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BIFURCATIONS IN THE TWO IMAGINARY CENTERS PROBLEM
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Abstract. In this paper we show that, for a given value of the energy, there is a bifurcation
for the two imaginary centers problem. For this value not only the configuration of the orbits
changes but also a change in the topology of the phase space occurs.
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1. Introduction

The two fixed centers problem with imaginary distance serves as a model for the

study of the problem of the motion of a satellite of mass m0 in the gravitational

field of the Earth spheroid [2]. We consider two particles of masses m1 and m2,

respectively, located on two fixed centers on the Z axes, and we denote the distance

from the origin to the particle mi by ci, i = 1, 2.

r

m1(0, 0, ic)

m2(0, 0,−ic)

m0(x, y, z)
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The study of the motion of a particle of mass m0 in the resultant of the force fields

of Newtonian attraction of these two particles can be compared with the study of

the motion of a satellite in the gravitational field of the Earth. We can identify the

first terms of the force function of both problems requiring that

m1 = m2 = M, c1 = iR
√

|I2|, c2 = −iR
√

|I2|

where M is the mass of the Earth, R is its radius and I2 is the coefficient of the

oblateness of the Earth. So, the motion of a satellite in the gravitational field of the

oblate Earth that is symmetric with respect to the equatorial plane can be interpreted

as the integrable problem of a particle in the field of two fixed centers, with equal

masses and located at a purely imaginary distance one from the other [2].

Consider two fixed centers situated at the points (0, 0,±ic). Hamilton’s equations

of motion of the particle of mass m0 can be separated by using elliptic coordinates

x = cosh ξ cos η cos νy = cosh ξ cos η sin νz = sinh ξ sin η.

By introducing the time scale dt/ dτ = cosh2 ξ − cos2 η the hamiltonian is

(1.1) H =
1

cosh2 ξ − cos2 η

(p2

ξ

2
+

p2

η

2
+

( 1

cos2 η
−

1

cosh2 ξ

)p2

ν

2
− k sinh ξ

)

with k = γm0M and γ the gravitational constant.

If we fix the value of the energy H = h on the corresponding level of energy, we

can write the hamiltonian as a sum of two functions in such a way that the variables

ξ and η are separated,

(1.2) H =
Hξ + Hη

cosh2 ξ − cos2 η
+ h,

where

(1.3)

Hξ =
p2

ξ

2
−

1

cosh2 ξ

p2

ν

2
− k sinh ξ − h cosh2 ξ,

Hη =
p2

η

2
−

1

cos2 η

p2

ν

2
+ h cos2 η.

These expressions allow us to study two separated problems and to obtain the

phase spaces of these problems for different values of the energy. With the purpose

to construct the complete phase space we consider a particular value of the energy

H = h which leads to Hξ + Hη = 0, that is Hη = −Hξ. Then we obtain a compact

complete phase space.
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2. Phase spaces (ξ, pξ), (η, pη) for ω = 0.

In this section we consider the two separated problems analyzing the hamiltonians

Hξ and Hη for different values of h < 0. In particular, we study the case ω = 0,

where ω = p2

ν/2.

The expressions of the hamiltonians are

Hξ =
p2

ξ

2
− k sinh ξ − h cosh2 ξ,(2.1)

Hη =
p2

η

2
+ h cos2 η.(2.2)

It follows from the analysis of the phase spaces that 1

4
k2/h − h 6 Hξ and h 6 Hη.

Since Hη = −Hξ we obtain

(2.3)
k2

4h
− h 6 Hξ 6 −h, h 6 Hη 6 −

k2

4h
+ h.

We characterize different cases according to the values of h with respect to the values

of k.

(1) For Hξ = 1

4
k2/h−h we obtain only one equilibrium point (arg sinh (−k/2h), 0).

(2) For 1

4
k2/h − h < Hξ < −h the domain of pξ is [µ1, µ2] where

µ1,2 = arg sinh
−k ∓

√

k2 − 4h(Hξ + h)

2h
,

and periodic orbits appear around the equilibrium point (see Figure 1).

(3) If Hξ = −h the domain is [0, arg sinh(−k/h)], and there is a unique periodic

orbit as the limit of the orbits of the case above.

We make a similar study for the (η, pη)-phase space:

(1) If Hη = h we obtain the equilibrium points απ, α ∈ Z.

(2) If h < Hη < − 1

4
k2/h + h the domain of pη in the interval [−π, π] is

[−π,−γ1] ∪ [−γ2, γ2] ∪ [γ1, π],

where γ1 = arccos
(

−
√

Hη/h
)

and γ2 = arccos
(√

Hη/h
)

.

(3) If Hη = − 1

4
k2/h + h a periodic orbit appears as the limit of the periodic orbits

of the previous case.

