
XSS-Dec: a Hybrid Solution to Mitigate Cross-Site

Scripting Attacks

Smitha Sundareswaran, Anna Cinzia Squicciarini

College of Information Sciences and Technology

The Pennsylvania State University

{sus263,acs20}@psu.edu

Abstract. Cross-site scripting attacks represent one of the major security threats

in today’s Web applications. Current approaches to mitigate cross-site script-

ing vulnerabilities rely on either server-based or client-based defense mecha-

nisms. Although effective for many attacks, server-side protection mechanisms

may leave the client vulnerable if the server is not well patched. On the other

hand, client-based mechanisms may incur a significant overhead on the client

system. In this work, we present a hybrid client-server solution that combines the

benefits of both architectures. Our Proxy-based solution leverages the strengths of

both anomaly detection and control flow analysis to provide accurate detection.

We demonstrate the feasibility and accuracy of our approach through extended

testing using real-world cross-site scripting exploits.

1 Introduction

Some of the most well-known and significant vulnerabilities of a Web application are

related to cross-site scripting (XSS) [15]. XSS vulnerabilities enable an attacker to in-

ject malicious code into Web pages from trusted Web servers. Typically, when the client

receives the document, it cannot distinguish between the legitimate content provided by

the Web application and the malicious payload inserted by the attacker. Since the mali-

cious content is handled as the content from the trusted servers, it has the privileges to

access the victim users’ private data or take unauthorized actions on the user’s behalf.

XSS vulnerabilities have been analyzed by a number of researchers and practition-

ers. One of the most common defense mechanism currently deployed consists of in-

put validation at the server-end, wherein the untrusted input is processed by a filtering

module that looks for scripting commands or meta-characters in untrusted inputs. The

filtering module then filters any such content before these inputs get processed by the

Web application. However, proper input validation is challenging; XSS attacks can be

crafted so as to bypass the input sanitization steps. Further, input validation adds a sig-

nificant burden on the server end, and leaves clients defenseless in case of unprotected

sites. Consequently, recent efforts have shifted their attention on client-end solutions,

to protect client systems against servers that failed to filter untrusted content [13]. Un-

fortunately, neither one of these approaches are able to withstand against all forms of

XSS attacks. For example, server-side solutions require good control and knowledge of

the server’s source code, and therefore fare well with attacks that target servers, or that

a reflected off Web servers [11, 8, 4]. Client-side solutions instead are most effective

against attacks that are perpetrated through attacks which malicious code is contained

in the client side page [13, 3]. In this paper, we propose a novel approach to combine

the benefits of both server-side and client-side defense mechanisms. We leverage the

information obtained from both the client and the server-side using a simple, yet ef-

fective, security-by-Proxy approach. Our design allows us to uphold users’ browsing

activities while thoroughly monitoring the sites’ vulnerabilities before any attack is

carried out. Specifically, the Proxy develops an anomaly-based detection mechanism,

enriched with detailed control flow analysis. These two techniques combined together

enable early detection of subtle attacks that may involve obfuscation attempts. In addi-

tion, control flow analysis helps us validate any redirections and minimizes the leakage

of the victim’s information through malicious links.

The architecture includes a Plug-in on the client-end. The Plug-in is responsible for

ensuring that any Web site visited by the user is checked by the Proxy. Based on the

input of the Proxy, the Plug-in also deploys the actual protection. In either case, we

effectively stop the attack from being successfully carried out and affect the user’s sys-

tem. The Plug-in is carefully designed so as to maintain limited amount of information

of the user’s browsing history.

We extensively test our solution over a large number of actual XSS vulnerabilities.

Our evaluation results show not only that we are able to protect against all types of XSS

attacks, but also that our approach is efficient and does not impose a significant burden

either on the client or on the server. In summary, the key benefits of our solution are:

1. User Friendly. Our approach does not require any significant level of human in-

volvement. It is based on a simple Plug-in that interacts with the user to inform him

of possible attacks and stop them from being carried out.

2. High Accuracy. Our approach can detect all known types of XSS script injections,

by providing different levels of protection, that include selectively blocking portions

of the sites being infected and preventing the site from being accessed.

3. Acceptable Overheads. Our approach does not impose any burden on Web appli-

cation performances. The overhead at the client-side is minimal, most of the compu-

tation is carried out by a Proxy. The Proxy is also very efficient, and therefore it can

be used to protect multiple users at the same time.

The rest of the paper is organized as follows. Next section provides an overview of

XSS attacks. Section 3 provides an overview of our solution, the XSS-Dec. In Section 4

we describe the Proxy’s architecture. In Section 5, we discuss the Plug-in. In Section 6

we present our evaluation results. Section 7 analyzes existing body of work in this area,

and Section 8 concludes the paper.

2 XSS Attacks and Common Solutions

XSS attacks are a class of code injection attacks caused by the server’s lack of input

validation and are typically the result of insecure execution of JavaScript, although non-

JavaScript vectors, such as Java, ActiveX, or even HTML, may also be used to mount

the attack. XSS attacks can be segregated into the following classes:

DOM-based attacks: The attacker sends a specially crafted URL to the victim, altering

the DOM structure of the Web page once it’s loaded in the browser. The actual source

code is not changed. It is often launched using the document.location DOM and

then used to populate the page with dynamically generated content.

Reflected XSS attacks: The attack code is “reflected” from a Web server. The attacker

inserts malicious JavaScript into some form, which typically reflects the string back to

the trusted site, using the content inserted to generate a response on the fly. The attack

code, which is treated as belonging to the same domain as the rest of the site, is then

executed. This is the most common form of attack.

