
Chapter 17

Recommendation Systems in Requirements

Discovery

Negar Hariri, Carlos Castro-Herrera, Jane Cleland-Huang,

and Bamshad Mobasher

Abstract Recommendation systems offer the opportunity for supporting and
enhancing a wide variety of activities in requirements engineering. We discuss
several potential uses. In particular we highlight the role of recommendation
systems in online forums that are used for capturing and discussing feature requests.
The recommendation system is used to mitigate problems introduced when face-to-
face communication is replaced with potentially high-volume online discussions.
In this context, recommendation systems can be used to suggest relevant topics to
stakeholders and conversely to recommend expert stakeholders for each discussion
topic. We also explore the use of recommendation systems in the domain analysis
process, where they can be used to recommend sets of features to include in new
products.

17.1 Introduction

Requirements engineering covers a variety of different activities focused on the
discovery, analysis, specification, validation, and management of software and
systems requirements [30, 42, 45, 51]. The primary goal of the discovery process is
to elicit and identify stakeholders’ needs, wants, and desires for the software system.
This can be somewhat challenging, especially when stakeholders are geographically
distributed and unable to physically gather together for face-to-face meetings.
Different groups of stakeholders also have differing perspectives and goals for
the system, which can create conflicts and inconsistencies. This is particularly

N. Hariri (�) • J. Cleland-Huang • B. Mobasher
School of Computing, DePaul University, Chicago, IL, USA
e-mail: nhariri@cs.depaul.edu; jhuang@cs.depaul.edu; mobasher@cs.depaul.edu

C. Castro-Herrera
GOOGLE, Chicago, IL, USA
e-mail: ccastro@google.com

M.P. Robillard et al. (eds.), Recommendation Systems in Software Engineering,
DOI 10.1007/978-3-642-45135-5__17, © Springer-Verlag Berlin Heidelberg 2014

455



456 N. Hariri et al.

troublesome if important stakeholders are missing from the requirements elicitation
and negotiation process [18].

Robertson and Robertson [45] prescribe a rigorous upfront domain analysis and
requirements trawling process which involve identifying and engaging stakeholders,
observing users performing tasks in their natural work environments, and conduct-
ing interviews, surveys, and group brainstorming meetings. These activities are
designed to discover, analyze, and prioritize requirements, to specify use-cases and
business rules, and in some cases to propose and evaluate candidate design solutions.
All of these activities are highly collaborative and people-intensive.

Several recent trends have significantly impacted the way we think about
requirements. The move towards the globalization of software development and
the dispersion of stakeholders across multiple geographical locations [13] makes
communication and coordination more difficult and introduces challenges caused
by diversity in language and culture, lack of engagement in the requirements
discovery process, loss of informal communication between stakeholders, a reduced
level of trust caused by the lack of face-to-face communication, difficulties in
managing conflicts and achieving a common understanding of the requirements,
ineffective decision-making meetings, and process delay introduced by the time
zone differences [17].

The popularity of open source software development has also affected the
requirements process. The collaborative and transparent nature of open source
projects has popularized the notion of opening up the requirements elicitation
process to allow a far broader set of stakeholders to contribute their ideas and
suggestions using an online forum [48]. The impact has been felt even in more
traditional projects.

Finally, the broad adoption of agile approaches has impacted the way in
which we define requirements. As a community, we now embrace the idea that
software requirements may emerge incrementally as the project progresses. This
is particularly true in software-intensive projects as opposed to more traditional
systems engineering projects. In this chapter we therefore focus more on the
ongoing discovery of ideas and features as opposed to the specification of more
traditional requirements.

Recommendation systems can potentially address many of the challenges
involved in the elicitation process. In general, a recommendation system [1]
identifies items of potential interest to a given user based on that user’s preference
profile (see Ying and Robillard [53] in Chap. 8 for more details on user profiles) or
observed behavior. It is not difficult to conceive of stakeholders or even products as
the target of recommendations, and users, topics, or features as the recommendable
items.

In this chapter we provide an overview of several areas of the requirements
process which could potentially benefit from the use of recommendation systems.
We then describe two diverse applications of recommendation in greater detail.
The first uses a recommendation system to support requirements discovery in
online discussion forums by helping to manage and organize stakeholders’ dis-
cussions, recommending discussion threads to stakeholders, and recommending
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knowledgeable stakeholders for specific topics. The second application leverages
the availability of detailed product information on publicly accessible websites such
as Softpedia and then uses this data to learn association rules and to construct a
recommendation system capable of recommending domain-specific features for a
product. Both applications leverage growing trends towards moving the require-
ments process online through adopting social networking tools.