The relation Hξ = −Hη implies that the limit orbit in the (ξ, pξ)-phase space

corresponds to the equilibrium points of the (η, pη)-phase space and vice versa.
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Let us remark that a change of sign of the term 1

4
k2/h − h corresponds to the

bifurcation value h = − 1

2
k and is related to the appearance or disappearance of two

equilibria in the (η, pη)-phase space.

In the following we describe the phase spaces (ξ, pξ) and (η, pη) for all values of

the energy.

For h < − 1

2
k the phase spaces (ξ, pξ) and (η, pη) can be seen in Figures 1 and 2

respectively.

ξ

pξ

Hξ <−h

Hξ =−h

Hξ =
k2

4h
− h

Figure 1. (ξ, pξ)-space for h < −

1

2
k.

η

pη

Hη >h

Hη =−h

Hη =−

k2

4h
− h

Figure 2. (η, pη)-space for h < −

1

2
k.

One can observe that in the (η, pη)-phase space the equilibrium points correspond

to Hη = h; in the (ξ, pξ)-phase space this value implies Hξ = −h and corresponds

to the limit orbit. For Hη > h in (η, pη), the orbits are circles with decreasing radii.

The corresponding orbits for Hξ > −h in the (ξ, pξ)-phase space have increasing

radii. The limit orbit in the (η, pη)-phase space appears for Hη = − 1

4
k2/h + h and

corresponds to the equilibrium point in the (ξ, pξ)-phase space for Hξ = 1

4
k2/h− h.

In the case h = − 1

2
k there exists one equilibrium point in the (ξ, pξ)-phase space

on the horizontal axis for Hξ = 0, which corresponds to the limit orbit in the (η, pη)-

phase space for Hη = 0.

For Hξ < −h the periodic orbits in the (ξ, pξ)-phase space have increasing radii

until they reach the limit circle for Hξ = −h. Their corresponding orbits in the

(η, pη)-phase space have decreasing radii and their limits are the equilibrium points

(0, 0), (±π, 0). The (ξ, pξ) and (η, pη) phase spaces can be seen in Figures 3 and 4,

respectively.

For h > − 1

2
k, the equilibrium point in the (ξ, pξ)-phase space corresponds to the

limit orbit in the (η, pη)- phase space.

The (ξ, pξ) and (η, pη) phase spaces can be seen in Figures 5 and 6, respectively.
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ξ

pξ

Hξ =0

Hξ <−h

Hξ =−h

Figure 3. (ξ, pξ)-space for h = −

1

2
k.

η

pη

Hη =0Hη >h

Hη =h

−

π

2

π

2

Figure 4. (η, pη)-space for h = −

1

2
k.

ξ

pξ

Hξ =0

Hξ <−h

Hξ =−h

Hξ =
k2

4h
− h

Figure 5. (ξ, pξ)-space for h > −

1

2
k.

η

pη

Hη >h
Hη =h

−

π

2

π

2

Hη =−

k2

4h
+ h

Figure 6. (η, pη)-space for h > −

1

2
k.

3. Bifurcations for ω = 0.

In this section we build the complete phase space from the separated spaces (ξ, pξ)

and (η, pη) studied in the previous section, taking into account the relationshipHη =

−Hξ. Because of the change of sign of the term
1

4
k2/h − h we obtain a bifurcation

for h = − 1

2
k. For this value of bifurcation we obtain a change in the topology of the

complete phase space and also in the structure of the set of periodic orbits.

Proposition 3.1. The topology of the phase space of the two imaginary centers

problem changes at the energy value h = − 1

2
k.

P r o o f. For each value of the energy, the phase space of (ξ, pξ) is a disk, as we

can see in Figures 1, 3, 5. On the other hand, the phase space of (η, pη) changes its

topology for different values of h:

• If h < − 1

2
k the (η, pη)-phase space is formed by two isolated disks.

• If h = − 1

2
k the (η, pη)-phase space is formed by two disks joined by two points.

• If h > − 1

2
k the (η, pη)-phase space is formed by a corona.

We study the complete phase space according to the different values of the energy.

The complete phase space is built taking into account that both two dimensional

phase spaces are related by the energy conditionHξ = −Hη. Then the orbit obtained
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for a given value of Hξ, in the (ξ, pξ)-phase space, has to be multiplied by the orbit

associated with the value −Hη in the (η, pη)-phase space. So, the different circles

obtained when Hη decreases have to be multiplied by the corresponding circles in

the (ξ, pξ)-phase space when Hξ increases.

For h < − 1

2
k the complete phase space is two copies of S3. In this case, the two

disks in the (η, pη)-phase space are isolated and the complete phase space is formed

by two copies of the same 3-manifold.

Let us consider one of these disks. Its boundary, corresponding to the greatest

value of Hη, is multiplied by the fixed point of the (ξ, pξ)-phase space, and one circle

is obtained.