Stored XSS attacks: In this type of attack (also known as HTML injection attack), the

payload is stored by the system, and may later be embedded by the vulnerable system

in an HTML page provided to a victim. The attack is carried out when a victim visits

this page, or the part of the page on which the payload is stored.

Usually, to prevent untrusted code from gaining access to content on other domains,

protection mechanisms such as sandboxing are applied or the same origin policy is en-

forced. However, XSS attacks bypass the same origin policy to gain access to objects

stored on different domains by luring the victim to download or execute malicious code

from a trusted site. Beyond sandboxing, the most commonly employed defense against

XSS attacks is input validation [3, 19, 8, 11]. This approach uses a server-side filtering

module that searches scripting command or meta-characters in untrusted input, and fil-

ters any such content. If the server fails to filter the input, however, the client is left

defenseless. Other popular input validation techniques include dynamic tainting and

untrusted information tracking. As highlighted by some recent work, these solutions

correctly track whether a filter routine is called before untrusted information is output,

but they do not reason about the correctness of employed filters, and fail to consider

the Web application output [4]. Further, there are many scenarios where filtering is dif-

ficult to carry out correctly, especially when content-rich HTML is used. For example,

attacks that are launched by scripts located at multiple locations in a Web application

may succeed. A single filter function may not be sufficient if it looks for scripting com-

mands, as injected input may be split across the output statements. In this case, every

character in the HTML character set is legal, which implies that the filter cannot reject

any individual character that may result in script content. Unauthorized scripts can be

obfuscated by entering it within pre-existing execution environments, allowing it to es-

cape the filters. That is, the attacker may embed an environment variable in between two

existing tags. Hence, one should check the alteration of the execution flow to identify

such hidden attacks.

3 Our approach: the XSS-Dec

Among the most popular techniques for Web vulnerabilities, anomaly detection and

control flow analysis have gained popularity in the recent years. When considered alone,

neither approach is however sufficient for effective detection of XSS attacks. First, the

complexity of XSS attacks prohibits any approach that solely relies on anomaly detec-

tion [17]. Anomaly detection is in fact unable to detect most XSS subtle attacks, that

are often deployed by exploiting obfuscation techniques. For example, XSS attacks are

written using JavaScript or ActionScript, where the output of the script is dynamic in

nature, thus obfuscating the attack. Second, control flow analysis is effective for detect-

ing subtle attacks, but it is very inefficient for real time detection [10] as it is slow and

results in a high number of false positives. Real time detection is important with XSS

attacks since the output of the attack script is often developed on the fly.

In order to overcome these limitations, we have devised a hybrid solution that com-

bines the benefits of control flow analysis and anomaly detection to protect client sys-

tems against XSS attacks. Specifically, we suggest a security-by-Proxy solution, re-

ferred to as XSS-Dec. XSS-Dec relies on a Proxy component for vulnerability analysis

and detection. The Proxy acts as a middle-man between the servers of the sites visited

by the client, and a client-side Plug-in. This design upholds users’ browsing activities

while thoroughly monitoring the sites’ vulnerabilities before any attack is carried out.

Fig. 1. XSS-Dec main flow

An overview of the XSS-Dec main functionality is reported in Figure 1. As shown,

a first bootstrapping step is executed at time t0. The server (or servers, if more than

one is in fact connected to the Proxy) sends the encrypted copies of the source files

of its Web pages to the Proxy. Subsequently, as the source of a Web site is updated or

changed at the server end, more updates are sent to the Proxy by the server (possibly

before the newer site is launched to the public). We assume that the Web sites’ source

codes collected by the Proxy at this point of time are valid, that is, there has been no

chance for an attacker to insert any malicious script. The Proxy generates an abstract

and accurate representation of the site, using control flow analysis, and stores it for

later use. When the user starts browsing (at any point of time t1, t1 > t0), the client-

side Plug-in deploys the actual defense mechanism. Precisely, the Plug-in keeps a local

record of the pages visited by the user. Further, it communicates to the Proxy the client

input and the source code of the Web -page as it appears to the client. Upon receiving

the client-end input, which is again encoded using control flow techniques, the Proxy

detects whether there exists any features indicative of malicious code or script, at time

t2, using both anomaly-based and signature-based detection.

Using signature-based detection, the Proxy searches and extracts features, which it

uses to calculate the likelihood of an actual attack taking place. This attack likelihood

is used to drive the Plug-in to either work pro-actively by blocking certain user actions

and sites, or reactively by waiting for the attack to actually take place before notifying

the user. This information regarding the attacks is sent back to the Plug-in at time t2.

The Plug-in, using the information obtained from the Proxy, deploys the actual defense

mechanism, by either stopping the attack or preventing it from being executed (time t3).

Note that the server and client side representations of the page being compared are

different: the server source code is free of any injected malicious code, while the input

received from the client-side may include malicious content.Although the client’s actual

input actions may differ from those simulate on the server side, injection of malicious

scripts always result in a particular set of code features, like certain HTML tags being

manifested in a compromised site. These features are the ones analyzed by the Proxy.

It is worth noting that our security-by-Proxy design assumes that the Proxy is re-

sistant to basic attacks. The servers of the sites frequented by the client are assumed to

be semi-trusted, and able to send to the Proxy non-corrupted data. That is, we trust the

server to send the source code of its Web sites to the Proxy before the malicious scripts

are injected. In line with current solutions based on client systems (e.g. [13]), we also

assume that the Plug-in is not compromised.