17.2 Recommendation Systems in Requirements Engineering

While a significant body of prior work has focused on making recommendations
to support more general software engineering tasks such as finding experts to help
with development tasks [37, 39, 40], keeping developers informed of stakeholders
working on related tasks [52], or supporting the build process [49], there has been
far less thought on how to utilize recommendation systems within the require-
ments discovery process. Felfernig et al. [24] presented a visionary perspective
of a “Recommendation and Decision Support System,” which would support
individual and group activities through recommending stakeholders for quality
reviews, prioritizing requirements, suggesting relevant requirements for a current
task, identifying dependencies among requirements, proposing changes that could
be made to a requirements artifact to maximize group agreement, and identifying
sets of requirements for a future release. In other words, they envisioned a system
that could assist in a wide array of tasks related to requirements engineering.

Similarly, Maalej and Thurimella [34] proposed a research agenda for rec-
ommendation systems in requirements engineering. They envisioned potential
uses of recommendation systems which included recommending traceability links,
relevant background information, artifacts that have changed, templates to use, past
rationale decisions, requirements from previous systems, vocabulary to use, people
to collaborate with, status of activities and artifacts, and priorities, among others.

In this chapter we focus on recommendation systems which have been actually
implemented and evaluated in the requirements engineering domain. We avoid
discussing systems which have the look-and-feel of a recommendation system, but
which are purely search based and therefore do not leverage the core concepts that
define a recommendation system. For example, in the requirements engineering
field, researchers have developed techniques for generating (or retrieving) trace
links between various artifacts, such as between requirements and source code, or
between requirements and regulatory codes [3, 15, 20, 29]. However, while the end
result is a ranked listing of candidate links, which may appear to take on the form of
a recommendation, to the large part these approaches leverage basic information
retrieval and machine learning techniques instead of the core recommendation
algorithms that are the focus of this book.

Another interesting application of a recommendation system was proposed by
Lim et al. [32, 33]. They developed a tool called StakeNet, which used social
networking techniques to generate recommendations of project stakeholders. Based
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upon an early definition of the project, they identified an initial set of stakeholder
roles and associated stakeholders. They then utilized their tool to invite each of
the identified stakeholders to recommend additional stakeholders and to provide
a salience measure that captures the influence, legitimacy, and urgency of the
recommendation. Finally they used social networking metrics to prioritize candidate
stakeholders for inclusion in the project. StakeNet is unique in the way it generates
recommendations. Unlike other systems, StakeNet elicits recommendations directly
from users and then filters them using social network metrics. It is these filtered
recommendations which are presented to the users.

17.3 Recommendation Systems in Online Forums

Wikis and forums provide community-based portals that support collaborative
tasks and knowledge management activities. There are many benefits in using
online forums to support requirements discovery. For example, forums create a
broadly inclusive environment in which geographically distributed stakeholders
can collaborate asynchronously in a virtual meeting place to explore, discuss, and
specify requirements [21,47,48]. Noll [41] observed that almost all the requirements
for Firefox 2.0 were discovered through online forums, wikis, and bug tracking
systems. Christley and Madey [14] also pointed out that many activities that take
place in open source development are supported by online forums. Laurent and
Cleland-Huang [31] explored the way vendor-led open source projects conducted
requirements engineering tasks using online forums. They found forums to be very
effective for including large numbers of stakeholders; however, they also found that
the sheer mass of data collected in the forums created a number of challenges. For
example, it was often difficult for new users to find relevant discussion threads.
Similarly, project managers found it difficult to extract and manage feature requests
from within the forums, in order to identify specific stakeholder roles, and to
understand and document feature priorities.

To better understand the challenges of using social networking tools for require-
ments elicitation, we analyzed discussion threads and topics in the forums of several
open source projects and found a high percentage of discussion threads consisting
of only one or two feature requests. For example, as shown in Fig. 17.1, 59 %
of Poseidon threads, 48 % of Open Bravo threads, and 42 % of Zimbra threads
included only one or two posts [16]. The presence of so many small threads suggests
either that a significant number of distinct discussion topics exist or that users
tend to initiate redundant threads without first searching for related discussions.
This phenomenon hinders the overarching goal of the forum, which is to emerge
project requirements by facilitating topic-based discussions between stakeholders
with similar interests. Without some sort of structuring and support, online forums
tend to degenerate into question and answer style venues or, even worse, to contain
large numbers of posts which lack any response or related discussion. These
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Fig. 17.1 Discussion thread sizes. Forums are characterized by numerous small threads and a
couple of very large threads

problems create a rich opportunity for utilizing recommendation systems to improve
stakeholder collaboration.

