitfield structures and use them as described.

This is seemingly a nice way to map the IO register

bits to the C language. However, a potential problem

exists: the C Standard does not define the bitfield allo-

cation order, and the compiler may allocate

bitfields either from right to left or from left to right. If

you use this method, you should make sure to consult

the compiler manual to ensure that your use of the bit

ordering matches the compiler’s usage. It is also pos-

sible that some compilers may generate more ver-

bose code for bitfield operations as

compared to bitwise operations. Lastly, according to

the C Standard, only “unsigned (int)” and “int” are

acceptable datatypes for a bitfield member. Some

compilers allow “unsigned char”, but it is an

extension. Whether or not a compiler allocates only a

byte for the above structure depends on the

particular compiler. If a compiler uses two bytes for

the above structure, then using this method of

accessing bits will not work. Due to these reasons,

this approach is not really recommended for bitwise

accessing of IO registers.

A similar situation applies to multi-byte registers such

as the Atmel AVR ADC register pair. It consists of a

high and low data register that have

consecutive addresses, but which need to be

accessed in certain order. Make sure the compiler

does this properly, or if you roll your own code, make

sure YOU do it properly.

IO Port Bit Extension

Some compilers that provide the IO register syntax

extension (e.g. “SFR” declaration) may further

provide an extension to specify the bit position of a

named IO register. For example:

SFR PORTA = 0x3B;
…
i = PORTA.0; // read the
0th bit
PORTA.0 = 1; // set the bit
…
etc.

In other words, the operator “.<digit>”, which is an

extension to Standard C, allows you to access the bit

denoted by the digit. Unlike structure bitfield,the bit posi-

tion is explicit and unambiguous. However, since this is

an extension and since a good solution already exists

using standard C bitwise operations, this method is not

recommended.

Const Qualifier and Strings in Harvard

Architecture
If you have read-only tables or “variables”, then you

should declare them with the “const” modifier. In most

cases, the compiler will allocate them in the program

memory and not take away precious SRAM space. Some

microcontrollers have what is known as the "Harvard

Architecture" – the program and data spaces are sepa-

rate and different instructions are needed to access

items in the separate spaces. The normal semantic of C

literal strings (e.g. “strings”) is that they must behave like

arrays in data space. Consider the case with the string

function strcpy: You should be able to call the function

with the second argument being either a literal string or

an array in RAM. However, using this takes up valuable

www.atmel.com page 14

RAM space. To lessen the use of the precious SRAM,

some compilers for Harvard Architecture targets allow

you to make strings allocatable in the program space,

However, selecting this option means that you will

probably need to call different functions depending on

whether the argument is a literal string or an array in the

data space.

Global Variables or Local Variables?
In theory, the choice of whether to declare a

variable as a global or local variable should be

dictated by how it is used. If the variable is accessed by

multiple functions spread across different files, then

they should be declared as global variables,e.g. declared

outside of any function definitions. If a variable is

used only within a function, then it should be declared

inside the function as a local variable.

To further limit the visibility of the variable name and thus

improve program readability, if a global variable is

accessed only by the functions within a single file, you

can prefix the variable declaration with the storage class

“static”to make it visible to that file only. When a variable

is only used with a statement block (inside a function) but

its value must be retained across multiple invocations of

the function, then you should declare the variable with

the “static”storage class in the statement block where it

is used. (This helps to further limit name visibility.)

Despite the differences in syntax, file-static and func-

tion-static variable still behave like global variables

and are treated as such. Some 8-bit systems have

separate memory spaces, e.g. 8051 has internal and

external data space. This may limit how you declare

and use global variables.

If a variable is only used within a statement block and

does not need to retain its value across

multiple function invocations, then it is declared with

the "auto" storage class in the statement block where

it is used. The auto storage class is the default storage

class for any variable declared inside a statement

block, so you may omit it, or you may explicitly use the

keyword “auto” to specify the storage class. The key-

word “register” has the same meaning as “auto”,

except that you are providing a hint to the compiler

that it should try to allocate this variable to a CPU reg-

ister (although the compiler is free to ignore the hint),

and you will not be taking the address of a register

variable. The compiler allocates storage for global

variables at program link time, and therefore each

global variable has a unique address in the SRAM. The

instructions that access global variables typically

encode the addresses as part of the instructions.

Since an address is usually 16 bits long in an 8-bit

J O U R N A LA T M E L A P P L I C A T I O N S

Otherwise, an optimizing compiler may eliminate

some or all operations:

int foo(int); main()
{
int a, b = foo(2), c =

foo(3);
a = b + c;
foo(a);

// uses “a” so the compiler
will not optimize it away

}

int foo(int x) { return x; }

With an aggressive compiler, the above program

may still be optimized away, but chances are that it

will produce usable results for most compilers.

