
ECE452 / CS446 / SE464
Project Tutorial - Delivery 1

Monday, May 8, 2006

Sean Lau (sqlau@crete)
Course Website: swen.uwaterloo.ca/~se2

1

Overview
• Introduction to Delivery 1

• Baseline Functionality for Delivery 1

• System Variability Proposal / Negotiation

• Design Document

• Implementation

• Phone Control Software

• Looking Ahead: Demo & Peer Review

• Summary

2

Introduction

• the first iteration of the project involves building a
subset of the phone control software and a subset
of the information management system

• the output is a working interim build and a
design document which reflects the build

• project is front loaded - a good design and
implementation now should result in less work in
the second iteration

3

Baseline Functionality (I)

• baseline functionality: the minimum functional
requirements which must be present in all systems

• the baseline functionality for the first iteration
represents enough to capture the architecture

• there will be a second set of baseline functionality
for the second deliverable that complements this
set

4

Baseline Functionality (II)
• normal successful call

• extension mapping, permissions & system load

• add accounts and assign IP phone, extension &
permissions through the administrator console

• define valid billing plans & assign to account

• manual hardware tests, system load

• administrator console login / logoff

• input validation

5

System Variability (I)

• different TAs in SE1 = different functional
requirements between groups

• value-added functionality: features which exceed
the baseline and documented in your SRS

• required to incorporate three pieces of
functionality of moderate complexity

• examples include call display, call waiting, and
call filtering

6

System Variability (II)

• the variable functionality will be negotiated with
your TA during a short meeting (< 20 minutes)

• meeting scheduling will be discussed later on

• put together a proposal (a list of value-added
functionality, prioritized by your desire to
incorporate them) and submit it to CourseBook 24
hours before the scheduled meeting

• bring hardcopies of your proposal and SRS to the
meeting

7

Design Document
• documentation of the delivery 1 interim build

• first half focuses on high level architectural
decisions for planning development

• second half focuses on detailed component
design for understanding the implementation

• traceability between the code and the document is
important

• submit electronically as a PDF file and physically
as a bounded hardcopy

8

1.0 Introduction

• describe any functionality that has been included
in the interim build that exceeds the baseline

• describe the value-added functionality that is /
will be included in your system, as agreed upon
by your TA

• provide references to where the feature is
defined in the SRS

9

2.0 Architecture Overview (I)

• captures a high-level view of the system and
architectural decisions

• briefly describe design decisions and trade-offs

• summarize strengths and weaknesses of the
design in a table

10

2.0 Architecture Overview (II)

• apply Kruchten’s 4+1 approach to documenting
the architecture

• observation: one view is insufficient for
addressing all concerns

• main idea: four concurrent views to describe
different concerns and one scenario view to tie
the views together and validate the model

• this will be covered in greater detail during
lectures

11

2.1 Logical View
• view describes the domain and the relationships

• use this view to describe the decomposition of the system into

components

• characteristics of a software component:

• “a unit of composition with contractually specified

interfaces...” (Szyperski)

• encompasses a set of related functionality

• possible implementation forms: a set of classes, libraries, or

services

• create a subsection (e.g. 2.1.1) for each component and describe its

responsibilities in terms of the functional requirements in the SRS

12

Example - Logical View

• a UML component diagram can be used to express
the logical view

• note the use of the “ball and socket” notation for
denoting interfaces and the named interfaces

13

2.2 Development View

• view describes the static organization of the
software during development

• a UML package diagram can be used for this view

• indicate any package or library dependencies
14

2.3 Process View

• view describes run-time, concurrency and

synchronization aspects

• use this view to illustrate information about UNIX

processes, and their control and data dependencies

• a UML class diagram can be used to represent this

information and stereotypes can be used to

classify dependencies

15

2.4 Physical View

• view describes the distribution of run-time
artifacts to the physical hardware

• a UML deployment diagram can be used for this
view

• use specific machine names (e.g. cpu#, rees, etc.)
to indicate where the artifacts are / can be
executed

• should reflect the lab’s actual architecture, not the
conceptual architecture

16

3.0 Interfaces
• describe the communication protocol used for each

named interface in section 2.1

• communication protocol defines the type of interface,

the technology used and specific interface details

• types of interface:

• programmatic interface (e.g. API)

• message-based interface (e.g. XML messages)

• database interface (e.g. SQL statements)

• examples of technology: RMI, JDBC, sockets, etc.

