Ground State vs. Excited State

Noon 2-8 (ground state electron configuration)

Neon
2-7-1
(excited state electron configuration)

*Notice that one electron from the 2^{nd} energy level has moved to the 3^{rd} energy level

Ground State = electron	s in
possible (the configuration.	

→ ground state electron configuration for Li is 2-1

Excited State = electrons	ıre
(configuration
→ excited state electron	configuration for Li could be 1-2, 1-1-1

Distinguish between ground state and excited state electron configurations below:

Bohr Electron Configuration	Ground or Excited state?
2-1	Ground
2-0-1	Excited
1-1-1	
2-7-3	
2-8-2	
2-8-8-2	
2-8-17-6	
2-8-18-8	
2-6-18-1	
2-5-18-32	

.	···	they jump
το α ַ	n energy level or an	
•	This is a very	
+	rapidly energy level	or
	J .	on eveited state to lewer enemals
V	When excited electrons fall from	.
	level, they release energy in the f	orm of
	→	
	Energy is	•
	•	is produced
	→	•
	Energy is	
	•	is produced
		•
	Hydrogen Absorption Spectrum	show the speci
		wavelengths of light being
		the electrons (move to higher energy levle)
	Hydrogen Emission Spectrum	show the specific
		wavelengths of light being
		by the electrons (falling down)
	400nm 700nm H Alpha Line	
	656nm Transition N=3 to N=2	
\checkmark	Balmer Series: electrons falling f	rom an down to
	the give o "Bright Line" or	ff light (AKA
	 Different elements produ 	uce different colors of light or
	<u> </u>	_
	• These spectre are	for each element (just

***The greater the distance from the nucleus, the greater the energy of

Practice:

1.	Which of the following is a ground state a. 2-7-2 b. 2-7-3	tate electron configuration? c. 2-6-1 d. 2-8-1
2.	Which of the following is an excited a. 2-8-2 b. 2-8-3	state electron configuration? c. 2-6-1 d. 2-8
3.	Give one possible example of an exci	ted state electron configuration
	for oxygen:	
4.	When atoms of an element in the graenergy, some of their electrons may a. fall back to the ground state at of light. b. fall back to an excited state are light c. jump to the ground state. d. jump to an excited state.	nd give off energy in the form
5.	 When excited electrons lose enough a. fall back to the ground state and of light. b. fall back to an excited state and light c. jump to the ground state. d. jump to an excited state. 	nd give off energy in the form

- 6. A bright-line spectrum is produced by
 - a. electrons emitting energy and falling back to the ground state.
 - b. electrons absorbing energy and falling back to the ground state.
 - c. electrons absorbing energy and jumping to an excited state.
 - d. electrons emitting energy and jumping to an excited state.
- 7. Based on the known bright line spectra produced by the four gases below, which gases are present in the unknown mixture?

Gas A				
Gas B				
Gas C				
Gas D				
Jnknown mixture	П			

Gases present: _____