The idea of utilizing recommendation systems in online forums is certainly
not new. Spertus et al. [50] developed a system for recommending user-created
discussion groups in the Orkut social networking site. They used a collaborative

filtering approach based on the k-nearest neighbors (kNN) strategy and compared
multiple similarity metrics. Chen et al. [12] also recommended communities in the
Orkut social networking site, but their approach differed from Spertus et al. in
that they used multiple input sources: users’ community memberships and users’
textual contributions. Freyne et al. [26] explored the effect that generating early
personalized recommendations had on social networking sites. In their work they
generated two kinds of recommendations: recommending people to be added to
a social network and recommending enhancements to a person’s profile. They
found that the users who received early recommendations became more engaged
in the social network. Guy et al. [27] explored the recommendation of “social
software items” within a social networking site. The recommended items included
webpages, blog entries, wiki pages, and user communities. They experimented
on moving beyond the concept of user similarity, to the idea of user familiarity,
where neighborhoods were created using the user’s social network. They discovered
that familiarity worked better, and that it provided richer explanations for the
recommendations.

17.3.1 Recommending Topics

Recommendation systems can be used to help manage the requirements process
in online forums. For example, they can be used to address the problem in which
stakeholders with similar interests fail to “find each other" in the forum, meaning
that topic discussions are dispersed across multiple threads, preventing full and
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Fig. 17.2 OPCI: Organizer and promoter of collaborative ideas

rigorous exploration of specific issues. In addition, recommendation systems can
be used to address the problem of unexplored topics by recommending expert
stakeholders for a topic.

As an example, consider the recommendation system OPCI (Organizer and Pro-
moter of Collaborative Ideas) [5, 7–10]. OPCI provides support for recommending
stakeholders and topics and optional support for managing the actual discussion
threads. If thread management is used, then OPCI proactively helps to maintain a
more cohesive set of discussion topics. New posts are analyzed in order to determine
if one or more existing and relevant discussion threads already exist. If so, OPCI
presents these threads to the user so that they have the option of posting their feature
request or comment to one of the existing threads. Furthermore, OPCI also monitors
discussions in existing threads, determines when the discussion diverges into a new
topic, and makes appropriate suggestions for spawning new threads. We do not
elaborate on these features of OPCI further, as they are not central to the application
of recommendation systems in a requirements forum. The recommendation systems
described in the remainder of this section can be applied to either user-defined or
automatically clustered discussion threads.

It is interesting to note that a discussion topic represents both a clustering of
feature requests and a grouping of stakeholders. In the remainder of this chapter
we refer to a topic and discussion thread synonymously. The general process is
summarized in Fig. 17.2 which shows that OPCI assumes stakeholders’ needs are
collected in a web-based tool such as a wiki, forum, or bug tracker. The feature
requests are then placed into discussion threads either by the users themselves or
by a tool such as OPCI. A variety of recommendation algorithms are then used to
generate recommendations to project stakeholders, thereby enhancing the quality of
the online requirements discovery process.

OPCI uses both content-based and collaborative-based recommendation systems.
The content-based recommendation utilizes the content of the discussion threads
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to initially recommend similar topics to a stakeholder while the collaborative rec-
ommendation creates additional recommendations by identifying stakeholders with
similar interests, and then using these similarities to generate recommendations.
Content-based recommendation systems, which are particularly useful for keeping
similar feature requests collocated in a single thread, are discussed in more detail
later in the chapter. In the following section we focus on describing the use of
collaborative recommendations. These serve the important role of cross-pollinating
discussions with contributions from stakeholders with related concerns.

17.3.2 Creating User Profiles

A basic introduction to collaborative recommendation algorithms is provided
by Menzies [36] in Chap. 3. The standard kNN-based algorithm with Pearson
correlation assumes that each entry in the user profile represents the degree of
interest that a user has in a particular item to be recommended.

In order to create a forum-based recommendation system, we construct a user-by-

discussion-thread matrix R which captures the interest each user has in a particular
discussion topic. There are two primary ways to represent this matrix. The first
approach represents the degree of interest a user has in each topic, by depicting the
number of posts a user has in a thread, and also the extent to which those posts
represent core concepts of the thread, i.e., the similarity between the user’s posts
and the central theme of the thread. This results in a matrix R containing a set of
continuous values [10].

Alternately, a binary matrix R can be used, in which a membership score of 1
means that the user has engaged in the discussion thread while a score of 0 means
that they have not. However, we cannot assume that a score of 0 means that the user
is not interested in the topic.