4 The Proxy

The core algorithms behind our defense mechanism reside at the Proxy. The Proxy

is composed of two logically distinct modules, Calculator and Analyser. These two

modules serve the complementary tasks of analysis and detection.

4.1 The Calculator

The Calculator is in charge of computing a normalized and detailed view of the server’s

pages’ content. The source code for both client and server’s pages are modeled through

a control flow graph (CFG), for accurate and efficient computation. The CFG is an ab-

stract representation of the source code of the Web page, including any possible redirec-

tions for the URLs contained in it, and execution paths for active components, such as

JavaScript or Flash components. In the context of our system, the CFG is represented

as a directed graph. The nodes represent either HTML tags or actual program state-

ments and variables. The edges represent the paths of execution, while the directions

are dictated by the loops and the conditions present in the code.

CFGs have been often successfully used in static analysis [13, 5]. However, given

the complexity of certain pages, CFGs can be computationally expensive to generate,

and hard to navigate. This makes it very difficult to construct the dynamic CFGs for

such pages on the fly, which is essential to identify the possible malicious effects of any

code that has been added to the page. Our challenge is then to compute CFGs that are

both accurate and efficient for the scope of our detection. To cope with these limitations,

we construct different types of CFGs, based on the specific Web page structure and of

its content, as specified below.

1. Page with no active components: If a page has no active components, its CFG is de-

rived from the control flow information available from the design model of the Web

page such as its HTML or XML [18]. Specifically, the Abstract Syntax Tree (AST)

[18] is first created, and then any flow information between the nodes is added. In

what follows, this CFG is also referred to as model-based.

2. Pages with active components: If a page has a lot of active components, the CFG is

again derived from the control flow information available from the design model of

the Web page, and it is then augmented with the control flow information available

from the actual code about active nodes. In particular, Flash-based elements and

JavaScript components are expanded to uncover potentially obfuscated attack code.

That is, when a 〈script〉 tag, or a 〈∗.swf〉 file is encountered in a node of the model-

based CFG, the node is further expanded based on the component’s source code (i.e.,

the JavaScript, or the ActionScript respectively), and a new sub-CFG is obtained.

The new CFG is constructed by representing each command in ActionScript in the

code as a node. The flow from one statement to the next is given by directed edges.

Notice that for the construction of this sub-CFG (i.e. the one containing expanded

active nodes), we do not consider the user’s inputs. Instead, we construct all possible

execution paths based on all the possible inputs. Therefore, the CFG shows the call

relations at the basic block level, while also containing all the possible nodes and

edges. An example of a portion of an enriched CFG is given in Fig 2.

3. JavaScript Rich Pages: If active components are only JavaScripts, a simpler form of

CFG is generated, to save both space and time complexity. Instead of generating the

augmented dynamic control flow graph as described above, the JavaScript elements

are rendered as augmented ASTs. The grouping parentheses (such as 〈script〉 tag,

or a 〈∗.swf〉) are still left implicit in the tree structure, and the syntactic representa-

tion of any conditional nodes are represented using branches, but the call relation-

ships at the block level are still explicitly shown. Therefore in the augmented AST,

the nodes are used to represent the commands in the code like in a simple AST, the

loops are simply represented by if-then clauses with a given set of steps repeated in

between. Any goto statements are also simplified to if-then-else clauses. Any user

actions that can alter the loop (e.g. open a new page, click a link, move mouse over

some objects of the page) are represented on the edges.

4. Access Restricted Pages: The CFG for a site which is access restricted (requires a

login to gain access to portions of the site), is developed using a different method-

ology. Clearly, the site structure and corresponding CFG depend on whether the

CFGs are built before or after the user’s login. Further, the CFG for each user will

be different as users may have customized Web spaces within the site. In case of

such access-restricted sites, only the CFG before login remains the same across all

users. The Calculator can easily obtain the CFG for this portion of the site. This

CFG is very important, as any injected code on this page can potentially allow the

attacker to take over the user accounts. Yet, damaging script can be injected in the

pages after login too. To compute the CFG of user-restricted portions of the sites,

the Calculator logs in using a test account. Intuitively, this CFG will not contain

Fig. 2. Portion of the model-based CFG for the Yahoo site

user-specific information. It is however still useful for attack analysis, in that it gives

the actual structure of the pages of the site, thus allowing the Proxy to detect any

attacks that are launched by modifying the structure of the site. In particular, it helps

detect any changes to the DOM structure and is therefore useful in detecting Per-

sistent or DOM-based vulnerabilities. However, it cannot detect non-persistent vul-

nerabilities, which form the most common type of XSS attacks. This is because all

the non-persistent vulnerabilities are exploited by data injected in the user-specific

pages when the site is a login-based site. To detect the non-persistent vulnerabilities,

we depend on the feature extraction capabilities of the Analyzer as explained next.

If the Analyzer encounters a JavaScript or ActionScript environment, it requests the

Calculator to compute the sub-CFG for that particular portion of the site, to detect

possible malicious code injected within these environments.

4.2 The Analyzer

The Analyzer has two main tasks. First, it extracts features indicative of potential ex-

ploits. Second, it estimates the likelihood of the attacks being carried out.