It is best to look at the compiler-generated listing

and not just at the total memory usage from a map

file, as there will be extra code that the compiler

puts in to make your program into a complete

executable program. Most CPU architectures will

use more instruction space to access global

variables. How much more depends on the

architecture and the compiler. If the code bloat

associated with using global variables is acceptable

to you, then by all means do not attempt to optimize

their usage.

Sometimes it is even possible to save code space by

using global variables; for example, as an alternative

to passing parameters between functions (which can

be expensive under some CPU architectures). This is

a fairly controversial subject. If you go with this route,

be sure to observe good software engineering

practices, e.g. give the variables good descriptive

names, limit and localize their accesses, etc.

So, what can you do to reduce the overhead of using

global variables? You might rewrite your code so

that global variables are not used. You should look at

the resulting program to make sure that you do not

add code bloat elsewhere, since you may have to

change your program algorithmically. Another

possibility is that you can cache global variable

accesses:

{

extern int global_i;

int i = global_i;

…

// read/write using “i” instead

of “global_i”

…

global_i = i;

}

microcontroller, each global variable address takes

up to 2 bytes in the instruction. Some CPU

architectures allow a short form of addressing, using

only one byte to encode a global variable address if it

fits certain conditions.

The usage patterns of local variables mirror a stack:

as the function becomes active, the function’s local

variables become active as well. Once the function

exits, the function’s local variables can be destroyed.

If the target architecture provides support for a stack,

then the compiler will probably use the stack for

allocation of the local variables. A nice feature of the

stack is that the maximum amount of memory used

for local variable allocation is usually less than the

total number of local variables in the program, since

stack space is reclaimed once a function exits.

Unfortunately, some popular 8-bit microcontrollers do

not support a stack or support only a limited version

of a stack. In those cases, the compiler typically

examines the usage patterns of the local variables

and allocates them statically (possibly assigning

some of them to the same addresses), simulating the

natural effect performed by the stack.

If your chosen microcontroller does not directly

support a stack, then you should merely declare your

variables in the usual way and not worry about opti-

mizing their usage. However, if your chosen CPU

architecture does support a stack, then you may wish

to examine how your compiler generates code for

global and local variables, and see whether there are

benefits in favoring one type of variable over the

other, because of the CPU instruction set and

memory. Note that this sort of optimization should not

be undertaken casually, since for program readability

variables should be declared in a manner consistent

with their use.

As a test, you can use this simple program:

void main(void)
{

…
a = b + c;
}

Declare the three operands as global variables and

then as local variables, and note the differences in

the sizes of the resulting code. If the target

architecture supports short and long forms of

global variables, declare them as such and see the

differences produced there too. If you are declaring

them as local variables, you may have to initialize

them, possibly using a function call.

This only works if any updated values of “global_i”

are not needed in an interrupt handler or something

similar while this function is executing. Before

making this change, you should check how your

compiler handles multiple appearances of the same

global variable in a function. Some compilers may

perform similar caching of the global variables as in

the example above, saving you from doing it

manually. Some compilers may also cache a

pointer to the global variable, which may still be a

win under some architectures, and this technique

allows asynchronous concurrent access of the

global variable in an interrupt handler.

Register Promotion Optimizations
Most of the earlier microcontrollers have few

registers; some as little as a single accumulator.

Some of the newer microcontrollers have more

registers. For example, the Atmel AVR has 32 8-bit

registers, and all of the AVR arithmetic and logical

instructions will only work on register operands.

Even if a microcontroller can operate on memory

operands, it often still pays to keep the operands in

registers since they take up less instruction space.

The C storage class “register” is meant to be a hint

to the compiler that the variable should be

allocated to a CPU register if possible, instead of in

the default stack location. Fortunately, most modern

compilers now take care of this automatically by

performing register allocation optimization, and the

“register” keyword is usually not necessary. Again,

consult your compiler manual to see whether this is

done automatically or not.

The quality of the register allocation varies as well,

depending on the compiler and the specific

architecture. The more general the register set, the

easier it is for good register optimizations. Here are

some register related optimizations that a compiler

may perform, beyond the automatic promotion of

certain variables into registers:

1. Lifetime Analysis – an optimization that

determines the beginning and end of the variable

usage. This analysis must handle loops and other

control structures in the programs. Using this

information, further optimizations can be performed.

2. Lifetime Splitting – using the lifetime analysis

information, the compiler may “split” a variable into

multiple pseudo-variables, each with distinct

lifetimes.

www.atmel.com page 15

J O U R N A LA T M E L A P P L I C A T I O N S

unsigned integer by a power of 2 can be done as a

logical right shift, but a signed integer divide cannot

be done by arithmetic right shifts without additional

compensating code.