Switching to a binary representation of the R matrix requires a few additional
changes to the similarity and prediction formulas of kNN, mainly because the
concept of average ratings does not make sense in a binary profile. There are several
binary similarity metrics available [50]; one of the most accepted formulas is the
binary equivalent of the cosine similarity metric (cos0), defined in Eq. (17.1).

cos0.ua; ub/ WD
jRua \ Rub

j
p

jRua j � jRub
j

; (17.1)

where Ru is the set of rated items of user u; more specifically, the membership (yes
or no) of the user in the discussion threads.

Equation (17.2) has been shown to consistently return good recommendations.
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Table 17.1 Characteristics
of the main datasets Dataset # Threads # Posts # Users

Second Life 50 3392 2120

Student 29 223 36

Sugar CRM 60 885 523

Railway 55 1652 132

17.3.3 Profile Augmentation with Requirements Metadata

In addition to using a binary profile, major improvements can also be achieved
[7] by augmenting the user profiles with additional known attributes about the
users. This metadata can be incorporated into the ratings matrix, such that R D

.ru;i /jU j�.jAjCjI j/, where the first A columns indicate that a user has an interest in
a known attribute a of the domain. This approach is feasible in the requirements
engineering domain, where the role of specific stakeholders is often known or easily
elicited. Examples of user attributes include the roles of the users in the project (e.g.,
a developer or project manager), their interest in system qualities (e.g., security
or usability), or their interest in key functionalities or modules (e.g., calendaring
functionality or payroll module). These additional attributes can be used to augment
the user profile and to generate the neighborhoods of similar users.

17.3.4 Evaluation

One of the common ways to evaluate a recommendation system is based on
the standard leave-one-out cross-validation experimental design. In this style of
experiment, we systematically remove one known interest for each user and
then evaluate the recommendation system’s ability to successfully recommend
it back. To illustrate the effectiveness of the three variants of recommendation
systems discussed in previous sections, we present experimental results achieved
by generating recommendations using the datasets described in Table 17.1.

“Second Life” is an Internet-based virtual world game in which users create
avatars to explore, and interact in, a “virtual world." “Student” is a small dataset of
feature requests and user interests created by 36 graduate level students at DePaul
University for an Amazon-like student web portal where the students could buy
and sell books. “Sugar CRM” is an open source customer relationship management
system that supports campaign management, email marketing, lead management,
marketing analysis, forecasting, quote management, case management, and many
other features. Finally, “Railway” is a dataset of requirements and stakeholder
roles mined from the public specifications of two large-scale railway systems, the
Canadian Rail Operating Rules and the Standard Code of Operating rules published
by the Association of American Railroads.

Results from four kNN-based variants are shown in the hit ratio graph depicted in
Fig. 17.3 [7]. A hit ratio graph is particularly useful for evaluating a recommendation
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Fig. 17.3 Collaborative recommendation results using standard, binary kNN, and the augmented
profiles on four datasets. (a) Student dataset. (b) Railway dataset. (c) Sugar dataset. (d) SecondLife
dataset

system when the results are presented as a ranked list. Hit ratio curves plot
the accumulated percentage of correctly retrieved results against the number of
recommendations made. In other words, for the items that were recommended back,
it shows how many were ranked as the first item shown to the user, how many
were ranked as the second item, and so on. This is typically plotted in a graph and
compared against a random recommendation (represented as a diagonal line). The
ideal hit ratio graph for a good recommendation will show a sharp improvement over
the random case for the early recommendations, indicating that those were indeed
items that the user had an interest in.

In this application, binary recommendations tend to outperform the non-binary
approach. Furthermore, adding additional information also significantly improves
the quality of the generated recommendations, primarily because the additional
knowledge increases the density of information in the users’ profiles, making the
selection of neighbors more reliable.

17.4 Recommending Expert Stakeholders

In addition to using recommendation systems to help stakeholders find relevant
discussion threads, recommendations can be made at the project level to identify
stakeholders with expertise in specific areas. These recommendations address the
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commonly occurring problem of unanswered posts. In most open source projects,
a significant percentage of posts never receive responses. From a requirements
elicitation perspective, this suggests that certain ideas go unexplored and represents
lost opportunities for truly understanding and meeting the users’ needs.

The same recommendation algorithms, described in the previous sections, can be
used to identify three groups of stakeholders [5, 6]:

Direct Stakeholders. Represent users who have directly contributed ideas to the
topic. In other words, these are the users whose posts have been clustered together
into a topic.

Indirect Stakeholders. Represent users who have contributed ideas to related
topics. These stakeholders are discovered through measuring the similarity
between the topics (clusters), and selecting users who have posted to closely
related discussion threads.

Inferred Stakeholders. Represent users who have exhibited patterns of interest
which suggest that they could potentially be interested in the topic. These users
are found by a collaborative recommendation, the same binary kNN described in
Eqs. (17.1) and (17.2).