Feature Extraction: The Analyzer, upon obtaining a client-side CFG, compares the

client-side and the server-side CFGs to extract relevant features that may be indicative

of attacks. In the following, we provide a broad classification of the features searched

by the Analyzer. The features refer to non-access restricted sites, and are presented in

the order of the severity of the attack.

(1) Redirection to a site not contained in the server-side CFG: If a CFG generated at

the client contains a redirection to some site not contained in the server-side CFG,

it likely means the user will be redirected to a site unknown to the original server.

This feature, which is the most common and strongest indicator of an XSS attack, is

often observed in DOM-based attacks [7].

(2) SQL Injection Via XSS: A script capable of inserting input on behalf of the user

is potentially indicative of an attack. Specifically, if the script is added to the site

without any actual action or permission from the user, and therefore appears to the

client-side CF , it may denote a SQL Injection attack. The SQL statements are used

to commit changes to the database on the victim’s behalf. Given below is an example

of the code:

< TableID = “TNAME” >
< / Table >
< Script Language = “JavaScript” src = “addjscript.js” >
< Script Language = “JavaScript” >
sql(“insert+ TNAME+ values(‘Victim‘, ‘pwnd‘, ‘again‘)”);
< /Script>
This script attempts to insert the values “Victim”, “pwnd” and “again” into the table

named TNAME. Using such statements, the attacker can change the passwords or

other information of the victim.

To identify potentially malicious actions, the Proxy specifically monitors for server-

side database actions being committed through SQL commands such as “UPDATE”,

“DELETE” etc. That is, it scans the JavaScript and ActionScript for any embedded

SQL queries as in the above example. The Proxy also checks the CFG for all possible

SQL commands including “SELECT”, so as to identify a large range of attacks. This

feature occurs often, though not exclusively, in stored attacks [20].

(3) JavaScript based manipulation on the client-side CFG: If the client side CFG in-

cludes nodes with <submit> and < META > tags, forms may be submitted on

the user’s behalf, or cookies may be manipulated without the user’s knowledge.

Although each of these tags can occur for legitimate purposes in non-malicious

JavaScript, when combined with any of the other features (especially redirection

to a site contained on the server-side), these tags are typically representative of an

attack. This feature is most often observed with reflected XSS attacks [7].

(4) Text changed from original server site to the site rendered at the client: Differ-

ences in the way text is rendered on the client’s browser versus the way it was stored

on the server-side are also to be treated as a warning sign. To check for any changes,

the Proxy looks for alterations in the text formatting tags such as the <header>
tags, the <para> tags, the use of bold or emphasis tags, etc. In this way, the Proxy

can detect subtle attacks, where the attacker simply changes the way a Web site looks

with intentions of slander or misrepresentation. Text manipulation can be carried out

by any type of XSS attack, but is most commonly observed with DOM-based and

reflected XSS attacks [16].

For access restricted sites, extracting the features of a latent attack is more compli-

cated, as comparing the client-side and the server side-side CFGs is not sufficient. This

is because the server-side CFG is derived using login information different from the lo-

gin of the user being monitored. The CFG at the server side, while structurally similar,

does not contain the actual information contained in the client-side CFG. For instance,

the server-side CFG for a GMail page is constructed using a login different from the

login used by the user, and therefore it has the same UML structure as the client-side

CFG, but it will differ with respect to the exact content in the CFG.

For such sites, the Analyzer exploits the similar CFG structure of the two versions

of the site to identify if the basic representation of the page is altered. In this way, text

changes to non-user generated texts such as logos can be detected in the same way

as it was for non-access restricted sites. Further, the SQL Injection feature also does

not change, as identifying SQL statements which cause actions to be committed on the

user’s behalf can be detected without the need for comparing the client-side and the

server-side CFGs. Yet, the attacker can still inject the malicious script in those portions

of the page that are actually user-specific. Referring again to our GMail example, the

attacker would insert a URL for redirection in the actual mail content. To address this,

the Analyzer checks whether any of the URLs that appear in the user-specific portions of

the page link to a potentially malicious page. JavaScript manipulations are also hard to

extract for access restricted pages, as the manipulation of the JavaScript can take place

within pre-existing environments, which occur only on the user specific portion of the

page. For example, the attacker can inject malicious scripts between two < META >
tags present in the user’s profile on a Facebook page for a link to his personal Web

site. Since these < META > tags will vary for each user’s Web site, there is no way of

identifying whether any code has been injected between them by simply comparing the

client-side and the server-side CFGs. Therefore, the Analyzer requests the Calculator to

derive the CFG for the user specific parts of the page. Based on this input, the Analyzer

checks for any possible malicious execution paths.

Attack Analysis. The Analyzer, upon detecting one or more of these features, com-

putes the likelihood (denoted as α) of an actual attack. Each of the features is assigned

a weight. The weight is set to correlate with the amount of past security-relevant infor-

mation about the feature including the frequency of mentioning in incident reports. For

example, the most common condition observed in XSS attacks is redirection or some

sort of URL submission [7]. Therefore, the feature of redirection to a site not contained

in the server-side CFG is to be assigned a high weight. α is simply calculated using the

weighted sum: α =
∑|F |

f=1
wf ∗nf . In the equation, wf represents weight of the feature

f , and nf indicates the number of times the feature has occurred on the page. |F | is the

cardinality of all possible features the Proxy analyses. The equation can be extended to

capture additional features, and strings which may be injected by the attacker. For ex-

ample, a combination of features or a specific pattern of extracted features can be given

an additional weight, or an additional attack string can be considered in the equation.

