\qquad

5.2

Solving Systems of Linear Equations by Substitution Activity 5.2

Essential Question How can you use substitution to solve a system of linear equations?

Answer:
Either (1) Solve for x first. Re-write one of the equations (" 1 st" equation) so that it is solving for x. Replace x in the $2^{\text {nd }}$ equation with your just-found expression for x and then solve the resulting equation for y. Replace the variable y (in either equation 1 or 2) with its new, numerical value and then solve the resulting equation for x. The solution of the system is the ordered pair (x, y).
or (2) Solve for y first - Solve a $1^{\text {st }}$ equation for y. Replace y in the 2 nd equation with your just-found expression for y and then solve the resulting equation for x. Replace the variable x (in either equation) with its new, numerical value and then solve the resulting equation for y. The solution of the system is the ordered pair (x, y).

EXAMPLE (1 Solving a System of Linear Equations by Substitution

Check

$$
\begin{aligned}
& \text { Equation } 1 \\
& \qquad \begin{array}{l}
y=2 x-4 \\
-6 \stackrel{?}{=} 2(-1)-4 \\
-6
\end{array}
\end{aligned}
$$

Equation 2

$7 x-2 y=5$
$7(-1)-2(-6) \stackrel{?}{=} 5$
$5=5 \checkmark$

Try:

$$
2 x=y-10
$$

$$
x+7=y
$$

Solve the system by substitution. $y=2 x-4 \quad$ Equation 1

$$
7 x-2 y=5 \quad \text { Equation } 2
$$

Step 1: Equation 1 is already solved for y.
Step 2: Substitute $2 x-4$ for y in Equation 2.

$$
\begin{aligned}
7 x-2 y & =5 & & \text { Equation } 2 \\
7 x-2(2 x-4) & =5 & & \text { Substitute } 2 x-4 \text { for } y . \\
7 x-4 x+8 & =5 & & \text { Distributive Property } \\
3 x+8 & =5 & & \text { Combine like terms. } \\
3 x & =-3 & & \text { Subtract 8 from each side. } \\
x & =-1 & & \text { Divide each side by } 3 .
\end{aligned}
$$

Step 3: Substitute - 1 for x in Equation 1 and solve for y.

$$
\begin{aligned}
y & =2 x-4 & & \text { Equation } 1 \\
& =2(-1)-4 & & \text { Substitute }-1 \text { for } x . \\
& =-2-4 & & \text { Multiply. } \\
& =-6 & & \text { Substract. }
\end{aligned}
$$

\therefore The solution is $(-1,-6)$.

$$
\begin{aligned}
& 8 x-\frac{1}{3} y=0 \\
& 12 x+3=y
\end{aligned}
$$

1 ACTI VITY: Solving a Secret Code

Work with your group. Decode the quote by Archimedes.

How to decode: If answer (x, y) is equal to $(-4,12)$ and key says (E, N) then put letter E wherever -4 is and N wherever 12 shows up.

$$
\overline{-8} \overline{-7} \overline{7} \overline{-5} \overline{-4} \overline{-5} \overline{-3} \overline{-2} \overline{-1} \overline{-3} \overline{0} \overline{-5} \overline{1} \overline{2} \overline{3} \overline{1} \overline{-3} \overline{4} \overline{5},
$$

$$
\overline{-3} \overline{4} \overline{5} \overline{-7} \overline{6} \overline{-7} \overline{-1} \overline{-1} \overline{-4} \overline{2} \overline{7} \overline{-5} \overline{1} \overline{8} \overline{-5} \overline{-5} \overline{-3} \overline{9} \overline{1} \overline{8} .
$$

(\mathbf{A}, C)
(D, E) $x+y=0$
$x+y=-3$
$x-y=-3$
$x-y=10$
$\begin{aligned}(\mathbf{G}, \mathbf{H}) \quad x+y & =0 \\ x-y & =-16\end{aligned}$
(I, L)
$x+2 y=-9$
$2 x-y=-13$
$(\mathbf{M}, \mathbf{N}) \quad \begin{aligned} x+2 y & =4 \\ 2 x-y & =-12\end{aligned}$
$(\mathbf{O}, \mathbf{P}) \quad \begin{aligned} x+2 y & =-2 \\ 2 x-y & =6\end{aligned}$
$\begin{array}{ll}(\mathbf{R}, \mathbf{S}) & 2 x+y=21 \\ & x-y=6\end{array}$
$\begin{array}{ll}(\mathbf{T}, \mathbf{U}) & 2 x+y=-7 \\ & x-y=10\end{array}$
$\begin{array}{cl}(\mathbf{V}, \mathbf{W}) & 2 x+y=20 \\ & x-y=1\end{array}$

