ECE452 / CS446 / SE464

Project Tutorial - Delivery 1

Monday, May 8, 2006

Sean Lau (sglau@crete)
Course Website: swen.uwaterloo.ca/™ se2

Overview

e Introduction to Delivery 1
e Baseline Functionality for Delivery 1
e System Variability Proposal / Negotiation
* Design Document
* Implementation
e Phone Control Software
e Looking Ahead: Demo & Peer Review

* Summary

Introduction

e the first iteration of the project involves building a
subset of the phone control software and a subset
of the information management system

e the output is a working interim build and a
design document which reflects the build

e project is front loaded - a good design and
implementation now should result in less work in
the second iteration

Baseline Functionality ()

e baseline functionality: the minimum functional
requirements which must be present in all systems

 the baseline functionality for the first iteration
represents enough to capture the architecture

e there will be a second set of baseline functionality
for the second deliverable that complements this
set

Baseline Functionality (lIl)

* normal successtul call
e extension mapping, permissions & system load

e add accounts and assign IP phone, extension &
permissions through the administrator console

e define valid billing plans & assign to account
e manual hardware tests, system load
e administrator console login / logoff

* input validation

System Variability (1)

different TAs in SE1 = different functional
requirements between groups

value-added functionality: features which exceed
the baseline and documented in your SRS

required to incorporate three pieces of
functionality of moderate complexity

examples include call display, call waiting, and
call filtering

System Variability (ll)

e the variable functionality will be negotiated with
your TA during a short meeting (< 20 minutes)

e meeting scheduling will be discussed later on

e put together a proposal (a list of value-added
functionality, prioritized by your desire to
incorporate them) and submit it to CourseBook 24
hours before the scheduled meeting

e bring hardcopies of your proposal and SRS to the
meeting

Design Document

e documentation of the delivery 1 interim build

e first half focuses on high level architectural
decisions for planning development

e second half focuses on detailed component
design for understanding the implementation

e traceability between the code and the document is
important

e submit electronically as a PDF file and physically
as a bounded hardcopy

1.0 Introduction

e describe any functionality that has been included
in the interim build that exceeds the baseline

e describe the value-added functionality that is /
will be included in your system, as agreed upon
by your TA

e provide references to where the feature is
defined in the SRS

2.0 Architecture Overview (l)

e captures a high-level view of the system and
architectural decisions

e briefly describe design decisions and trade-ofts

e summarize strengths and weaknesses of the
design in a table

10

2.0 Architecture Overview (ll)

e apply Kruchten’s 4+1 approach to documenting
the architecture

e observation: one view is insufficient for
addressing all concerns

e main idea: four concurrent views to describe
different concerns and one scenario view to tie
the views together and validate the model

e this will be covered in greater detail during
lectures

11

2.1 Logical View

e view describes the domain and the relationships

e use this view to describe the decomposition of the system into
components

e characteristics of a software component:

e “aunit of composition with contractually specified
interfaces...” (Szyperski)

* encompasses a set of related functionality

* possible implementation forms: a set of classes, libraries, or
services

e create a subsection (e.g. 2.1.1) for each component and describe its
responsibilities in terms of the functional requirements in the SRS

12

Example - Logical View

i'_'l SCOMponent
Database Waorker
<piavidad !
voriagu
Resoyroefegues] SPEjiandd (rvied
,.;I ResourteRoquiss
i
.
i Macar> | | SN ¥imonc:>
WorkRequest Resource R eaguesl
E [oe iy
Discornoct
Worker Do Taski, Gt
CeaTaskB Sl
D Task Wipsl
Swary
FromRaques

 a UML component diagram can be used to express
the logical view

e note the use of the “ball and socket” notation for
denoting interfaces and the named interfaces

13

2.2 Development View

i r'| = 2 -
= _ N 1l == ¥ : .,-F|
_____ _ - a o
|]| i
ol e ol | | e 2 . % 2 AT e =
—-®] .l >k
i 1-_.n--ﬂ"| -
2| 3
i | m.i‘T
.-n....i'e‘ :“Ii,.p‘ 1 —— 2 |
7 q,'r:-']
------- ‘
][] | — - B

e view describes the static organization of the
software during development

e a UML package diagram can be used for this view

* indicate any package or library dependencies

14

2.3 Process View

e view describes run-time, concurrency and
synchronization aspects

e use this view to illustrate information about UNIX
processes, and their control and data dependencies

e a UML class diagram can be used to represent this
information and stereotypes can be used to
classity dependencies

15

2.4 Physical View

e view describes the distribution of run-time
artifacts to the physical hardware

e a UML deployment diagram can be used for this
View

e use specific machine names (e.g. cpu#, rees, etc.)
to indicate where the artifacts are / can be
executed

e should reflect the lab’s actual architecture, not the
conceptual architecture

16

3.0 Interfaces

describe the communication protocol used for each
named interface in section 2.1

communication protocol defines the type of interface,
the technology used and specific interface details

types of interface:

e programmatic interface (e.g. API)

e message-based interface (e.g. XML messages)
e database interface (e.g. SQL statements)

examples of technology: RMI, JDBC, sockets, etc.