For simplicity, however we stick to the formula specified above. As shown in Section

6, it is sufficient to guarantee a very good detection rate.

α is matched against anomaly based thresholds. We consider two threshold levels, a

detection threshold and a prevention threshold. These thresholds are dynamic thresholds

in that they are constructed based on the actual set of features which is extracted from

a page. The detection threshold is indicative of a suspected attack, in that a number of

limited features are verified true. It is therefore set based on the total number of features

that have been extracted for a given page, and the lowest weight found in the set of

features extracted. Using the lowest weight found ensures that the evidence presented

to the Plug-in is just enough to register some suspicious but not necessarily harmful

activity. The second threshold, which is is instead higher, models cases where there is

enough evidence (in terms of features occurrence and importance) to believe that the

attack is in fact imminent. This threshold is referred to as prevention threshold as it

triggers mechanisms to prevent an attack, upon being passed. It is, also set using the

total number of features extracted. However, it is based on the highest weight feature

that has been extracted for the given page thus making it higher than the detection

threshold. For example, page X may contain added redirections to URLs, JavaScript

manipulations and text changes from the original page on the server, while page Y may

contain redirections, SQL Injections via XSS and JavaScript manipulations. The highest

weight extracted for both page X and page Y is the same. However, the lowest weight

extracted for page X is the weight associated with text changes, and the one extracted

for page Y is the weight associated with JavaScript manipulations.

5 The Client-Side Plug-in

The client-side Plug-in is in charge of providing the Proxy with information about the

pages the user is visiting, encoded as a CFG. Further, it deploys protection mechanisms

against latent or ongoing attacks, upon being notified by the Proxy.

To complete these tasks, the Plug-in has two main modules: the Auditor and the De-

tector. The Auditor obtains information from the Proxy about all the possible attacks

on an open page, while the Detector is in charge of stopping or preventing the identi-

fied vulnerabilities from being carried out. In order to help identify the possible attack

vectors of an open page, the Auditor keeps a record of the pages visited by the user,

and calculates a model-based CFG for each of such pages. Once created, each CFG is

stored in an encrypted form. The CFG is subsequently updated or replaced as needed,

according to any changes of the page’s code, due to script injections or server-side mod-

ifications. The Plug-in sends the latest encrypted CFG to the Proxy, every time the user

visits the page, as soon as it is opened on the browser.

The other module of the Plug-in is the Detector. The Detector is the component

obtaining instructions from the Proxy if the features detected are deemed indicative of a

potential attack. Precisely, it receives information about the possible attacks in the form

of the attack likelihood α and the specific features extracted by the Analyzer. Each of

the features results in a particular type of anomaly. The anomalies consist of execution

of a script on a site to which the user has been redirected, personal information of the

user being sent to a remote system, and actions such as submission of forms taking

place without any corresponding input on the user’s part. The first two anomalies are

often observed in case of redirection and JavaScript based manipulation, while the third

one is often observed with SQL Injection via XSS.

The Detector monitors the client machine for any of such anomaly using dedicated

modules. Each module corresponds to a specific monitoring activity and is activated if

the Proxy verifies the feature they implement. Specifically, the module checks for spe-

cific user actions which actually start the attack based on the features it has detected. If

one of the extracted attack features consists of unwanted redirections (see feature (1) in

Section 4.2) and the estimated likelihood is high, the Detector prevents the user from

being redirected to the targeted page. Otherwise, (i.e. likelihood is below the prevention

threshold) the Plug-in simply pops up an alert box to the user when the link is opened.

In case an attack presents one or more features (i.e. feature (2), (3) and (4)) beyond redi-

rection, and has an estimated high likelihood value, the Detector prevents the malicious

script from being executed. Specifically, it does not render a portion of the page or an

entire page and displays an error message to the user. In case of a low likelihood value,

it simply pops up an alert to the user before rendering the malicious content. Intuitively,

stopping ongoing attacks is less desirable as preventing them. As shown in the next

section, the XSS-Dec is efficient enough to stop the attack before any major damage of

the client system.

6 Evaluation

We deployed and thoroughly tested a running prototype of the XSS-Dec. Before dis-

cussing our evaluation, we briefly describe the prototype developed.

6.1 XSS-Dec Prototype

The Plug-in was developed by logically distinguishing the Auditor from the Detector.

Both components were implemented primarily in JavaScript, to guarantee portability.

The Auditor uses a separate JavaScript component to construct the CFG based on the

HTML and DOM structure of the page. Each of the possible user actions are edges’

labels. In case the node contains a URL (i.e., a href tag) to some other site or page,

this node becomes the second node of the CFG of that page. To reduce the risk of

interceptions of the user’s browsing history, the Plug-in sends the CFG in an encrypted

form. In the current prototype, the Plug-in uses Merkle hash trees [14] for easy graph

comparison and reduced graph size. Alternatively, we could serialize the tree and rely

on more traditional encryption schemes.

The Detector is organized into four JavaScript modules, one for each of the features

possibly extracted by the Proxy. Each module is activated if the Proxy verified true the

corresponding feature they implement.

The prototype of the Proxy also has two modules. Both are implemented using Java

and JavaScript components. Specifically, the Calculator uses JavaScript to build the

nodes for the model-based CFG. Java components are then used to expand the active

nodes, i.e. the nodes containing JavaScript or Flash elements. The resulting enriched

CFG is built as a serialized tree using the TreeMap Java class. The Calculator stores

a number of CFGs of the pages being most often visited by end users. This simplifies

both CFG analysis and comparison with Plug-in-received CFGs. The stored CFGs are

updated as the pages’ content is notified to have changed.