You should avoid using “long” or floating point

variables unless necessary, because most - if not all

- 8 (and even 16-bit) microcontrollers do not support

these operations directly. In fact, most 8-bit

microcontrollers do not support 16-bit operations at

all. Using long data types in an expression will prob-

ably increase the code size and the running time of

the code by at least a factor of two to four compared

to using “int” data types, depending on which C

operations you use.

Standard C provides two floating point data types:

float and double (long double was introduced to the

standard in C99). Most C compilers provide at least

the 32-bit “float” data type, usually conforming to

various degrees to the IEEE754 standard. The C

Standard dictates that the “double” data type be at

least 64-bits, but some compilers opt to make

“double” 32-bits, since the need for 64-bit floating

point is very rare on an 8-bit microcontroller.

Using floating point operations will dramatically

increase the code size and execution speed of your

program. In fact, some people argue that floating

point should not be used unless necessary in the

8-bit microcontroller world because of the size and

speed penalty and the intrinsic imprecise nature of

the floating point operations. For example, in this

simple program:

float f = 3.1;

f -= 1.0;

if (f == 2.1) do_something();

The comparison may not execute as true since

floating point computation depends on the

implementation. Any implementation must

compromise on either the range or the precision of

the floating point computations. For the purpose of

optimization and perhaps even for the purpose of a

better fit to your task, you may wish to investigate

using alternatives to floating point. Sometimes one

can use plain integers, and sometimes one has to

use scaled integers. Unfortunately, since scaled

integers and other similar alternatives are not in

Standard C, any such use would either be provided

by the compiler as an extension, as library

functions, or as a roll-your-own solution.

Overhead of Library Functions
One word: printf. While it is expected that the

compiler provide a printf function, a full

implementation supporting all the features can eat

up a lot of program memory. There are a lot of

esoteric features in printf, plus a full implementa-

tion drags in all the floating point support

functions. Most compilers provide you the option of

selecting different versions of printf, each with

varying capabilities and code size requirement.

Choose the one that closest matches your needs. If

your program space or SRAM space is really tight,

you may perhaps even forgo printf and use the

simpler conversion functions such as itoa(), ltoa(),

and ftoa() if your compiler provides them.

Conclusion
Since the cost of an embedded system is magni-

fied by the number of units shipped, embedded

engineers need to juggle between the cheapest

possible chips, development cost, and the time-to-

market. Well-written C helps to give you a leg up on

the competition when working on the next version

of your product, as C allows more control over

"almost-always-not-enough" scarce resources.

Hopefully, attention to and understanding of the

issues brought up in this paper will assist in your

8-bit microcontroller C programming endeavors.

3. Register Allocation – using lifetime information,

the compiler can pack the variables into registers

more intelligently. For example, it may pack multiple

variables into a single register if their lifetimes do

not overlap. Or if it has performed lifetime splitting,

then each distinct lifetime may get its own register.

The more registers available to the compiler, the

better it can do register allocation. Compilers that

do lifetime splitting, for example, can allow the

compiler to allocate the split pseudo-variables into

different registers, or perhaps put only some of them

in registers, depending on the situation. If your

compiler does not perform lifetime splitting, then

declaring the variables in the smallest enclosing

statement block and using distinct variables for

different uses will help the compiler to do a better job.

Some compilers allow you to declare global

registers, thus allowing you to assign a certain

number of global variables to registers. This is

especially useful if your program uses a lot of

interrupt handlers. Normally, if you write an

interrupt handler in C (via some sort of extension

since Standard C has no syntax for declaring

interrupt handlers), then the compiler must save

and restore any registers the handler uses, so that

the state of the machine is restored when the han-

dler exits. If there are a lot of interrupts or interrupt

handlers, it can be costly in both instruction size

and the speed of the program. Using global

registers solves this problem.

Choose Your Data Types Carefully
An advantage of using C over assembly language is

the data type handling – you simply declare

variables of the needed types, and the compiler

takes care of storage allocation and code

generation. However, if you are looking to optimize

your program, you need to be careful what data

types you use for your variables. Standard C does

not dictate the sizes of the integer data types except

that the following size relationship holds, and that

“int” is at least 16-bits:

sizeof (char) <= sizeof (short)

<= sizeof (int) <= sizeof (long)

In practice, for most 8-bit C compilers,“char” is 8-bits,

“short” and “int” are 16-bits, and “long” is 32-bits.

Using the “unsigned” type may possibly improve

your code size, as some CPU architectures favor the

use of unsigned types. For example, it may be

cheaper to zero-extend a byte than sign-extend a

byte into an integer word. Moreover, dividing an

www.atmel.com page 16

Stay informed!

Subscribe NOW to The

Atmel Applications

Journal.

www.atmel.com/

journal/mail.asp

J O U R N A LA T M E L A P P L I C A T I O N S

