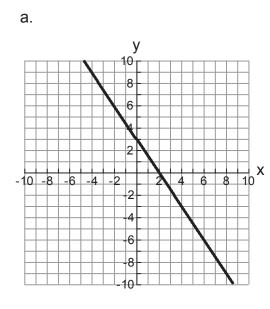

- 1. Can more than one line have the same slope? If more than one line has the same slope, what makes the lines different?
 - a. Graph the following set of equations on the same set of axes. Label each graph.

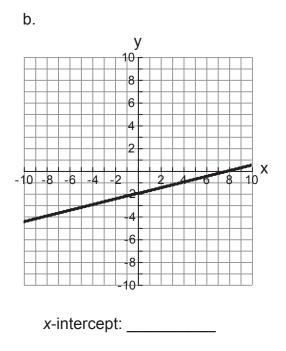
- b. What observations can you make about the lines?
- c. What is the slope of all the lines?
- d. How does addition or subtraction of a "b" value change the line?
- e. What is the name of "b?"
- f. Predict the graph of y = x + 7. Sketch your prediction on the above graph. Use the graphing calculator to verify your prediction.
- g. Complete the sentence: Lines with the same slope are _____.

Finding Intercepts


In a function an intercept is the point at which a line crosses an axis. If it crosses the *y*-axis, it is called the ______ and the point is (0, y). If it crosses the *x*-axis, it is called the ______ and the point is (x, 0).

The *x*-intercepts are also known as the ______, because the *x*-intercepts are where the value of the function is zero.

Finding intercepts from a graph


2. Study the graphs of the lines below.

Examples:

y-intercept: _____

y-intercept: _____

Finding intercepts from a table

y-intercept (0, y)		<i>x</i> -inte zero of t (<i>x</i> ,	0)
0	У	X	0

Use patterns to complete the tables and find intercepts.

3.	
x	У
-1	3
0	2
1	1
2	0
3	-1

4.	
x	У
-3	-14
-1	-10
1	-6
3	-2
5	2

- a. Determine the slope
- b. Circle the *x*-intercept (zero of function)
- c. Write the coordinates of the *x*-intercept.
- d. Circle the *y*-intercept
- e. Write the coordinates of the *y*-intercept

- a. Determine the slope
- b. Complete the pattern to find where y = 0.
- c. Circle the *x*-intercept (zero of function)
- d. Write the coordinates of the *x*-intercept
- e. Complete the pattern to find where x = 0.
- f. Circle the y-intercept
- g. Write the coordinates of the y-intercept

Finding intercepts from an equation

One form of linear equations is called the ______ form. Any linear function can be written in this form in order to determine the slope and *y*-intercept.

y = mx + b or f(x) = mx + b

m represents ______.

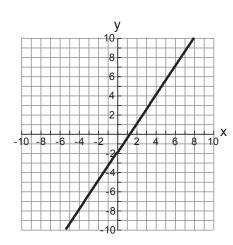
b represents _____.

Use algebraic manipulation to transform the following equation to the slope-intercept form. Determine the slope and *y*-intercept form of the function.

6x - 3y = 9 • Solve for y.

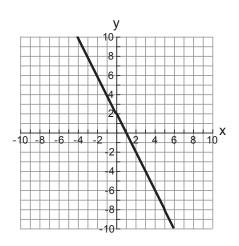
5. Find the slope and *y*-intercept for each function.

a.
$$y = -\frac{5}{4}x + 7$$
 b. $f(x) = 12x - 35$ c. $y = 60 - 6x$

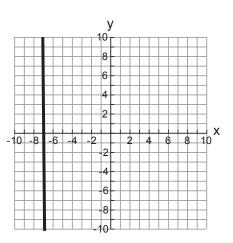

d.
$$3x + 2y = 5$$
 e. $4y - x = 16$

Special Cases: Find the slope and y-intercept.

Practice Problems

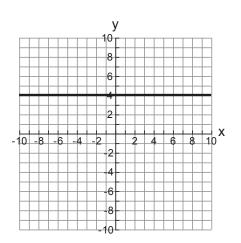

1. Find the slope and the *x*- intercept and *y*-intercept of the following graphs of lines.

a.



slope _____ *x*-intercept (zero of function) _____ *y*-intercept _____

C.



slope _____ x-intercept (zero of function) _____ y-intercept _____ b.

slope _____ *x*-intercept (zero of function) _____ *y*-intercept _____

d.

slope _____ x-intercept (zero of function) _____ y-intercept _____

Find the slope and intercepts from the data in the tables.

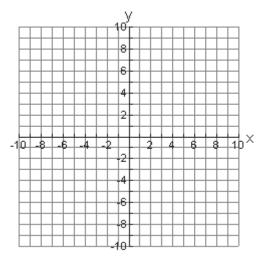
2.

۷.	
X	У
-2	6
0	4
2	2
4	0
6	-2

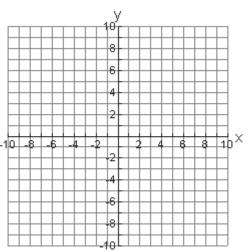
3.	
X	У
-1	-20
1	-12
3	-4
5	4
7	12

slope _____ *x*-intercept (zero of function) _____ *y*-intercept _____ slope _____ x-intercept (zero of function) _____ y-intercept _____

Find the slope and *y*-intercept of each equation.


4. y = 2.5x 5. $y = -\frac{3}{7}x - 42$

6.
$$f(x) = \frac{4}{3}x + 2$$
 7. $4x + 3y = 12$


10. 2x - 5y = 15 11. 6y = 2x - 18

12. 5y + 2x = -8

- 13. A line contains the points (-6, -5) and (3, 1).
 - a. Sketch a graph of the line.

- b. What is the slope of the original line?
- c. If the slope is multiplied by 3 and the *y*-intercept stays the same, sketch a transformed graph on the same coordinate plane of the resulting line.
- d. What is the slope of the transformed line?
- 14. A line with a slope of one-half, contains the point (-4, -5).
 - a. Sketch a graph of the line.

- b. What is the *y*-intercept of the original line?
- c. If the slope remains the same and the *y*-intercept increased by 3 units, sketch a transformed graph on the same coordinate plane of the resulting line.
- d. What is the *y*-intercept of the transformed line?
- e. How would you describe the relationship between the two lines? Explain.