6.2 Experimental Evaluation

The goal of our evaluation was two-fold. First, we aimed at estimating the accuracy of

our solution in detecting XSS attacks. Second, we estimated the overhead incurred with

our protection mechanism. Estimating the Proxy overhead allows us to make some ini-

tial considerations on the scalability of our solution. The Plug-in was tested from a Dell

Latitude D630 Laptop, with 2G Ram and a Intel(R) Core(TM)2 Duo CPU T7500@

2.20GHz processor. The Proxy was run from an Apache server hosted on the same

machine, to maintain a conservative estimate of the system efficiency. The server was

running the Apache Web server (version 2.2) and PHP version 5.3.3. Apache was con-

figured to serve requests using threads through its worker module. Our tests do not

account for any network delays, and are carried out without conducting any fine-tuning

or training.

Detection Accuracy

Experimental Settings. Using a trial-and-error approach, we defined two simple anomaly

threshold values for assessing whether an attack was latent or not. We express the fea-

tures’ weights of equation in Section 4.2 by means of totally ordered integers, ranging

from 1 to k, where k ≤ |TF |, and |TF | is the possible total number of features (4,

in our case). Given a set of extracted features F = {f1, . . . , fn}, we compute the pre-

vention threshold as follows: Thigh=|F | + wfmax
, where wfmax

is the highest weight

among all the weights of the extracted features. |F | represents the total number of fea-

tures extracted (regardless of their actual weight). If a same feature appears more than

once, it is counted as a new feature, therefore increasing the overall probability of an

attack. Intuitively, from this equation, we can determine whether the feature of highest

weight is significant enough to influence α to a point where an attack is most likely to

happen. Our detection threshold, referred to as Tlow is computed in a similar fashion of

Thigh: Tlow = |F | + wfmin
and wfmin

is the lowest weight assigned to the features in

{f1, . . . , fn}, n > 1. When Tlow < α < Thigh, the Proxy suspects an attack. It sends

a warning message to the client Plug-in, providing details about the warning features

verified true. When α > Thigh, the Proxy deems that the likelihood of an attack is very

high.

Methodology We evaluated our system on several real-world, publicly available Web

applications and on simulated environments. We recorded the number of false positives

generated when testing the application with attack-free data and the number of attacks

correctly detected when testing the application with malicious traffic. In detecting the

attacks we tracked whether they were detected at the time of prevention (i.e. α was

above Thigh) or detection (i.e. α was above Tlow).

Overall, we ran the XSS-Dec system for a total of 100 pages, in a non-deterministic

order. 20 of them were hand-evaluated real-world clean pages. The remaining pages

were constructed by us, and contained one or more XSS vulnerabilities. The clean

pages were selected from popular Web sites with active components, like MSN, Ya-

hoo, Google, social networking and forum sites. The vulnerable pages were created

using the real-world XSS vulnerabilities reported in the security mailing list, Bugtraq

[2]. We deployed the given vulnerabilities in similar sites than those listed as vulner-

able, and injected the malicious script in the variables described. We constructed 80

sites, and tested 80 different vulnerabilities. Each of these sites hosting the malicious

files had benign components. The actual attack code varied for each try, so as to create

polymorphic attack code. To create the variations of the attack code, we introduced ran-

dom NOP blocks in each attack to introduce random delays. Further, we combined one

or more attacks with each other, i.e. some vulnerabilities were tested multiple times.

Also, the page invoking the malicious content was different for each try. The elements

we included in each page consisted of one or more of the following: images, videos,

audio components, other benign JARs carried in applets but not embedded in images,

text documents, hyperlinks, Java components, JavaScript components, forms, zip files,

Microsoft Office Open XML documents, XPI files,benign SWFs and simple games.

Attack Type Detected Prevented False Positive False Negative Total Attacks

Normal XSS 0 All 0 0 15

Image XSS 0 All 0 0 13

HTML entities 0 All 0 0 12

Style-Sheet based XSS 0 All 0 0 13

Flash-Based XSS 5 3 0 2 13

XSS in pre-existing environments 0 All 3 0 14

Table 1. Evaluation Results

Results Table 1 summarizes our results organized according to the classification in the

Rsnake Cheat Sheet [7]. The results reported in the table group the different 80 attacks

according to the location of the attack vector. As shown, XSS-Dec stopped all but 2

attacks. Both were Flash-Based. Out of the stopped attacks, 94% of them were pre-

vented before being carried out. The remaining 6.2% were stopped at detection time.

We reported 3 false positives. A false positive occurred when an attack was detected in

a part of the page where there was no attack code.We noticed that false positives were

detected on the forums of users sharing coding tips on JavaScript. The code displayed

on the pages as part of the discussions was considered as an injection by the XSS-Dec.

To improve the false positives on forums, we plan on adding string checking to the

Proxy as part of our future work. String checking will help differentiate between the

code being discussed in the forums and some malicious script. The sites that were not

prevented but only detected were typically sites with a huge number of Flash compo-

nents. Flash components enable the attacker to hide the consequences of the redirections

due to script injection, reducing the overall likelihood of the attack being prevented by

the Proxy. We expect that training the model would mitigate these issues. Below, we

summarize our results for three of the most challenging categories of attacks: In case

of Flash-Based attacks, our approach prevents most of these attacks by not execut-

ing the Flash file. For those attacks that are only detected, the file is executed but the

user is alerted as soon as some malicious activity is seen on the client end. In case of

Cookie stealing XSS attacks, our approach specifically monitors for manipulation of the

〈META〉 tags to reset the cookies, and detects all possible instances of this vulnerability.