While different approaches are possible, it can be particularly effective to use
a hybrid recommendation system to identify and recommend expert stakeholders.
In the hybrid approach, the text of the unanswered posts is first analyzed and
then a content-based recommendation system is used to recommend users that
contributed posts with similar content. This is achieved by clustering posts and then
identifying stakeholders whose posts are placed in the same cluster (i.e., topic) as
the unanswered post. The identified stakeholders are then used as the input to a
collaborative recommendation algorithm so that additional users, who might be able
to respond to the post, are identified. For this, the binary kNN algorithm described
in Sect. 17.3.2 can be used.

The effectiveness of the hybrid recommendation system is illustrated through an
experiment that simulates unanswered posts by examining each discussion thread
in turn, identifying the first post of the thread, temporarily removing all other posts,
and then running the hybrid recommendation to see if the authors (stakeholders) of
the removed responses could be identified and recommended back.

Table 17.2 and Fig. 17.4 show the results of this experiment in terms of precision,
recall, F2 measure, and hit ratio graphs (for the collaborative part), compared to
a random recommendation. There are several interesting observations. First, the
content recommendation returns fairly good precision, recall, and F2 values and
clearly outperforms the random recommender. Second, the collaborative recom-
mender outperforms the content-based recommender in terms of recall but achieves
low precision. This is explained by the fact that the collaborative recommendation
system outputs a much larger list of suggested users. Because a human user is not
interested in so many recommendations, it is important to evaluate the ranking
of the recommended users. This is depicted in the hit ratio graphs in Fig. 17.4,
which show that the correct users tend to be returned before the incorrect ones.
Furthermore, there is a limit to the number of users who can be identified through
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Table 17.2 Performance of the recommendation of relevant users in terms of precision, recall,
and F2-measure for six open source forums

noitadnemmocerdesaBevitaroballoCnoitadnemmocerdesaBtnetnoC

modnaRdevresbOmodnaRdevresbOtesataD

Prec. Recall F2 Prec. Recall F2 Prec. Recall F2 Prec. Recall F2

7-Zip 39.11% 48.14% 0.46 1.55% 1.90% 0.02 3.16% 71.77% 0.13 0.81% 18.36% 0.03

Alliance P2P 9.53% 27.01% 0.20 0.62% 1.77% 0.01 2.19% 42.13% 0.09 0.46% 8.78% 0.02

KeePass 23.87% 42.93% 0.37 1.20% 2.15% 0.02 3.50% 75.51% 0.15 0.69% 14.83% 0.03

MiKTeX 15.60% 26.27% 0.23 1.11% 1.86% 0.02 4.15% 78.11% 0.17 0.82% 15.39% 0.03

Notepad++ 20.50% 37.14% 0.32 0.80% 1.45% 0.01 2.60% 70.61% 0.11 0.50% 13.68% 0.02

phpMyAdmin 23.15% 49.04% 0.40 0.79% 1.69% 0.01 5.69% 76.45% 0.22 0.41% 5.46% 0.02

RSS Bandit 13.79% 14.29% 0.14 2.23% 2.31% 0.02 13.89% 10.42% 0.11 1.92% 1.44% 0.02
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Fig. 17.4 Performance of the recommender of relevant users in terms of hit ratio for six open
source forums. (a) 7-Zip. (b) Alliance. (c) KeyPass. (d) NotePad++. (e) PHP My Admin. (f) RSS
Bandit

collaborative recommendations (shown as the gap between the two lines in the hit
ratio graph at the maximum number of recommendations). This occurs because the
collaborative recommendation was constrained to only make recommendations to
users who belonged to at least three discussion threads. This restriction ensures the
quality of the recommendations but also highlights the problem that we are trying
to address: the fact that some users create a post that never gets answered and as a
result stop participating in the open source project. A more detailed explanation of
these experiments and results can be found in the related work of Castro-Herrera [5].

17.5 Feature Recommendation

The second type of recommendation system we explore in this chapter is designed
for use in the domain analysis process [19]. Domain analysis is conducted in
early phases of a project and involves analyzing existing software systems from
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the same domain in order to better understand their common and variable parts.
Domain analysis supports requirements discovery processes by identifying features

commonly included in software products operating in a specific domain.
Domain analysis techniques require analysts to review documentation from

existing systems in order to manually, or semi-manually, extract, organize, and
model features in the domain. For example, the Domain Analysis and Reuse
Environment (DARE) [25] uses semiautomated tools to extract domain vocabulary
from text sources and then identifies common domain entities, functions, and
objects, by clustering around related words and phrases. Chen et al. [11] man-
ually constructed requirements relationship graphs (RRGs) from several different
requirements specifications and then used clustering techniques to merge them into
a single domain tree. Alves et al. [2] utilized the vector space model (VSM) and
latent semantic analysis (LSA) to determine the similarity between requirements
and generate an association matrix which is then clustered. A merging step is
then executed to create the entire domain feature model. The primary limitations
of these approaches are their reliance upon existing requirements specifications
and the constraints associated with mining features from only a small handful of
specifications. All of these techniques have one thing in common, which is the
need for an existing set of requirements specifications. As requirements represent
closely guarded intellectual property, these domain analysis techniques are often
only available to organizations with existing products in the targeted domain.