As Hη decreases, the circles are multiplied by the corresponding circles in the

(ξ, pξ)-phase space when Hξ increases; so, a sequence of fitted 2-tori is obtained.

Finally, the fixed point is multiplied by the limit orbit of the (ξ, pξ)-phase space and

one limit orbit is obtained. When two 2-disks are identified in this way, the result is

the three sphere S3.

So, the complete phase space is formed by two copies of S3 (see Figure 7). In the

figures, the shaded area represents the (η, pη)-phase space.

Foliation of S

Two copies

of S3

Figure 7. Complete phase space for h < −

1

2
k.

For h = − 1

2
k the complete phase space is two copies of S3 joined by two points.

Indeed, the phase space (η, pη) in this case is formed by two disks joined by two

points (in this phase space η = −π and η = π are identified). The complete phase

space is built by multiplying the boundary of these two disks by the fixed point

of the (ξ, pξ)-phase space. The result is two circles joined by two points. Since

Hη = −Hξ, the different circles obtained when Hη decreases have to be multiplied

410



by the corresponding circles in the (ξ, pξ)-phase space when Hξ increases, obtaining

a sequence of 2-tori. Finally, the two fixed points are multiplied by the limit orbit

corresponding to the value Hξ = −h in the (ξ, pξ)-phase space, and two limit orbits

in the complete phase space are obtained. The conclusion is that the complete phase

space in this case is formed by two copies of S3 joined by two points (see Figure 8).

Two S3 joined

by two points

Figure 8. Complete phase space for h = −

1

2
k.

For h > − 1

2
k the complete phase space is S2 × S1. As in the previous cases, the

(ξ, pξ)-phase space is a disk D2 and the (η, pη)-phase space is formed by an annulus.

We proceed as above, the complete phase space is built by multiplying the bound-

ary of this annulus by the fixed point of the (ξ, pξ)-phase space obtaining two circles.

When Hη = −Hξ, the different circles obtained asHη decreases have to be multiplied

by the corresponding circles in the (ξ, pξ)-phase space as Hξ increases. The result is

a sequence of 2-tori, where each torus is inside the next one.

The product of the separatrix orbit in the (η, pη)-phase space by the corresponding

S1 in the (ξ, pξ)-phase space yields two 2-tori joined along two different circles, these

circles are the result of multiplying the points (±π, 0) by the corresponding S1 in the

(ξ, pξ)-phase space. These circles are saddle orbits.

Finally, the two fixed points (±π, 0) of the (η, pη)-phase space are multiplied by

the limit orbit in the (ξ, pξ)-phase space for the value Hξ = −h and we get two limit

orbits. We conclude that the complete phase space for h > − 1

2
k is S2 ×S1 as we see

in Figure 9.

Then, the complete phase space changes for h = − 1

2
k. �

We refer to closed curves which are either in the common axis of the invariant

2-dimensional tori or the two 2-tori intersection as NMS periodic orbits (see [3]).
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S1

S2

S2
× S1

Figure 9. Complete phase space for h > −

1

2
k.

Corollary 3.1. The NMS periodic orbits of the two imaginary centers problem

bifurcate at the energy value h = − 1

2
k.

P r o o f. A NMS periodic orbit in the complete phase space is obtained when

one point in the (ξ, pξ)-phase space is multiplied by an S1 in the (η, pη)-phase space

or vice versa.

If h < − 1

2
k, the complete phase space is two copies of S3 and two periodic orbits

are linked in each of them, i.e., two hopf links are obtained (see Figure 10).

Figure 10. Periodic orbits for h < −

1

2
k.

For h = − 1

2
k, the phase space is two copies of S3 joined by two points. It implies

that two hopf links are joined by two points (see Figure 11).

412



Figure 11. Periodic orbits for h = −

1

2
k.

For the last case h > − 1

2
k, the phase space is S2×S1. The periodic orbits obtained

by multiplying the fixed points (±π, 0) by S1 are saddle orbits because they are in

the intersection of two tori. The other periodic orbits are attractive and repulsive

orbits because they are in the core of a solid tori.

The manifold S2 × S1 admits local and global orbits depending on whether they

are isolated by a 3-cell or not. By construction, we can obtain periodic orbits by

multiplying the fixed point in the (ξ, pξ)-phase space by the boundary circles of the

corona, which are global orbits. The other four orbits, obtained by multiplying the

fixed points in the (ξ, pξ)-phase space by S1 are local periodic orbits. Let us observe

that the four local orbits are linked to one of the global orbits (see Figure 12).

Figure 12. Periodic orbits for h > −

1

2
k.

So, the link of periodic orbits bifurcates for h = − 1

2
k. �

Therefore, h = −k/2 is a bifurcation point for both the phase space of the problem

and, of course, the link of periodic orbits.
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