17

4.0 Data Schema

e provide a graphical representation of the database
schema that indicates table structure, keys,
relationships, and attribute types

e can use an entity-relationship (ER) diagram or a
third party tool to render the schema

e include a data dictionary which describes the type
and purpose of each attribute

e make sure that values with specific meanings
are also defined (e.g. integer values, codes)

18

5.0 Technology Overview

e for each product / framework applied, briefly
describe:

e what the item is, how it is applied in your
system, and why it was chosen

19

6.0 Component Details

e describes the structure and behaviour of the
components mentioned in section 2.1

e create a subsection for each component (e.g. 6.1)

e further decomposition of a component into sub-
components can be done in the subsection if
necessary

 the sub-components can be expressed using a
nested component diagram

20

Subsection 1: Static Structure

e describe the component’s classes using a UML
design class diagram

® you can use reverse-engineering tools to derive
the classes, but beware of an explosion in the
number of classes if you are using a framework

e in that case, edit the diagram for clarity and
readability

21

Subsection 2: Run-time Structure
Subsection 3: Behaviour

e [2] describe the component’s run-time artifacts (e.g.
processes, threads) using a UML class diagram

e clearly indicate any relationships (e.g. parent /child,
data, control, etc.) between the artifacts

e for components which are implemented as libraries,
include a sentence indicating this

e [3] for each run-time artifact, describe its behaviour using
UML activity diagrams or statecharts

e consistency between the structural and behavioural
models is important (e.g. actions correspond to class
operations)

22

/.0 Scenarios

scenarios exercise the interfaces between
components and give a run-time view of the
system

use UML sequence diagrams created based on
instances of the classes from the structural models
and the interfaces which are defined

scenarios will contain details which should be
reflected in the diagram

the required scenarios will be posted on the course
web site a few weeks before the due date

23

Style Guidelines

front matter: title page (with group id), table of
contents, list of figures

body: standard margins, 11 point font, 1.5 spacing

diagrams: include a legend for unconventional
notation and only explain things in the body
which are not immediately obvious

appendices: will not be marked

page limit: 40 pages for the first design document

24

Implementation

e produce a working interim build which includes
the baseline functionality (at minimum)

* stable and professional

e submit the code + a readme file which contains
compilation and deployment instructions as a
single zip file

e do not submit binary files

25

Phone Control Software (l)

e recall the conceptual architecture:

e designing embedded software to be run on the
physical IP phones

e consequence: each phone must be represented as a
separate operating system process

® jssues:

e what does it mean when a phone process is
started / killed?

e what does a phone process do exactly?

26

Phone Control Software (ll)

e potential architectural styles

e thin client: no / minimal logic in process - all
events are passed to a server for processing

* P2P: maximum logic in process - all events are
handled by the phone, no server is required

* client-server: middle ground

e how to decide the division of responsibility?

27

Looking Ahead

e Demo

e will be held in the Nortel lab (MC3007) using
both physical and emulated IP phones

e TA will run test cases against your interim build
to verify the baseline functionality

e Peer Review

e will involve critiquing another group’s design
and code

28

Lab Notes

the lab environment should be stabilized by
Wednesday (e.g. the IP phones should work)

don’t forget to release resources by killing the
phone process when you’re done

don’t acquire IP phones if you are not in the lab
don’t run anything on commando.student.cs

read the lab information on the course web page,
especially the part about port assignments

29

Administration ()

® group assignments:
e groups1-5: Peter
 groups 6-16: Alfred
 groups 17-28: Sean
e sign-ups for variability negotiation meeting
e sign ups will be done through CourseBook

e submit your proposal to CourseBook 24 hours
before your meeting

30

Administration (ll)

e due dates

e variability must be negotiated before Monday
May 15

* electronic submission of design document and

implementation are due on Monday June 12 by
8:30 am

e physical submission of design document is due
in lecture on Monday June 12

31

Summary

try out the emulator and phone interface if you
have not done so yet

start sketching out the system architecture

future lectures will contain more information about
some of the design document sections

direct your project questions to your assigned TA
check the newsgroup regularly for announcements

this week’s tutorial: test-driven development using
a unit testing framework

32