17

4.0 Data Schema

• provide a graphical representation of the database
schema that indicates table structure, keys,
relationships, and attribute types

• can use an entity-relationship (ER) diagram or a
third party tool to render the schema

• include a data dictionary which describes the type
and purpose of each attribute

• make sure that values with specific meanings
are also defined (e.g. integer values, codes)

18

5.0 Technology Overview

• for each product / framework applied, briefly
describe:

• what the item is, how it is applied in your
system, and why it was chosen

19

6.0 Component Details

• describes the structure and behaviour of the
components mentioned in section 2.1

• create a subsection for each component (e.g. 6.1)

• further decomposition of a component into sub-
components can be done in the subsection if
necessary

• the sub-components can be expressed using a
nested component diagram

20

Subsection 1: Static Structure

• describe the component’s classes using a UML
design class diagram

• you can use reverse-engineering tools to derive
the classes, but beware of an explosion in the
number of classes if you are using a framework

• in that case, edit the diagram for clarity and
readability

21

Subsection 2: Run-time Structure
Subsection 3: Behaviour

• [2] describe the component’s run-time artifacts (e.g.
processes, threads) using a UML class diagram

• clearly indicate any relationships (e.g. parent /child,
data, control, etc.) between the artifacts

• for components which are implemented as libraries,
include a sentence indicating this

• [3] for each run-time artifact, describe its behaviour using
UML activity diagrams or statecharts

• consistency between the structural and behavioural
models is important (e.g. actions correspond to class
operations)

22

7.0 Scenarios
• scenarios exercise the interfaces between

components and give a run-time view of the
system

• use UML sequence diagrams created based on
instances of the classes from the structural models
and the interfaces which are defined

• scenarios will contain details which should be
reflected in the diagram

• the required scenarios will be posted on the course
web site a few weeks before the due date

23

Style Guidelines

• front matter: title page (with group id), table of
contents, list of figures

• body: standard margins, 11 point font, 1.5 spacing

• diagrams: include a legend for unconventional
notation and only explain things in the body
which are not immediately obvious

• appendices: will not be marked

• page limit: 40 pages for the first design document

24

Implementation

• produce a working interim build which includes
the baseline functionality (at minimum)

• stable and professional

• submit the code + a readme file which contains
compilation and deployment instructions as a
single zip file

• do not submit binary files

25

Phone Control Software (I)
• recall the conceptual architecture:

• designing embedded software to be run on the
physical IP phones

• consequence: each phone must be represented as a
separate operating system process

• issues:

• what does it mean when a phone process is
started / killed?

• what does a phone process do exactly?
26

Phone Control Software (II)

• potential architectural styles

• thin client: no / minimal logic in process - all
events are passed to a server for processing

• P2P: maximum logic in process - all events are
handled by the phone, no server is required

• client-server: middle ground

• how to decide the division of responsibility?

27

Looking Ahead

• Demo

• will be held in the Nortel lab (MC3007) using
both physical and emulated IP phones

• TA will run test cases against your interim build
to verify the baseline functionality

• Peer Review

• will involve critiquing another group’s design
and code

28

Lab Notes

• the lab environment should be stabilized by
Wednesday (e.g. the IP phones should work)

• don’t forget to release resources by killing the
phone process when you’re done

• don’t acquire IP phones if you are not in the lab

• don’t run anything on commando.student.cs

• read the lab information on the course web page,
especially the part about port assignments

29

Administration (I)
• group assignments:

• groups 1 - 5: Peter

• groups 6 - 16: Alfred

• groups 17 - 28: Sean

• sign-ups for variability negotiation meeting

• sign ups will be done through CourseBook

• submit your proposal to CourseBook 24 hours
before your meeting

30

Administration (II)

• due dates

• variability must be negotiated before Monday
May 15

• electronic submission of design document and
implementation are due on Monday June 12 by
8:30 am

• physical submission of design document is due
in lecture on Monday June 12

31

Summary
• try out the emulator and phone interface if you

have not done so yet

• start sketching out the system architecture

• future lectures will contain more information about

some of the design document sections

• direct your project questions to your assigned TA

• check the newsgroup regularly for announcements

• this week’s tutorial: test-driven development using

a unit testing framework

32