For XSS attacks where the vectors are injected into pre-existing elements (e.g. between

pre-existing 〈script〉 and 〈/script〉 tags), our approach monitors for manipulation

of JavaScript and we achieve a 100% prevention rate.

Performance Evaluation

We computed the average time for the most resource consuming activities of our

system, i.e. constructing the CFGs and extracting features. Our tests show that the av-

erage time for constructing a CFG of level 40 with no dynamic components is 3.25

seconds, and for constructing the CFG with 50% dynamic components is 3.39 seconds.

The time grows linearly with respect to the size of the CFG. For these tests, we used

CFGs of increasing complexity from 10 to 80 nodes, each corresponding to real sites.

The CFGs of level 80 correspond to popular sites, with a large number of active com-

ponents (3/4 of the nodes), such as Youtube and Bigfish. The complexity of the CFGs

increased as the ratio of active nodes to inactive nodes increased. For the simpler CFGs,

the ratio of active nodes to inactive node was 1:4, while for the more complex CFGs,

the ratio was greater than 3:4. The highest complexity for a CFG of level 80 was 83% of

the nodes were active nodes. The time taken for constructing the CFG of level 80, with

83% active nodes was 4.183 seconds, while the time taken to calculate the least complex

CFG was 3.2432 seconds. This makes the overhead for the most complex CFG com-

pared to the least complex CFG less than 1 second different. We notice that while this

time is not negiglible, CFGs are only calculated periodically, and cached for efficient

reuse.

The time for extracting features on an average for a CFG of level 40 is 2 seconds,

while the maximum time for a level 80 CFG is 2.673 seconds. Since the CFGs are com-

puted at the Proxy, these results confirm that the Proxy is indeed scalable. In real-world

settings, the Proxy would be hosted on a dedicated server with larger processing power

than our system. Further, we notice that since most of the pages maintain a similar

structure the Proxy can improve the size of the cached directory of model-based CFGs,

for similar Web sites. This would likely improve the performance substantially. Finally,

the Proxy in the real world would not be running in parallel with the Plug-in as was the

case for our system.

7 Related Work

XSS attacks have been identified as a threat since the 1990s. Since then, various solu-

tions to detect and prevent these attacks have been explored. Traditional solutions focus

on sanitizing the input at the server side, but recently client side approaches have also

been proposed. There also exist Proxy-based solutions which aim to protect Web appli-

cations by analyzing the HTTP requests. Despite these efforts, XSS attacks still remain

on the top of Web security attacks in the OWASP lists [15].

Server-side solutions or Proxy-based solutions are commonly used for Web -based at-

tacks, since they enable users’ inputs sanitization [3, 19, 11, 22]. In particular, Scott and

colleagues proposed an interesting Proxy-based solution [19]. The Proxy is similar to

an application firewall; it enforces pre-written security policies. Their proposed mech-

anism requires that all Web applications patch themselves to prevent an XSS attack. In

case a Web application is not patched, the end user is left defenseless. Our focus, on the

other hand, is how to ensure that any malicious script does not affect the user. Conse-

quently, it does not require any patching from either the user or the server. Similar to

the above is a commercial product called AppShield [1]. AppShield also inspects the

HTTP messages to prevent application level attacks. While it is similar to our system

in inspecting the HTML of the pages outbound from the server, it does not specifi-

cally look for any code injection. Hence, Appshield can recognize attacks based on the

(proprietary) rules that it uses to validate the HTTP requests. Wurzinger also propose a

proxy-based solution to detect HTML responses and any injected scripts [23]. To iden-

tify malicious scripts, any legitimate script calls in the original web page are changed

into unparsable identifiers called script IDs. Therefore, if any unparsed script is found,

it is assumed ti be indicatory of an attack. This system focuses on stored and reflected

XSS but not on DOM Based attacks. Further, the parsing of a script may be a significant

bottleneck of the system.

Bisht et al. [4], propose to remove any server side script in the output of a Web appli-

cation, when the script is not originally inserted by the application itself. This approach

is complementary to ours in that we focus on preventing the attacks at the client-end,

rather than relying on servers’ filters only. Further, as any other server-based solution,

Bisht’s approach relies on the server ability to patch and remove server side scripts. The

fact that a solution focusing on protecting the servers may leave end-users vulnerable

has inspired some interesting client-oriented solutions. One of these is the Noxes sys-

tem, proposed by Kirda et al [13]. Noxes is a Web firewall aiming at protecting the client

from XSS attacks. Noxes’ detection is based on the analysis of the server-side scripts.

In XSS-Dec, we also use server-side scripts. However, our detection of code injection

relies on a detailed comparison of the server-side scripts with client-side scripts. Kirda

and colleagues instead choose to rely on validating the HTTP referrer headers. The

HTTP headers, however, do not represent a useful indicator in case the attacks come

from trusted sites. Further, the information leaked via embedded URLs is contained by

limiting the information sent through each.