On the other hand, the advent of online product repositories means that partial
descriptions of hundreds of thousands of products are now available in the public
domain. These product descriptions can be used in place of actual requirements to
construct a recommendation system. In this section we explain how hundreds of
thousands of partial product descriptions can be used to learn association rules and
generate feature recommendations.

The approach utilizes data mining and machine learning methods to mine soft-
ware features from online software product repositories and to infer relationships
among those features. The inferred affinities are then used to train a recommender
system which generates feature recommendations for a given project.

Figure 17.5 represents the overall process, consisting of an initial training phase
followed by a usage phase. In the training phase, features are extracted from online
product descriptions and the feature recommender is trained, while in the usage
phase, the trained system makes recommendations based on an initial description of
the product provided by a requirements analyst or other users of the system.

The training phase involves mining product specifications from online software
product repositories. For example, feature descriptors could be retrieved from
Softpedia which contains a large collection of software products. In the second step,
the raw feature descriptors are fed to a clustering algorithm which groups them into
features and generates an appropriate name for each feature. Finally, in the third
step, a product-by-feature matrix and a feature itemset graph (FIG) based on the
relationships between products and the mined features are both constructed.

The trained recommender system can be used to generate recommendations
based on an initial textual description of the product provided by the requirements
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Fig. 17.5 Feature extraction and recommendation

or domain analyst. Basic information retrieval methods are used to match this
description to a set of related features in the product-by-feature matrix. These
features are presented to the user for confirmation. The quality of the final
recommendations can be improved through utilizing a two-phase process. In the
first phase, association rule mining, as discussed by Menzies [36] in Chap. 3, is
used to augment the initial product profile. This is particularly effective given
that we have found that association rules tend to produce relatively accurate, but
incomplete recommendations. Finally, the augmented profile is used in a standard
kNN approach to generate an additional set of feature recommendations. As we will
later show, recommendations produced from the association rule recommender are
usually complementary to the features recommended by the kNN recommender,
and furthermore, augmenting the initial sparse product profile helps the kNN
recommender to produce more accurate recommendations.

Figure 17.6 illustrates a feature recommendation scenario for an anti-virus
product. An initial product description is first mapped to four features in the recom-
mender’s knowledge base related to spam detection, disk scans, virus definitions,
and virus databases, which serve as seeds for generating feature recommendations.
The product profile is then augmented by association rule mining with recom-
mended features such as network intrusion detection and real-time file monitoring.
Finally (although not shown in the figure), the kNN recommender system makes an
additional set of recommendations.

17.5.1 Feature Mining

Features must initially be mined from product specifications. For the examples
presented in this chapter, we utilized 117,265 different products from 21 Softpedia
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Step # 1: Enter ini�al product descrip�on

The product will protect the computer from viruses and email spam.  It will 

maintain a database of known viruses and will retrieve updated descriptions 

from a server.  It will scan the computer on demand for viruses.

Step # 2: Confirm features

We have identified the following features from your initial product 

description.   Please confirm :

Email spam detection
Virus definition update and automatic update supported
Disk scan for finding malware
Internal database to detect known viruses

Step # 3: Recommend features
Based on the features you have already selected we recommend the 

following three features.  Please confirm:

Network intrusion detection   Why?
Real time file monitoring    Why?
Web history and cookies management  Why?

Click here for more recommenda�ons

We notice that you appear to be developing an Anti-virus software system.  

Would you like to browse the feature model?

View Feature Model

Fig. 17.6 An example usage scenario

categories. Product descriptions are parsed into sentences to form feature descrip-

tors and then preprocessed using standard information retrieval techniques such as
stemming and stop-word removal. Each feature descriptor is then transformed into
a vector space representation using the TF–IDF approach.

As many products contain similar features, and these features are described in
slightly different ways, the descriptors must be clustered into coherent clusters such
that each cluster corresponds to a software feature.