We borrowed the idea of using control flow analysis from some recent interesting

work [9, 21, 5, 6]. The Swaddler system [9], for example, focuses on detecting any vio-

lations in the workflow of a stateful application or input violations by users. We differ

from this work both in scope and in the detection mechanism: our focus is on script

injections rather than state violations. Further, our solution accounts for both stateful

and stateless applications. Bonfante et al. in [5] used control flow graphs for extracting

malware signatures. The authors present a system for extracting signatures of malware

by using CFGs composed at the assembly language instruction set level. While simi-

lar to our approach in spirit, our CFGs are derived based on high level languages. We

employed control-flow analysis in our previous work, the DeCore [21]. The DeCore is

aimed at detecting content repurposing attacks, from the client-side end, and therefore

focuses on a different set of attacks. Close to the notion of control flow analysis is script

analysis, which has been leveraged to detect XSS vulnerabilities. A specific example of

this approach is the Pixy tool proposed by Jovanovic et al.[12]. We take a complemen-

tary approach, in that we analyze JavaScript, ActionScript and HTML. Further, the Pixy

tool relies on taint analysis of the data whereas we leverage the notion of control flow

analysis by using CFGs. The CFGs allows the XSS-Dec to detect any malicious script

injection using any type of script, while the taint analysis in the Pixy tool helps detect

any input violation.

8 Conclusion

In this paper, we presented XSS-Dec, a security-by-Proxy approach to protect end-users

against XSS attacks. Our solution combines the benefits of both server-side and client-

side protection mechanisms. We leverage the information obtained from both the client

and the server-side to provide an anomaly based detection approach complemented by

control flow analysis. In the future, we will study whether a server can use the Proxy

features without having the server’s sending pages beforehand. Finally, we will test the

scalability of the XSS-Dec in distributed settings.

References

1. Appshield, 2004. Sanctum Inc.

2. Security focus -bugtraq, 2010. http://www.securityfocus.com/archive/1.

3. D. Bates, A. Barth, and C. Jackson. Regular expressions considered harmful in client-side

XSS filters. In 19th international conference on World Wide Web, WWW ’10, pages 91–100.

ACM, 2010.

4. P. Bisht and V. Venkatakrishnan. XSS-guard: Precise dynamic prevention of cross-site script-

ing attacks. In 5th GI International Conference on Detection of Intrusions & Malware, and

Vulnerability Assesment. Springer, 2008.

5. G. Bonfante, M. Kaczmarek, and J.-Y. Marion. Control Flow Graphs as Malware Signatures.

In International Workshop on the Theory of Computer Viruses TCV’07, Nancy France, 2007.

6. S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and Y. min Wang. A systematic approach to

uncover security flaws in gui logic. In IEEE Symposium on Security and Privacy, pages

71–85. IEEE Computer Society, 2007.

7. ComputerWeekly.com. Hackers broaden reach of cross-site scripting attacks, 2007.

8. S. Cook. A Web developer’s guide to cross-site scripting. t. r, SANS institute, 2003.

9. M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An approach for the

anomaly-based detection of state violations in web applications. In Recent Advances in

Intrusion Detection, volume 4637 of LNCS, pages 63–86. Springer, 2007.

10. C. Earl, M. Might, and D. V. Horn. Pushdown control-flow analysis of higher-order pro-

grams. The 2010 Workshop on Scheme and Functional Programming, 2010.

11. M. V. Gundy and H. Chen. Noncespaces: Using randomization to enforce information flow

tracking and thwart cross-site scripting attacks. In Annual Network & Distributed System

Security Symposium, 2009.

12. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting web appli-

cation vulnerabilities. In IEEE Symposium on Security and Privacy, pages 258–263. IEEE

Computer Society, 2006.

13. E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: a client-side solution for mitigating

cross-site scripting attacks. In 2006 ACM symposium on Applied computing, SAC ’06, pages

330–337. ACM, 2006.

14. J. L. Munoz, J. Forne, O. Esparza, and M. Soriano. Certificate revocation system imple-

mentation based on the merkle hash tree. International Journal of Information Security,

2:110–124, 2004. 10.1007/s10207-003-0026-4.

15. OWASP. Top 10 2010 - the open web application security project, 2007. www.owasp.org.

16. OWASP. DOM based XSS, 2011. https://www.owasp.org/index.php/DOM Based XSS.

17. P. Raman. JaSpin: JavaScript Based Anomaly Detection of Cross-Site Scripting Attacks.

Master’s thesis, Carleton University, Ottawa, Ontario, 2008.

18. N. Schwartz. Steering clear of triples: Deriving the control flow graph directly from the

Abstract Syntax Tree in C programs. Technical report, New York, NY, USA, 1998.

19. D. Scott and R. Sharp. Abstracting application-level web security. In Proceedings of the

11th international conference on World Wide Web, pages 396–407. ACM, 2002.

20. SpiderLabs. Analysis of lizamoon: Stored XSS via SQL injection, 2011.

http://blog.spiderlabs.com/2011/04/analysis-of-lizamoon-stored-xss-via-sql-injection.html.

21. S. Sundareswaran and A. C. Squicciarini. Decore: Detecting content repurposing attacks

on clients’ systems. In Security and Privacy in Communication Networks (SecureComm),

volume 50, pages 199–216. Springer, 2010.

22. G. Wassermann and Z. Su. Static detection of cross-site scripting vulnerabilities. In 30th

International conference on Software Engineering, pages 171–180. ACM, 2008.

23. P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel. Swap: Mitigating xss attacks us-

ing a reverse proxy. In Proceedings of the 2009 ICSE Workshop on Software Engineering for

Secure Systems, IWSESS ’09, pages 33–39, Washington, DC, USA, 2009. IEEE Computer

Society.