The similarity of a pair of feature descriptors can be measured by computing the
cosine similarity of their corresponding TF–IDF vectors. This similarity measure
can be used by any conventional clustering algorithm such as K-means [35], K-
medoid [35], or spherical K-means [22] to group similar feature descriptors. In our
system we used the incremental diffusive clustering (IDC) approach [23] to group
the feature descriptors into 1,135 clusters. This algorithm uses a heuristic approach
to determine the number of clusters. Based on our previous studies, this algorithm
tends to outperform other algorithms, including K-means, spherical K-means, and
latent Dirichlet allocation (LDA) [4] for clustering requirements [28].

It is important to present a comprehensible recommendation to the user. To this
end, each feature needs to be meaningfully named. One approach uses the medoid as
the name. The medoid is defined as the descriptor that is most representative of the
feature’s theme. The medoid is identified by first computing the cosine similarity
between each descriptor and the centroid of the cluster and then summing up the
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different weighted values in the descriptor’s term vector for all values above a
certain threshold (0.1). Both scores are normalized and then added together for each
descriptor. The descriptor scoring the highest value is selected as the feature name.
This approach produces quite meaningful names. As an example, a feature based
on the theme of updat, databas, automat, viru might subsequently be named Virus

definition update and automatic update supported.

17.5.2 Feature Recommendation Algorithm

The goal of the feature recommendation module is to provide recommendations
for a project with a given set of initial features. The feature recommender can be
trained by creating a binary product-by-feature matrix, M WD .mi;j /P �F , where P

represents the number of products (117,265), F is the number of identified features
(1,135), and mi;j is 1 if and only if the feature j includes a descriptor originally
mined from the product i . Having this matrix, various collaborative filtering
methods, including neighborhood-based techniques such as user-based kNN and
item-based kNN as well as matrix factorization approaches such as BPRMF [43],
can be exploited to produce recommendations. For a new product p with a set of
features Fp , the recommendation algorithm computes a recommendation score for
each of the features which are not in Fp and presents to the users the top N (where
N is the number of recommendations) features with the highest recommendation
scores.

To compare different recommendation algorithms, we describe the results of
applying a fivefold cross-validation experiment [44]. For each product p in the
test data, L D 3 features are randomly selected and used to represent the product
profile. One of the remaining features, ft , is randomly selected as the target feature,
and each recommendation algorithm is evaluated based on its predictive power in
recommending the target feature.

Hit ratio results for three algorithms at different sizes of recommendations are
shown in Fig. 17.7. As can be seen, although BPRMF returns good performance
when N > 45, it does not perform well at higher ranks. Assuming that the user
is likely to look at the first ten recommendations, user-base kNN returns the best
performance in comparison with the other two methods.

17.5.3 Addressing the Cold Start Problem

One of the problems frequently experienced with typical recommender systems,
including systems based on collaborative filtering, is the product cold start problem

which occurs when not enough is known about a product to make useful personal-
ized recommendations. This situation can typically arise when the user’s description
of a product matches very few features in the database. This makes it difficult to find
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Fig. 17.7 Hit ratio comparison of different recommendation algorithms

a good neighborhood for the product, and as this neighborhood is the basis for the
prediction of item scores, the recommendations accuracy is negatively affected. The
solution to this problem usually involves a form of bootstrapping to enrich the initial
product profiles. In the feature recommendation system, association rule mining

can be used to enhance the initial product profile and then the discovered rules can
be integrated into a hybrid recommendation framework using the kNN. Given an
initial small profile for a target product, a preliminary set of recommendations are
generated through association rule mining. These features are then shown to the
user, and those accepted by the user are added to the product profile. The standard
kNN approach is then applied on this augmented profile to generate additional
recommendations.

Association rule mining is described in more detail by Menzies [36] in Chap. 3.
Association rules identify groups of items based on patterns of co-occurrence
across transactions. In this context each product is viewed as a “transaction,” and
association rules are generated among sets of features that commonly occur together
among a significant number of products. The sets of features that satisfy a predefined
support threshold are generally referred to as frequent item sets; however, in the
context of domain analysis we refer to them as frequent feature sets.

Association rules are used to address the cold-start problem by augmenting an
initially sparse profile. When a partial profile is matched against the antecedent of
a discovered rule, the items on the right-hand side of the matching rules are sorted
according to the confidence values for the rule, and the top ranked items from this
list form the recommendation set. In order to reduce the search time, the frequent
item sets can be stored in a directed acyclic graph, called a frequent itemset graph
(FIG) [38, 46].

The graph is organized into levels from 0 to k, where k is the maximum
size among all discovered frequent item sets. Each node at depth d in the graph
corresponds to a frequent item set I of size d and is linked to item sets of size d C1

that contain I at the next level. The root node at level 0 corresponds to the empty



17 Recommendation Systems in Requirements Discovery 471

ROOT

NPRSSPED DSSQAD

NP, DSNP, SPNP, ED NP, SQNP, DF

NP, DS, SQNP, DS, DFNP, DS, ED NP, DS, SP

NP, DS, DF, SQNP, DS, ED, DF NP, DS, SQ, DF

0.784 0.666 0.941 0.764 0.674

0.791 0.770 0.645 0.666

0.789 0.810 0.783 0.935

AD Ac�ve detec�on of search query results

DS Disc scan for finding malware

ED email detec�on

SP Spyware Protec�on

SQ Search Queries

Fig. 17.8 A subset of a frequent itemset graph for the Network Intrusion Protection augmented
with confidence scores

items set. Each node also stores the support value of the corresponding frequent
item set.

Given an initial profile comprised of a set of features f , the algorithm performs
a depth-first search of the graph to level jf j. Each candidate recommendation r is
a feature contained in a frequent itemset f [ frg at level jf C 1j. For each such
child node of f , the feature r is added to the recommendation set if the support
ratio �.f [ frg/=�ff g, which is the confidence of the association rule f ) frg,
is greater than or equal to a pre-specified minimum confidence threshold. This
process is repeated for each subset of the initial itemset f , and conflicting candidate
recommendations are resolved by retaining the highest confidence values. The
recommended features corresponding to rules with highest confidence are shown
to the user, and those accepted by the user are added to the product profile.

Figure 17.8 shows a small subset of frequent feature sets mined from the anti-
virus software features. The displayed itemset graph shows features associated with
network intrusion detection. For example, one rule specified in this graph states that
if network intrusion detection (NP) and disk scan for finding malware (DS) features
are found in a product, then we have a confidence of 0.791 that the product will also
contain an email detection feature.

The effect of association rule mining on the performance of the system
can be shown experimentally. For illustrative purposes we conducted a fivefold
cross-validation experiment. In each of the five runs, one of the folds served as a
testing set while the frequent itemset graph was generated from the remaining folds.
For each product in the test set, L D 3 features were selected and the remaining
features are removed from the profile. The frequent itemset graph was then used to
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Fig. 17.9 Precision and recall at different levels of confidence

generate recommendations, and those recommendations with confidence scores of
0.2 or higher were recommended to the user. The produced recommendations can
be evaluated in terms of precision and coverage, where precision is defined as the
fraction of recommended items that are originally part of the product profile, and
coverage as the fraction of profiles which receives recommendations.

Figure 17.9 shows the precision and recall for different levels of confidence.
For example, at a confidence level of 0.2, the precision of the generated recom-
mendations is 25 % and recall is 37 %. The association rule approach can therefore
achieve high precision in its recommendations, but at the cost of lower recall. These
observations support our earlier claims that association rule mining can be useful for
identifying a small set of previously unused features with a high degree of precision.

To simulate the step in which the user evaluates the initial recommendations,
the correct recommendations can be automatically accepted, and the incorrect ones
rejected based on the known data stored in the product-by-feature matrix. These
accepted recommendations are then used to augment the initial product profile of
size L D 3, and the augmented profile is given as input to the kNN recommender to
generate more recommendations. We label this hybrid method as kNNC.

The hybrid recommender can also be evaluated using the cross validation
experiment, with the small modification that the left-out item is selected from the
set of features that are not part of the augmented profile. Figure 17.10 compares the
hit ratio results of the user-based kNN approach with the kNNC method. As can
be seen, the quality of recommendations is significantly improved when association
rules are used to augment the product profile before running the kNN algorithm.
This difference represents a 0.1 improvement in hit ratio at rank of 20.

These results demonstrate the viability of using recommendation systems to
recommend features during the domain analysis process.



17 Recommendation Systems in Requirements Discovery 473

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6 11 16 21 26 31 36 41 46

H
it

 R
a

�
o

Number of Recommenda�ons

User kNN

kNN+

Fig. 17.10 Comparison of hit ratio for the hybrid method and the user-based kNN

17.6 Conclusion

In this chapter we have highlighted two specific applications of recommendation
system in the requirements engineering domain. However, as pointed out earlier
by Felfernig et al. [24] and Maalej and Thurimella [34] the potential exists for a
far broader set of applications. The requirements engineering process has many of
the characteristics of fields in which recommendation system technology has had
significant impact. Its people-intensive upfront activities, and large quantities of
data in the form of formal requirements, feature requests, and other very informal
discussion posts, create an environment which can clearly benefit from social media
tools such as recommendation systems. As such, the two in-depth examples we have
described in this chapter serve as a proof of concept for the potential that exists to use
recommendation systems to support a wide range of requirements-related activities
in the future.
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